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Abstract

We study a point pattern detection problem on networks, motivated
by applications in geographical analysis, such as crime hotspot detection.
Given a network N (a connected graph with non-negative edge lengths)
together with a set of sites, which lie on the edges or vertices of N , we
look for a connected subnetwork F of N of small total length that contains
many sites. The edges of F can form parts of the edges of N .

We consider different variants of this problem where N is either a
general graph or restricted to a tree, and the subnetwork F that we are
looking for is either a simple path or a tree. We give polynomial-time
algorithms, NP-hardness and NP-completeness proofs, approximation al-
gorithms, and also fixed-parameter tractable algorithms.
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1 Introduction

Consider the following scenario: You are given a detailed map of the road
network of an area together with the exact locations of all crimes committed
during the last year. Your job is to determine the area of the network with
the greatest concentration of crimes. To do so, you will want to find many
crimes that are somehow “close”. But finding crimes whose locations are close
with respect to the Euclidean distance might not give you the right answer—the
crimes need to be close with respect to the road network. In other words, you
need to find a comparatively “small” fragment of the network which contains
the locations of many crimes. This is usually referred to as a crime hotspot.

The problem of detecting crime hotspots has received a lot of attention in
recent years (see for example [10, 23, 29, 30, 32]). Crime hotspots are relevant
to both crime prevention practitioners and police managers: They allow local
authorities to understand what areas need most urgent attention, and they can
be used by police agencies to plan better patrolling strategies.

Most problems of this type have been almost exclusively considered in the
fields of geographic data mining [24] and geographical analysis [26, 27]. Many
different variants of the problem have been studied. The data set can be a point
set (each point indicating the location of a crime) or a crime rate aggregated
into regions such as police beats or census tracts. Even though both provide
useful information, for the purpose of finding hotspots, the precise locations of
the crimes are required. Existing methods also differ in the shape of the hotspot.
For example, a well-known technique, the “Spatial and Temporal Analysis of
Crime”, outputs areas of higher crime rate as standard deviational ellipses [19].
However, in urban areas, most human activities, including the criminal ones,
are georeferenced to the street network, and any measure of proximity should
take the network connectivity and network distances into account, rather than
using the Euclidean distance.

Crime hotspot detection is just one application example where this type of
spatial data analysis is performed, but many others exist. For example, instead
of crimes, one could analyze traffic accident locations, with the goal of finding
a comparatively “small” part of the network which contains the locations of
many accidents (see for example [20, 25]). A more cheerful scenario that leads
to the same algorithmic problem concerns a tour operator that wants to build
the perfect bus tour. She knows the road network and she knows where the
touristic sights are on this network. Now she wants to find the part of the road
network that contains the largest number of sights.

In this paper we address the problem of finding hotspots in networks from
an algorithmic point of view. The precise algorithmic problem that we consider
is defined in the following.

Formal problem statement. A network N is a connected graph with non-
negative edge lengths. We view the edges as curves of given lengths, and the
network is the union of all edges and vertices, considered as a metric space.
Thus, an edge uv of length c is (isometric to) an interval of length c, and it
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Figure 1: A network with sites; a fragment is highlighted in gray.

contains a point at distance ℓ from u and at distance c− ℓ from v, for any ℓ in
the interval 0 ≤ ℓ ≤ c. A fragment F of a network N is a connected subgraph
of N : The edges of F are contained in edges of N (they are either edges of N or
parts of edges of N). The length of a fragment F is the sum of its edge lengths.
Together with N , we are given a set S of sites, which are located on the edges
or vertices of N . Generally, we are looking for a fragment of small length that
should contain many sites (for an example see Figure 1). More formally, we
consider the following problem:

We are given a network N with m edges, a set S of n sites on N , and
a positive real value d. Find a fragment F of N (from a particular
class of graphs) of length at most d that contains the maximum
number of sites.

Not surprisingly, the most general problem where N is a graph and the fragment
F is a graph, a tree, or even a path, is NP-complete (proofs are provided in
Section 4). Hence we try to understand how much the problem needs to be
simplified to allow for efficient algorithms. For example, the simplest case when
N is a path can trivially be solved in O(n + m) time by sweeping a path of
length d along N . Exact and efficient algorithms for special (simple) cases are
also interesting from a practical point of view, since they often form a foundation
for effective heuristics that solve the general case. In addition, we investigate
under which realistic input assumptions the general problem becomes tractable.

1.1 Notation

We consider various variants where N is either a tree or a graph and F is either
a simple path or a tree. (Note that if F is allowed to be a general graph then
the optimal solution will always be a fragment F which is a tree). We denote
each variant by the pair of symbols NF, where N and F is one of four codes:
G stands for a general graph, T for a tree, and P for a simple path (without
repeated vertices). For example, GP denotes the instance of the problem where
N is a general graph and F is a simple path. All paths considered in this article
are simple: they do not repeat vertices or edges.

Throughout the paper we assume that the sites are given in sorted order
along the edges of N , otherwise sorting the sites would force a lower bound of
Ω(n logn) for the time complexity of our algorithms.
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N / F Graph Tree Simple Path (P)

Graph Same as GT NP-complete / 4-apx Apx-hard
Tree – O(mn+ n2) O(n +m)
Path – – O(n +m)

Table 1: Summary of the main results obtained for the different variants. The
leftmost column shows options for the network N , whereas the top row shows
the options for the fragment F .

1.2 Results

Recall that N is a network with m edges and that there are n sites on N . We are
looking for a fragment of length at most d which contains the maximal number
of sites. A summary of the main results is shown in Table 1.

We first present those variants of the problem that allow for polynomial-time
solutions. We show that if N is a tree, efficient algorithms exist. In particular,
in Section 2 we consider TP: N is a tree and F is a path. In this case we can
find the most relevant fragment in O(n+m) time and O(n+m) space. We can
also find all relevant fragments (that is, all fragments of length at most d that
contain a given number k of sites) in O(m + n + f logn) time where f is the
number of relevant fragments. Alternatively, using a different data structure,
all relevant fragments can be found in O(m + n logn + f) time. In Section 3
we discuss TT: both N and F are trees. Here we can find the most relevant
fragment in O(mn+ n2) time.

Section 4 shows that the variants where N is a graph and F is either a
tree or a path are NP-complete. In addition, we also present constant-factor
approximation algorithms when F is a tree, and inapproximability results when
F is a path.

In Section 5 we study several input assumptions under which efficient algo-
rithms exist for the general problem when N is a graph. For the case in which
the network N has bounded treewidth, we give algorithms for GT and GP
that run in O((m+ n)n2) time. If we assume a bound on the maximum vertex
degree and on the length of the smallest edge in N—both these assumptions
are satisfied in typical street networks—problems GP and GT can be solved in
polynomial time.

1.3 Related work

Spatial analysis has been studied intensively in GIS for decades [14] and it has
been used in many other areas such as sociology, epidemiology, and market-
ing [38]. Many spatial phenomena are constrained to network spaces, especially
when they involve human activities. For example, car accidents tend to hap-
pen only on roads and gas stations are also usually located along roads. There
is an ample body of work concerning spatial network analysis and network
restricted clustering [1, 36, 37, 39]. Like many spatial analysis methods, most
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spatial network analysis uses statistical methods such as the network K-function
method [36]. As already mentioned, the problem of finding crime hotspots has
received a lot of attention itself [10, 23, 29, 30, 32]. A large part of the existing
methods look for hotspots of a particular shape (like an ellipse). Others instead
output a crime map, dividing the map into a grid and showing the different
crime intensities at every grid cell [29]. Although popular in practice, these
methods in general do not provide guarantees on the output quality or running
time.

On the more algorithmic side, the problems studied in this paper are related
to the orienteering problem [17] (also known as bank robber problem [4]), as well
as to the well-known k-MST and k-TSP problems. In the graph version of the
orienteering problem one is given a graph with lengths on edges and rewards on
nodes, and the goal is to find a path in the graph that maximizes the reward
collected, subject to a hard limit on the length of the path. Many variants of the
orienteering problem have been studied [2, 4, 7, 11, 12]. Even though most of
them look for a path, versions where the subgraph sought is a cycle or tree have
also received some attention (see for example [2]). The main difference between
the problem considered in this paper and the standard (unrooted) orienteering
problem is that due to the motivation of our problem from spatial analysis, we
are interested only in paths that do not repeat edges. Moreover, we consider
various combinations of types of graphs for N and F , that cannot be handled
with standard orienteering algorithms.

There is a close connection between the orienteering problem and the k-
TSP and k-MST problems. The former consists in finding a tour of minimum
cost that visits at least k vertices, whereas the latter looks for a minimum cost
tree that spans at least k vertices. Moreover, the orienteering problem is in
some sense dual to the k-TSP, and approximation algorithms for k-TSP can be
easily extended to the (unrooted) orienteering problem. Regarding the k-MST
problem, the main difference with our problem is that the sites in S do not need
to be vertices of N , and that k is not given.

2 TP: N is a tree and F is a path

In this section we assume that the network N is a tree T . We first show in
Section 2.1 that we can in fact assume that T is a rooted tree where each
internal vertex has two children. Here we also introduce the notation used in
this section and state a useful lemma. In Section 2.2 we show how to find the
most relevant fragment in linear time and space and in Section 2.3 we explain
how to report all relevant fragments.

2.1 Preliminaries

We assume for simplicity of exposition that no site lies on a vertex of T . Our
approach is based on dynamic programming, and sites at vertices produce some
extra cases that have to be considered. However, they are no fundamental
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problem. Select an arbitrary vertex of T as a root, denoted by vroot. We
transform the input tree into a tree where each internal vertex v has precisely
two children, denoted by vℓ, vr (see Figure 2): a vertex with t ≥ 3 children
can be replaced by a path of t− 1 degree-three vertices with zero-length edges
between them. Vertices with a single child can be eliminated by simply merging
the two incident edges. A fragment in the original network corresponds to a
fragment of the same length in the new network, and vice versa.

(a) (b)

v

u1

u2
u
′

u4

u3 u5

u1

v1 v2 v3 v4

u2

u4

u5

u
′

Figure 2: Transforming the input tree (a) into a rooted tree where each internal
vertex has two children (b). The dashed edges in (b) have length zero.

We preprocess T so that the distance dT (v, v
′) can be obtained in constant

time for any query pair of vertices v, v′ in T . This can be done in linear time
by building a data structure for lowest common ancestor queries [6] and storing
for each vertex its distance from the root.

For any pair of sites a, b in the tree T , let πT (a, b) denote the unique path
in T that connects them. Let n(F ) denote the number of sites of S contained
in a fragment F of T , and in particular, let n(uv) denote the number of sites
of S along the edge uv. For each vertex v of T , let T (v) denote the subtree of
T rooted at v, and let p(v) be the maximum number of sites from S contained
in any path from v to a leaf of T (v). For any edge vu, where v is the parent
of u, let T (vu) be the subtree consisting of T (u) plus the edge vu, and let
p(vu) = n(vu)+ p(u) be the maximum number of sites from S contained in any
path from v to a leaf of T (vu). The following bounds will be useful to analyze
our algorithms.

Lemma 1
∑

u∈V (T )
u not a leaf

min{p(uur), p(uuℓ)} ≤ n

and

∑

u∈V (T )
u not a leaf

n(T (uur)) · n(T (uuℓ)) ≤ n2.

Proof: We first prove the first formula. Define for each vertex v ∈ V (T ) the
value

σ(v) =
∑

u∈V (T (v))
u not a leaf

min{p(uur), p(uuℓ)}.
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We claim that σ(v)+ p(v) = n(T (v)) for any v ∈ V (T ). This claim implies that
σ(vroot) ≤ n, and hence the result follows. The claim is proved by induction
on the size of the subtrees. The claim holds for any leaf v because σ(v) = 0.
Consider an interior vertex v and assume without loss of generality that p(vvr) ≥
p(vvℓ). Then p(v) = p(vvr) = p(vr) +n(vvr) and min{p(vvr), p(vvℓ)} = p(vℓ)+
n(vvℓ). Hence, we can use the induction hypothesis on σ(vr), σ(vℓ) to conclude

σ(v) + p(v) = min{p(vvr), p(vvℓ)}+ σ(vr) + σ(vℓ) + p(vr) + n(vvr)

= p(vℓ) + n(vvℓ) + σ(vr) + σ(vℓ) + p(vr) + n(vvr)

= n(vvr) + n(vvℓ) + n(T (vr)) + n(T (vℓ))

= n(T (v)).

This finishes the proof of the first formula. To prove the second formula, consider
for each node v ∈ V (T ) the value

π(v) =
∑

u∈V (T (v))
u not a leaf

n(T (uur)) · n(T (uuℓ)).

We claim that π(v) ≤ n(T (v))2/2 for any v ∈ V (T ), which implies the result.
The claim is also proved by induction on on the size of the subtrees. The result
clearly holds when v is a a leaf because π(v) = 0. For an internal vertex v we
can use the induction hypothesis to argue

π(v) = n(T (vvr)) · n(T (vvℓ)) + π(vr) + π(vℓ)

≤ n(T (vvr)) · n(T (vvℓ)) + n(T (vr))
2/2 + n(T (vℓ))

2/2

≤ n(T (vvr)) · n(T (vvℓ)) + n(T (vvr))
2/2 + n(T (vvℓ))

2/2

= (n(T (vvr)) + n(T (vvℓ)))
2
/2 = n(T (v))2/2.

This finishes the proof of the second formula. �

2.2 Finding the most relevant path

In this section we use dynamic programming to find a path in T of total length
at most d that covers the maximum number of sites of S. The approach requires
linear time and space.

For each interior vertex v we compute lists P (v), P (vvr), P (vvℓ) (see Fig-
ure 3). The list P (v) has p(v) elements. The jth element is (a pointer to) a site
s ∈ S with the property that the path πT (v, s) is a path of minimum length
among the paths contained in T (v) that start in v and contain j sites of S.
Analogously, the list P (vvℓ) has p(vvℓ) elements, storing the minimum-length
paths in T (vvℓ) that have one endpoint in v, and similarly for P (vvr).

We compute these lists recursively in a bottom-up manner. These lists are
extended by adding elements at the front. Thus, we store each list as an ex-

tensible array, but we store the elements in reverse order: the jth element of
a list of length m is stored in array position A[m − j]. Standard techniques
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v

vℓ vr

s1

s3

s4

s5

s6

s7

s2

P (v) = (s6, s2, s3, s5)

P (vvℓ) = (s1, s2, s3, s5)

P (vvr) = (s6, s7)

Figure 3: Example showing the lists used by
the algorithm for TP, for a vertex v.

can be used to implement such arrays with constant access time and amortized
constant time for extending them by one element [13, Section 17.4]. The total
space is linear in the total number of added elements. The arrays are reused for
different lists to achieve overall linear time and space.

We process the tree bottom-up and maintain a value kmax that equals the
number of sites of S in the best path of length d so far. Initially kmax = 1.
When v is a leaf, we allocate an empty list P (v) and set p(v) = 0. Consider an
internal vertex v. Its two children vr, vℓ have already been processed. We aim
for a time bound of O(n(vvr) + n(vvℓ) + min{p(vvr), p(vvℓ)}) for processing v.

(i) We construct P (vvr) and P (vvℓ). P (vvr) is obtained by adding the or-
dered sequence (from v to vr) of n(vvr) sites of S on the edge vvr to the
beginning of the list P (vr). The list P (vr) is destroyed in this operation.
We construct P (vvℓ) similarly, and the total amortized running time is
O(1 + n(vvr) + n(vvℓ)).

(ii) We find the best path contained in T (v) that intersects vvr but not vvℓ.
We look for a path containing more than kmax sites of S by simultaneously
scanning P (vvr) with a shifted copy of itself. Formally, we start with
j = 1, and while j ≤ n(vvr) and j + kmax ≤ p(vvr) do:

(a) if the distance between the jth site of P (vvr) and the (j + kmax)
th

site of P (vvr) is at most d, then we increment kmax by one.

(b) otherwise, we increment j by one.

The same approach can be used to find the best path among those con-
tained in T (v) and intersecting vvℓ but not vvr. To bound the running
time, note that case (b) happens at most n(vvr) + n(vvℓ) times, and that
each time that case (a) occurs, the value kmax is incremented by one.
Therefore, this task takes O(1 + ∆ + n(vvr) + n(vvℓ)) time, where ∆ is
the increment in the value of kmax.

(iii) We find the best path in T (v) that intersects both vvr and vvℓ. The idea
is as above: we simultaneously scan the lists P (vvℓ) and P (vvr), looking
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for a path with kmax + 1 sites and incrementing kmax whenever we find
such a path. We first look for the best path from an element of P (vvℓ)
to the first element f of P (vvr): while kmax ≤ p(vvℓ) and the distance
between the (kmax)

th site of P (vvℓ) and f is at most d,

(a0) we increment kmax by one.

Now, starting with j = min(kmax, p(vvℓ)), we will consider paths between
the jth element of P (vvℓ) and the (kmax−j+1)st element of P (vvr). Such
paths contain kmax + 1 sites. While j ≥ 1 and kmax − j + 1 ≤ p(vvr) do:

(a) if the distance between the jth element of P (vvℓ) and the (kmax− j+
1)st element of P (vvr) is at most d, then we increment kmax by one.

(b) otherwise, we decrement j by one.

Case (b) happens at most min{p(vvr), p(vvℓ)} times, and each time that
case (a0) or (a) occurs, the value kmax is incremented by one. There-
fore, this task takes O(1 +∆+min{p(vvr), p(vvℓ)}) time, where ∆ is the
increment in the value kmax.

The operations of steps (ii) and (iii) together have now taken care of all
paths in T (v) that are not contained in one of the subtrees T (vℓ) or T (vr).

(iv) Finally, we compute P (v) by taking the elementwise minimum of the two
lists P (vvℓ) and P (vvr). Assume without loss of generality that p(vvℓ) ≤
p(vvr); then we will reuse the list P (vr) to represent the list P (v). For
each j = 1, . . . , p(vvℓ), the jth element of P (v) is simply the minimum of
the jth element of P (vvr) and the jth element of P (vvℓ). The elements
beyond the p(vvℓ)

th element are left unchanged. This pairwise comparison
of the two lists takes O(1 + min{p(vvr), p(vvℓ)}) time.

After processing each vertex v of T , we have computed the optimum value kmax.
Of course, the pair of sites defining the optimum path can be retrieved if we
remember the relevant pair of sites each time we increment kmax. At each vertex
v we spend O(1 + ∆(v) + n(vvr) + n(vvℓ) + min{p(vvr), p(vvℓ)}) time, where
∆(v) is the increment that kmax takes when processing vertex v. The sum of
∆(v) over all vertices v is the final value of kmax − 1, and therefore is bounded
by n. The sum of n(vvr) + n(vvℓ) over all vertices v is n, since each site is
counted once in the sum. The sum of min{p(vvr), p(vvℓ)} over all vertices v is
O(n) because of Lemma 1. The total number of elements added to the lists is
n, and hence the storage requirement is O(m + n). (There is an O(1) storage
overhead for each of the m− 1 lists.) We summarize.

Theorem 1 Given a tree-network with m vertices, a set S of n sites along its

edges, and a value d, we can find in O(n+m) time and O(n+m) space a path

fragment that has length at most d and contains the maximum number of sites

from S.
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2.3 Finding all relevant fragments

By extending the ideas of the previous section, we can report all (combinato-
rially distinct) paths of length at most d in a tree T with a given number k of
sites. That is, we want the set P of all pairs (a, b) of sites for which the path
πT (a, b) has length at most d and contains exactly k sites. As a preprocessing
step, we compute for all sites their distance from the root vroot in linear time.
Note that if a set of sites in T (v) or T (vvr) is sorted by their distance from the
root vroot it is also sorted by their distance from v.

Our approach reuses many ideas from Section 2.2. We also use dynamic
programming that processes the tree bottom-up. For each interior vertex v
we have lists L(v), L(vvr), and L(vvℓ) with p(v), p(vvr), and p(vvℓ) elements,
respectively. We refer to these lists as first-level lists. In the following, to avoid
repetitions, let ⋆ be a generic symbol to denote v, vvr , or vvℓ. The j

th element of
the list L(⋆) is (a pointer to) a sorted list containing all sites s in T (⋆) such that
S ∩ πT (v, s) has j sites, where the sorting key of a site is its distance from the
root. We refer to such sorted lists as second-level lists. Hence, in a second-level
list, the sites are sorted by their distance from the root vroot and from v. Using
as key the distance from the root is more convenient than the distance form v,
since the second-level lists are merged and recombined into other lists L(v) for
different vertices v.

Like in Section 2.2, each first-level list L(⋆) is stored in an extensible array
in reverse order, so that we can append elements to the list L(⋆) at the front
in amortized constant time, and the list uses linear space in the number of
stored elements. Each second-level list is stored in a linear-space data structure
such that the operations Creation, FindMin, and FindNext take O(1) time, and
merging two lists with y and z elements, y ≤ z, takes O(y log(1 + z/y)) time.
This can be obtained with a height-balanced binary tree [9]. (We could also
use finger trees [18] as an alternative representation.) Note that different lists
in L(⋆) store disjoint sets of sites, and hence all the second-level lists of L(⋆)
together store |S ∩ T (⋆)| sites and use O(|S ∩ T (⋆)|) space. We will use the
following result to bound the time complexity of our algorithm.

Lemma 2 A sequence of merges of second-level sorted lists resulting in a second-

level sorted list with x sites takes O(x log x) time.

Proof: Suppose that merging two second-level sorted lists with y and z ele-
ments, where y ≤ z, into a list of length x = y + z takes at most C · y log2(1 +
z/y) = C · y log2(x/y) time, for some constant C. We show by induction on x
that the total time for all merges is at most C ·x log2 x. If the final second-level
sorted list is obtained by merging two second-level sorted lists with y and z
elements, where y ≤ z and x = y + z, then total time is bounded by

C(y log(x/y)) + C(y log y) + C(z log z) = C(y log x+ z log z)

≤ C((y + z) log x) = C(x log x)

�
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We process the tree bottom-up, reporting the pairs of P as we find them.
When v is a leaf, we allocate an empty list L(v) and set p(v) = 0. Consider
an internal vertex v. Its two children vr and vℓ have already been processed.
We next process v to find the set P(v) of all pairs (a, b) ∈ P such that a is
in vvr ∪ vvℓ and b is in T (v). When n(vvr) > 0, let s1, . . . sn(vvr) denote the
sites along the edge vvr ordered from v to vr. Without taking into account
the time used for merging second-level lists, we aim for a time bound of O(1 +
n(vvr)+n(vvℓ)+min{p(vvr), p(vvℓ)}+ |P(v)|}) for processing v. The time used
for merging second-level lists will be bounded globally using Lemma 2.

(i) We construct L(vvℓ) and L(vvr). If n(vvr) = 0, then L(vvr) = L(vr).
Otherwise, we obtain L(vvr) as follows: for j = n(vvr), . . . , 1, we create a
new second-level list that contains the site sj and append it at the front of
the list L(vr). The list L(vr) is destroyed in this operation. We construct
L(vvℓ) similarly, and the total amortized running time is O(1 + n(vvr) +
n(vvℓ)).

(ii) We find the pairs (a, b) ∈ P(v) such that a is in vvr and πT (a, b) is
contained in T (vvr). For j = 1, . . . ,min{n(vvr), p(vvr) − k + 1}, we find
the pairs (sj , b) such that b is a site from the second-level (j+ k− 1)st list
of L(vvr) and at distance at most d from a, and report them. This takes
O(1 +∆) time, where ∆ is the number of reported pairs, if we iteratively
access the sites of the second-level (j + k − 1)st sorted list in sorted order
until we find an element whose distance from sj is larger than d.

The same approach can be used to find the pairs (a, b) ∈ P such that a
is in vvℓ and πT (a, b) is contained in T (vvℓ). Therefore, this task takes
O(1+∆+n(vvr)+n(vvℓ)) time, where ∆ is the number of reported pairs.

(iii) We find the pairs (a, b) ∈ P(v) such that πT (a, b) intersects both vvr and
vvℓ. The idea is as follows: for each appropriate value of j, we have to
consider the pairs (a, b) where a is a site from the second-level jth list
of L(vvr) and b is a site from the second-level (k − j)th list of L(vvℓ),
because πT (a, b) contains exactly k sites, and report the ones where the
distance between a and b is at most d. However, the second-level lists
are sorted by the distance from v, and hence for any a we can obtain the
different candidate b’s by increasing distance from a. Formally, we start
with j = min{k, p(vvr)}, and while j ≥ 1 and k − j ≤ p(vvℓ) do:

(a) we take a to be the first element in the second-level jth sorted list of
L(vvr).

(b) we repeat the following, until a is not defined or no pair is reported
in the iteration:

(b1) we find the pairs (a, b) such that b is a site from the second-
level (k − j)th list of L(vvℓ) at distance at most d from a, and
report them. This takes O(1 + ∆) time, where ∆ is the number
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of reported pairs, if we iteratively access the sites of the second-
level (k−j)th sorted list of L(vvℓ) until we find an element whose
distance from a is larger than d.

(b2) update a to be the successor of the current a in the second-level
jth sorted list of L(vvr).

(c) we decrement j by one.

For each j, we spend O(1 + ∆) time, where ∆ is the number of reported
pairs. Since there are at most min{k, p(vvr), p(vvℓ)} possible values for j,
this task takes O(1 + ∆+min{p(vvr), p(vvℓ)}) time.

The operations of steps (ii) and (iii) together have reported all pairs in
P(v), and each pair is reported exactly once.

(iv) Finally, we compute L(v) by joining the information in the two first-level
lists L(vvℓ) and L(vvr). Assume without loss of generality that p(vvℓ) ≤
p(vvr); then we will reuse the list L(vr) to represent the list L(v). For
each j = 1, . . . , p(vvℓ), the jth element of L(v) is obtained by merging the
second-level sorted lists stored in the jth position of L(vvr) and the jth

position of P (vvℓ). The second-level lists beyond the p(vvℓ)
th position are

left unchanged. This step takes O(1 +min{p(vvr), p(vvℓ)}) time, plus the
time used to merge the second-level lists.

After processing the last vertex v of T , we have reported all of P because
each pair in P is in P(v) for some vertex v. Without counting the time for
merging second-level lists, at vertex v we have spent O(1 + n(vvr) + n(vvℓ) +
min{p(vvr), p(vvℓ)}) time plus O(1) time per reported pair. Noting that each
pair of P is reported once, that the sum of n(vvr) + n(vvℓ) over all nodes v is
n, and using Lemma 1, the sum over all vertices gives O(m + n+ |P|) time.

It remains to bound the time used for merging second-level lists. Note that
after processing the root vroot each site appears exactly in one of the second-
level lists of P (vroot). Hence, all the second-level lists of P (vroot) contain exactly
n sites. By Lemma 2, we can bound by O(n log n) the time spent for all the
merges performed during the algorithm. We summarize.

Theorem 2 Given a tree-network T with m vertices, a set S of n sites along

its edges, a value d, and a value k, we can report the set P of pairs (a, b) of sites
for which the path πT (a, b) has length at most d and contains exactly k sites, in

O(m+ n logn+ |P|) time.

It can happen that the sites in a path-fragment of length d are contained in a
larger set of sites that can still be covered by a path of length d. Our algorithm
will report all these fragments, and not just the maximal path-fragments (unless
k = kmax).

A different representation of the second-level lists gives a different time
bound. Note that with the second-level lists we only perform two non-trivial op-
erations: merging, and accessing the elements iteratively from the element with
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minimum key until some condition is violated. Consider the scenario where we
use Fibonacci heaps to implement such second-level list. A Fibonacci heap sup-
ports Creation, Insertion, FindMin, and Merge in O(1) time, and Deletion in
O(log n) amortized time. With this data structure, we can access iteratively the
element with minimum key and its x successors in O(x log n) time: we repeat
x times FindMin and Delete, and at the end we insert all the deleted elements
back. If we implement the second-level lists using Fibonacci heaps, we obtain
a multiplicative overhead of O(log n) time per reported pair. However, the
merges of lists over the whole algorithm take O(n) time, because in each ver-
tex v we make min{p(vvr), p(vvℓ)} merges, which takes O(min{p(vvr), p(vvℓ)})
amortized time. We thus obtain the following result.

Theorem 3 Given a tree-network T with m vertices, a set S of n sites along

its edges, a value d, and a value k, we can report the set P of pairs (a, b) of sites
for which the path πT (a, b) has length at most d and contains exactly k sites, in

O(m+ n+ |P| logn) time.

Note that the algorithm remains essentially unchanged if instead of storing
lists of sites, we would store lists of lengths from v to those sites. In the next
section we adopt this approach, since storing the sites explicitly becomes too
costly for trees.

3 TT: Both N and F are trees

In this section we again assume that the input network is a tree T . We use
the transformation described in Section 2.1 and can hence assume that T is a
rooted tree where each internal vertex v has precisely two children. We also use
the notation introduced in Section 2.1.

Our approach is based on dynamic programming, and processes the vertices
of T bottom-up. For each internal vertex v we compute a list L(v), and with
the help of L(v) we are able to compute the optimal solution where v is the
highest vertex in T . (Note that the approach described in this section differs
slightly from the one explained in Section 2.2.) The jth entry, L(v)[j], of L(v)
stores the length of the smallest tree fragment of T (v) containing v and covering
j sites of S. If there is no such tree fragment we set L(v)[j] = ∞. We also set
L(v)[0] = 0 to simplify some formulas below. For each leaf v, the tree T (v)
contains no sites of S, and L(v) will be empty. When all the leaves have been
processed we continue bottom-up. Consider an interior vertex v for which the
lists L(vr), L(vℓ) of its children vr, vℓ have already been computed. We compute
L(v) as follows:

(i) For each child u of v we build a list L(vu) from L(u) with the following
property: The jth entry of L(vu) stores the length of the smallest tree
fragment of T (vu) containing v and covering j sites. The list is constructed
as follows. Consider the sites s1, s2, . . . , sn(vu) along the edge vu ordered

from v to u. For j = 1, . . . , n(vu), set the jth entry of L(vu) to the distance
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between v and sj . Then, for j = n(vu), . . . , n(T (vu)) we set the jth entry
of L(vu) to be |vu|+L(u)[j−n(vu)], where |vu| denotes the length of the
edge vu.

The total time to compute the lists L(vvr), L(vvℓ) is O(n(T (v))) = O(n).

(ii) The lists L(vvr) and L(vvℓ) are used to construct L(v), as follows. For
each integer j = 1, . . . , n(T (v)) we set

L(v)[j] = min{L(vvr)[a] + L(vvℓ)[b]
∣

∣

0 ≤ a ≤ n(T (vvr)), 0 ≤ b ≤ n(T (vvℓ)), a+ b = j }.

This procedure constructs the list L(v) using time

O
(

n(T (vvr)) + n(T (vvℓ)) + n(T (vvr)) · n(T (vvℓ))
)

= O(n+ n(T (vvr)) · n(T (vvℓ))).

Each vertex v of T is processed once and requiresO(n+n(T (vvr))·n(T (vvℓ)))
time. The sum of O(n) over all vertices is O(mn). The sum of n(T (vvr)) ·
n(T (vvℓ)) over all vertices is O(n2), by Lemma 1. Hence, we can construct the
lists L(v) for all vertices v of T in O(mn+ n2) time.

We describe now how to find the most relevant tree fragment of length at
most d in T . First, we compute the most relevant tree fragment that does not
contain any vertex of T , and therefore is a path. This can be done in O(n+m)
time by finding optimal solutions contained in each edge of T . Next, for each
vertex v, we use L(v) to find the most relevant tree fragment that has v as highest
vertex. Taking the best among these solutions gives the optimal solution. If a
tree fragment has v as highest vertex, then it is contained in T (vparentv), where
vparent denotes the parent of v. (We can handle the case v = vroot by adding
a dummy parent to vroot.) Let s1, . . . , sn(vparentv) be the sites of S on the edge

vvparent, ordered from v to vparent. We construct a list M(v), where the jth

entry stores the length of the smallest tree fragment of T (vparentv) that has v
as highest vertex and contains j sites of S, using:

M(v)[j] =
{

L(v)[a] + |vsb|
∣

∣ 0 ≤ a ≤ n(T (v)), 0 ≤ b ≤ n(vvparent), a+ b = j
}

.

Constructing M(v) takes O(1 + n(T (v)) · n(vvparent)) = O(1 + n · n(vvparent))
time for a vertex v of T , which sums up to O(m + n2) time over all vertices
v of T . The largest number of sites contained in a tree fragment with v as
highest vertex is given then by the unique index jv satisfying M(v)[jv] ≤ d and
M(v)[jv + 1] > d.

Theorem 4 Given a tree-network with m vertices, a set S of n sites along its

edges, and a value d, we can find in O(mn + n2) time using O(n) space a tree

fragment that has length at most d and contains the maximum number of sites

from S.
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The number of tree-fragments with prescribed length and maximum number
of sites may be exponential in n and m. For example, consider a network that
is a star on n + 1 > 3 vertices where each edge has length one, and place a
site in each node of the network with degree one; so there are n sites. For even
n, the number of fragments with length n/2 and maximum number of sites is
(

n
n/2

)

, which is exponential in n. Hence, we did not study efficient algorithms

to report all optimal solutions.

4 Hardness and approximation results if N is a

graph

4.1 GP: N is a graph and F is a path

We begin by showing that for both versions the decision version of the problem
is NP-complete.

Theorem 5 Given a graph-network with a set of sites, it is NP-complete to

determine, for a given length d and a given number of sites k, if there is a

path-fragment F of length at most d that contains k sites.

Proof: We will use the Hamiltonian path problem on graphs of degree at most
three: Given a graph H = (V,E) of maximal degree 3, decide whether there is a
path in H that visits each vertex H exactly once. This problem is NP-complete;
see for example [15, 28]. If we consider H as a network where each edge has unit
length and add a site on each vertex, then there is a path-fragment of length
|V | − 1 that contains |V | vertices if and only if H has a Hamiltonian path. The
result follows. �

The reduction to Hamiltonian path used in the proof of Theorem 5 also gives us
the following corollary, by setting d very large (i.e., much larger than the total
length of all edges in N).

Corollary 1 Given a graph-network with a set of sites, it is NP-hard to ap-

proximate the length d of a path-fragment F that covers kmax sites, where kmax

is the number of sites contained in an optimal path-fragment of length d.

For GP, where the path cannot use vertices more than once, we prove NP-
hardness also for approximating the number of sites k.

Theorem 6 Given a graph-network with a set of sites, it is NP-hard to approx-

imate within a constant factor the maximum number of sites k contained in a

path-fragment F of length at most d.

Proof: The reduction is from the longest path problem. The input is a graph
H = (V,E), and the goal is to compute a path of maximum length. This
problem was shown to be hard to approximate within a constant factor by
Karger et al. [21].
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The reduction takes the input graph H and places one site on each edge.
That graph and set of sites is a valid input for GP. It is easy to verify that any
algorithm for GP that approximates k for a given length d can be used to get
an approximate solution to the longest path problem, by using d = L, where L
is the sum of all the edge lengths in H . �

4.2 GT: N is a graph and F is a tree

We begin by showing that the decision version of GT is NP-complete. The
reduction is from the k-minimum spanning tree (k-MST) problem: Given a
graph G with non-negative edge weights and two values k and d, decide whether
there is a connected tree spanning k vertices of G of total weight at most d. Ravi
et al. [31] showed that the k-MST problem is NP-complete.

Theorem 7 Given a graph-network with a set of sites, it is NP-complete to

determine, for a given length d and a given number of sites k, if there is a

tree-fragment F of length at most d that contains k sites.

Proof: We know that GT is in NP since a given tree can easily be verified to
be a valid solution in polynomial time.

For the reduction, we have to reduce an instance of k-MST to a GT instance
that has a solution of length at most d if and only if the k-MST problem has
a solution of length at most d. As input to the k-MST problem we are given a
graph G, a positive integer k and a positive value d. For each vertex in G we
add a site on it.

Assume we have an algorithm that solves the GT decision problem, i.e.,
it returns ‘yes’ if there is a subtree of G of length at most d that contains k
sites, otherwise it returns ‘no’. Clearly, ‘yes’ is returned if and only if there is a
connected tree containing k vertices of G of total length at most d. Since this
problem is known to be NP-complete [31] and the reduction to GT requires
only linear time, the theorem follows. �

We now describe a constant-factor approximation algorithm for the dual
problem of minimizing the length of the fragment d that contains a given number
of sites. The algorithm uses a polynomial-time 2-approximation algorithm for
the minimum k-Spanning Tree (k-MST) problem by Garg [16].

Assume that we are given a network N = (V,E), the set S and a number d
as an input for GT. Construct a graph G from N by replacing every site s in
N with a vertex vs and a path of length 0 containing |V | vertices connected to
vs. The construction is illustrated in Figure 4.

We will use a 2-approximation algorithm for the k-MST problem. Given
a graph H and a positive integer k, this algorithm returns a subtree T of H
containing k vertices, whose total weight is at most two times the weight of a
k-MST of H .

Now, run the 2-approximation algorithm for (k · (|V |+ 1))-MST on G. Let
T be the spanning tree returned by the approximation algorithm and let S′

be the set of vertices of T . Return the subtree of T induced by the vertices
{vs ∈ S′ | s ∈ S} ∪ (S′ ∩ V ).
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0

Figure 4: (a) A network with vertices and sites, with geometric curve lengths
as edge lengths. (b) The resulting abstract graph, with only vertices, and edges
that can have any length. The lengths of the new edges are 0, while the other
edges have the same lengths as in (a).

Theorem 8 The above algorithm is a 2-approximation algorithm for GT, where

the length d of the fragment is approximated.

Proof: If there exists a fragment spanning k sites in N of length dN then there
exists a (k(|V |+ 1))-MST of G of length at most dN .

On the other hand, suppose there exists a k(|V |+1)-MST of G of length dG.
Then the fragment must cover at least k sites; otherwise, the maximum number
of vertices in S would be (k − 1)(|V |+ 1) + |V | which is less than k(|V |+ 1), a
contradiction. Therefore there exists a fragment spanning k sites in N of length
at most dG, thus dN = dG.

Since both problems are equivalent, using a 2-approximation algorithm for
k-MST, the theorem follows. �

To approximate the number of sites k, we can directly use an approxima-
tion algorithm for a variant of the orienteering problem called tree-orienteering,
where the network sought is a tree. Arkin et al. [2] propose a 5-approximation
algorithm for this problem, based on reusing an approximation algorithm for
k-MST. Using the currently best result for k-MST by Garg [16], the factor
obtained by the algorithm of Arkin et al. automatically improves to 4.

Theorem 9 There exists a polynomial-time 4-approximation algorithm for GT,

where the number k of sites contained is approximated.

Proof: Since the input to the tree-orienteering problem is a weighted graph G
with a prize on each vertex, the input to GT must be adapted. Consider the
input N = (V,E), S, and d for GT. We reduce to the orienteering problem by
setting G = (V ′, E′) to be the graph with vertex set V ′ = V ∪ S and replacing
each edge (u, v) in E by a path going trough the vertices corresponding to the
points of S on (u, v). Conceptually, for each vertex in G corresponding to a
point in S we set the prize to be 1, otherwise it is 0. If there is a tree of length
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d for the tree-orienteering problem with k prizes, then it corresponds to a tree
for our problem containing k sites of S, thus a c-approximation algorithm for
the tree-orienteering problem will also be a c-approximation algorithm for GT.

Note that most orienteering algorithms do not allow zero-prizes, hence in-
stead of using 0 and 1, we can use 1 and a sufficiently large constant (or equiv-
alently, we can replicate each site sufficiently often). �

5 GP and GT: Exact algorithms

While the general problem considered in this paper is NP-hard, in many appli-
cations we have additional information and/or restrictions on the network and
the fragment, which make polynomial-time solutions possible. Here we discuss
two such scenarios. In Section 5.1 we consider networksN of bounded treewidth
and in Section 5.2 we bound the maximum vertex degree of N as well as the
length of the smallest edge in N . This second case can be particularly useful in
practice. Both cases lead to fixed-parameter tractable algorithms.

5.1 Networks of bounded treewidth

The notions of treewidth and tree-decomposition (introduced by Robertson and
Seymour, see e.g. [33, 34]) have proven to be algorithmically very useful (see
e.g. [8]). A tree decomposition is a mapping of a graph into a tree and the
treewidth of a graph measures the number of graph vertices mapped onto any
tree node in an optimal tree decomposition. It is NP-hard to determine the
treewidth of a graph, but many problems on graphs are solvable in polynomial
time if the treewidth of the input graph is bounded (see e.g. [8]). First we
describe an algorithm for GT on a networkN of which the treewidth is bounded
by a constant. Later we explain the adaptations needed to solve GP under a
similar setting.

Formally, a tree-decomposition of a network N = (V,E) is a pair (T,X) with
T = (I, F ) a tree, and X = {Xi | i ∈ I} a family of subsets of V , called bags,
one for each node of T , such that

• ⋃

i∈I Xi = V ;

• for all edges vw ∈ E there exists an i ∈ I with {v, w} ⊆ Xi;

• for all i, j, k ∈ I : if j is on the path in T from i to k, then Xi ∩Xk ⊆ Xj .

The width of a tree-decomposition ((I, F ), {Xi | i ∈ I}) is maxi∈I |Xi| − 1.
The treewidth tw(N) of a network N is the minimum width over all tree-
decompositions of N . A tree-decomposition (T,X) is nice, if T is rooted and
binary, and the nodes are of four types:

• Leaf nodes i are leaves of T and have |Xi| = 1.

• Introduce nodes i have one child j with Xi = Xj ∪ {v} for some vertex
v ∈ V .
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• Forget nodes i have one child j with Xi = Xj \ {v} for some vertex v ∈ V .

• Join nodes i have two children j1, j2 with Xi = Xj1 = Xj2

The advantage of using a nice tree-decomposition is that, often, developing
and describing algorithms is easier. Converting a tree-decomposition into a nice
tree-decomposition of the same width can be done in linear time [22]. However,
computing a tree-decomposition of N with width tw(N) is NP-hard [3].

We construct a network N ′ from N by putting the sites of S as vertices of
N ′ on its edges. Putting an additional vertex on an edge is called a subdivision.
The length of the edges in N ′ is fixed in a straight-forward manner. N ′ has
|V | + n vertices and m + n edges. We refer to a vertex of N ′ that originated
from N or S as network-vertex or site-vertex, respectively.

We assume that we are given a nice tree-decomposition (T,X) of N ′ of
width tw(N). Such a tree-decomposition exists, because subdivisions do not
affect the treewidth. To each bag i of T , we associate a table containing certain
information. This table represents partial solutions for the subnetwork N ′

i ⊆ N ′

induced by the vertices contained in the bags of the subtree of T rooted at i.
More specifically, we will keep track of forests in N ′

i , of their lengths and of
the number of site-vertices they contain. Such a forest might have vertices in
common with Xi. These vertices are represented by an interface, which is a set
of disjoint subsets of Xi. An interface of a forest tells us which vertices of Xi

are involved in the forest, and it also tells us which vertices belong to the same
tree of that forest.

Our algorithm employs dynamic programming on (T,X). We start at the
leaves, and for an internal node i of T , we compute the table of i using the
tables of the children of i. For that, we combine the information of compatible
interfaces from the children of i. The resulting running time is exponential in
the treewidth, but polynomial in the size of the input.

Theorem 10 Let t0 be a constant. Given a graph-network N ′ with m′ edges

whose treewidth is bounded by t0, a set S of n sites along its edges, and a value

d, we can find in O((m′ + n)n2) time a tree-fragment that has length at most d
and contains the maximum number of sites from S.

Proof: Let i be a node of T . Note that |Xi| ≤ tw(N) + 1, which is assumed to
be bounded by a constant. Recall we have defined an interface f of Xi as a set
of disjoint subsets of Xi:

f = {Z1, Z2, ..., Z|f | | ∀jZj ⊆ Xi ∧ ∀j1 6= j2 : Zj1 ∩ Zj2 = ∅}

Since |Xi| is bounded by a constant, the number of interfaces of Xi is also
bounded by a constant. The table that we associate with node i contains an
entry for every non-empty interface f of Xi.

We say that a forest F ′ of N ′
i is compliant with the interface f when

• a vertex in Xi is used in F ′ if and only if this vertex is in
⋃|f |

j=1 Zj; and
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• any two vertices in
⋃|f |

j=1 Zj belong to the same tree of F ′ if and only if
there exists a set Z ∈ f that contains these two vertices.

Note that each forest is compliant with a unique interface.
In the table entry for interface f , we store a subtable that has n+1 entries—

one entry for every possible number s of site-vertices (s ∈ {0, ..., n}). In the
subtable entry for s, we store the length of a shortest forest F ′ of N ′

i (we might
also store pointers to reconstruct the forest itself) that is compliant with f and
covers exactly s site-vertices. The size of such a table for Xi is O(n).

Before we look at how these tables are computed for each node, we describe
some operations that we do at each node along the way: As soon as an interface
contains at least two sets and one of them is empty, we can delete the entire
entry for that interface, because an empty set indicates that there is a tree
in the forest which cannot be connected anymore. When an entry stores a
length that is greater than d, we disregard that entry completely, because the
corresponding forest is already too long. Whenever we consider an interface
with only one element, we are looking at a tree. At the end, we will find the
solution to our problem in the table entries for the root of T , whose interfaces
specify trees. During the dynamic programming, we do the following specific
procedures for each type of node i.

Leaf nodes: For leaves it is easy, because there is just one vertex v ∈ Xi

and hence there are just two interfaces {{v}} and {}, depending on whether we
choose v to be a forest.

Introduce nodes: Let i ‘introduce’ a vertex v, and let j be the child of i.
Consider any interface f ′ of j. When constructing forests of N ′

i , we have the
choice whether or not to use v in such a forest. If we do not use v, then any
forest stored at interface f ′ of j is also a forest for interface f ′ of i. If we use v,
we may connect it to existing forests by using some edges e1, e2, ... between v
and vertices in

⋃

Z∈f ′ Z. Note that there are at most t0 = O(1) such edges. For
each of these possibilities applied to f ′, we obtain an interface f of i. Now, the
subtables in the table of f ′ will be used to create entries in the subtables in the
table of f . The length of the edges e1, e2, ... (if any are used) plus the entry for s′

site-vertices for interface f ′ contribute to the entry for s site-vertices for interface
f . Note that s ∈ {s′, s′ + 1}, depending on whether v is a network-vertex or
site-vertex. Among all forests that contribute to an entry for s site-vertices in
the subtable for interface f , we keep track of the one with smallest length.

Forget nodes: Let i ‘forget’ a vertex v, and let j be the child of i. We can
convert entries for interfaces f ′ of node j into entries for interfaces f of node i
by simply deleting v from the sets of the interface f ′. Among all forests that
contribute to an entry s for f , we keep track of the one with the smallest length.

Join nodes: Let i be a join node with children j1 and j2. Let f1 and f2 be
interfaces of j1 and j2, respectively. If

⋃

Z1∈f1
Z1 =

⋃

Z2∈f2
Z2, then we compute

the interface f that represents the subgraph which is the union of the two forests
corresponding to f1 and f2. This interface f for node i is computed as follows.
First, we compute f = f1 ∪ f2, and then we repeatedly replace all pairs Z1 and
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Z2 in f with Z1 ∩ Z2 6= ∅ and Z1 6= Z2 by Z1 ∪ Z2, until no such pairs exist
anymore.

An entry for s1 site-vertices for f1, combined with an entry for s2 site-vertices
for f2, contributes to the entry for s site-vertices for f ; here s = s1 + s2 − x,
where x is the number of site-vertices that occur in both f1 and f2, because
they have been counted twice. Just like for other nodes, among all forests that
contribute to an entry s for f , we keep track of the one with the smallest length.

The correctness of the algorithm relies on the dynamic programming ap-
proach and the procedures described above. It follows that passing and com-
puting information from one node to the next is done correctly. Note, however,
that at introduce or join nodes, we might temporarily connect trees in such a
way that the result is no longer a forest. For instance, we might connect a vertex
v introduced at node i to a forest in such a way that the resulting subgraph
G1 contains a cycle. This subgraph G1 has a certain interface and a certain
number of site-vertices, and therefore, it contributes to the corresponding entry
in the corresponding subtable. Now consider any edge in the cycle of G1, and
consider the subgraph G2 that results from G1 by removing this edge. Also G2

will be considered when processing node i. Note that G1 and G2 have the same
interface and the same number of site-vertices. Hence, G2 contributes to the
same entry as G1, but the total length of G2 is smaller than that of G1. There-
fore, by keeping track of the minimum length in the entries of the subtables, we
ensure that we will indeed store the length of a forest. At each node i, we store
tables that represent information on forests of N ′

i . An interface that contains
only one set of vertices is an interface of a tree. And hence, for each node, we
can determine the shortest subtree with maximum number of site-vertices.

For the running time, we observe that at each introduce and forget node we
spend O(n) time in total for all values of site-vertices and for all interfaces, since
the size and number of interfaces is constant. At a join node, we combine any
entry for s1 with any entry for s2, which gives O(n2) time. Now, the theorem
follows from the fact that a tree-decomposition of N ′ has O(|V (N ′)|) nodes. �

Solving GP. The previous method can be modified to find the shortest path-
fragment in N . To do this we need to keep track of pathsets, sets of disjoint
paths in N ′

i , of their cumulative lengths and of the number of site-vertices they
contain. Similar to a forest, also a pathset might have vertices in common
with Xi, which are represented by an interface. However, we need to extend
interfaces f to also reflect which vertices in Z ∈ f are at the endings of the path
represented by Z. With interfaces like this, we can make sure to combine only
subsolutions that represent pathsets.

Theorem 11 Let t0 be a constant. Given a graph-network with m′ edges whose

treewidth is bounded by t0, a set S of n sites along its edges, and a value d, we
can find in O((m′ + n)n2) time a path-fragment that has length at most d and

contains the maximum number of sites from S.

Proof: The proof is very similar to the proof of Theorem 10. We only address
crucial differences here. Let f be an interface of node i as defined above, and
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let Z ∈ f represent a path P = v1v2v3 . . . vk−2vk−1vk. Considering P as a
string of vertices, we define the Xi-prefix of P to be the longest prefix of P ,
such that every vertex in the Xi-prefix is contained in Xi. Let the Xi-suffix be
defined in an analogous way. Note that either of Xi-prefix and Xi-suffix can be
empty. Now, we extend the definition of interface, such that we associate the
Xi-prefix v1v2... and the Xi-suffix ...vk−1vk of P as superscripts to Z. Since
|Xi| is bounded by a constant, also the number of possible interfaces of Xi is
bounded by a constant. For two interfaces to be equal, their elements must be
the same which means they also have to agree on their superscripts. Instead of
considering a forest, we maintain information corresponding to pathsets.

Leaf nodes: Handling a leaf node i with Xi = {v} during the dynamic pro-
gramming is straightforward and results in two interfaces: {{v}v,v} and { },
where v is the Xi-prefix and Xi-suffix of {v}.
Introduce nodes: For an introduce node i (‘introducing’ a vertex v) with child
j and an interface f ′ of j, we have the following options to obtain an interface
f of i. We can connect v to no other path which gives rise to a new element
{v}v,v ∈ f . Or we may connect v to an endpoint of one path represented by
Z ∈ f , which makes v an endpoint of that path, and hence v has to appear in
the Xi-prefix or Xi-suffix of Z. Or we can connect v to two endpoints of two
different paths represented by Z1, Z2 ∈ f , which results in one (longer) path
represented by Z. However, we may only do this if we do not create a vertex of
degree three or more in Z, which can be ensured, since we know the Xi-prefixes
and Xi-suffixes of Z1 and Z2. We must not connect v to three or more vertices
as this would not result in a path.

Forget nodes: When ‘forgetting’ a vertex v at a forget node i, we simply delete
v from the elements of interfaces of i. Furthermore, if v occurs in an Xi-prefix,
we delete v and all successors of v in that Xi-prefix. In a similar way we delete
v and all its predecessors in Xi-suffixes.

Join nodes: At a join node i with children j1 and j2, let us consider interfaces
f1 and f2 of j1 and j2, respectively. We now have to consider also Xi-prefixes
and Xi-suffixes. To see if and how we can combine f1 and f2 to an interface
f of node i, we do the following. First, we compute f = f1 ∪ f2. And then
we repeatedly look at all pairs Z1, Z2 ∈ f (Z1 6= Z2) and test (to be described
below) if the paths represented by Z1 and Z2 can be connected without creating
cycles or vertices of degree three or more. If that is the case, we replace Z1 and
Z2 by Z1 ∪Z2 in f , and we compute the Xi-prefix and Xi-suffix of Z using the
Xi-prefix and Xi-suffix of Z1 and Z2. We repeat this until no such pairs exist
anymore.

It remains to describe how to do the test to join the paths represented by Z1

and Z2. Let P1 and P2 be the paths represented by Z1 and Z2. If Z1 ∩ Z2 = ∅,
then P1 and P2 cannot be connected to form a single path, because they have
no vertex in common; otherwise, we have that Z1 ∩ Z2 6= ∅. Now, if there
exist a suffix s of the Xi-suffix of Z1 and a prefix p of the Xi-prefix of Z2

with s = p (here s and p are strings), then the ending of P1 overlaps with the
beginning of P2, which is for our method a necessary condition for the paths to
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be connected. Clearly, when interpreting s and p as sets of vertices, we have
that s = p ⊆ Z1 ∩ Z2. For P1 and P2 to be connected, we also have to ensure
that s = p = Z1 ∩Z2, i.e. Z1 ∩Z2 has to be exactly the set of vertices where P1

and P2 overlap. That is because if there is a vertex v ∈ Z1 ∩Z2 with v 6∈ s = p,
then we could traverse the vertices starting from v to s on P1, further along
s = p and back to v via P2. If v is the other ending (other than s and p) of
P1 and P2, then we have a cycle. If v is internal to P1 or P2, then we have a
cycle and a vertex of degree at least three. Summarising, only if s = p (where
s and p are interpreted as strings) and if s = p = Z1 ∩ Z2 (where s and p are
interpreted as vertex sets), we can connect P1 and P2 to form a single path.
To check all possibilities how two paths could be connected, the above test has
to be performed in four different combinations: s is a suffix of the Xi-suffix of
Z1 and p is a prefix of the Xi-prefix of Z2 (as described above); s is a suffix
of the Xi-suffix of Z2 and p is a prefix of the Xi-prefix of Z1; s is a suffix of
the Xi-suffix of Z1 and p is a prefix of the reversed Xi-suffix of Z2; s is a suffix
of the reversed Xi-prefix of Z2 and p is a prefix of the Xi-prefix of Z1. Hence,
only after these tests we know whether combining f1 and f2 results in a cycle
or a vertex of degree three or more. And if not, we combine f1 and f2 to an
interface f representing a pathset of N ′

i .
The remainder of the proof is analogous to the proof of Theorem 10. In

particular, we obtain the solution by considering the paths of length at most d
corresponding to interfaces with one set at the root, and selecting the one that
covers most site-vertices. �

5.2 Limiting vertex degree and edge length

Real-world road networks are unlikely to contain high degree vertices or very
short edges (with respect to the length d of the fragment). Let D be the maxi-
mum vertex degree of N , and let s be the length of the shortest edge in N . If
we assume that both D and the fraction f = d/s are bounded by a constant,
then we can solve GP and GT in time polynomial in n and m.

To solve GP when f and D are small, we can simply enumerate all possible
paths, and then choose one that is optimal. The optimal path consists of one
partial edge of N , then a sequence of complete edges, and then another partial
edge. We call the part consisting of complete edges the skeleton of the path, see
Figure 5. Let P (f,D) denote the number of skeleton paths that can start at any
given vertex of N . Any skeleton path can consist of at most f edges, because
the shortest edge has length s and the fragment can have length at most d. At
any vertex except the first, the path has at most D−1 possible ways to proceed.
Therefore, in the worst case P (f,D) = D · (D − 1)f−1. The total number of
skeleton paths is now at most m · P (f,D), since there are m vertices to start
with. We compute all of these, and for each skeleton look for the best path that
has that skeleton, and report the best solution.

For i = 1, . . . ,m ·P (f,D), let Ei denote the set of edges adjacent to the two
endpoints of the ith skeleton path. Furthermore, let mi denote the number of
edges in Ei and let ni denote the number of sites on the edges in Ei. To find
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Figure 5: A skeleton path is shown thick. The dashed edges show the possible
edges (and corresponding sites) that can still be used to complete the skeleton
path to a real path.

the best path using a given skeleton, we have to append two partial edges to
its endpoints that cover the largest amount of sites, while their length remains
bounded by d minus the length of the skeleton. To be able to do this, we pre-
compute for each edge two lists with the distance to the kth site on the edge,
as seen from one endpoint. This takes linear time in total. Then, for a given
skeleton, we guess an adjacent edge to both of its endpoints, and then find the
best combination of partial edges on those two edges. Note that both edges may
be the same edge, in which case the two partial edges can overlap, but when
this is the case we can simply take the whole edge. There are D2 choices for
the adjacent edges per skeleton, as illustrated in Figure 5. However, instead of
trying each of the D2 choices, we can directly find the best partial edge using
the algorithm from Section 2 in O(mi + ni) time.

Now, observe that mi is at most 2D. Furthermore, we can bound
∑

i ni.
Every edge uv of N is adjacent to the at most 2 · P (f,D) skeleton paths that
start at u or v, and therefore:

∑

i

ni ≤ n · 2 · P (f,D).

The total running time now becomes:

O(
∑

i

(mi + ni)) ≤ O(
∑

i

(D + ni)) ≤ O(D ·m · P (f,D) + n · P (f,D))

= O(m ·D2 · (D − 1)f−1 + n ·D · (D − 1)f−1).

Theorem 12 On graphs with degree at most D and smallest edge length s, GP

can be solved in O(m ·D2 · (D − 1)d/s−1 + n ·D · (D − 1)d/s−1) time.

We can use a similar approach for GT. A solution again consists of a number
of complete edges of N and a number of partial edges. The complete edges are
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all connected and now form a skeleton tree. An example is shown in Figure 6.
Let T (f,D) denote the number of skeleton trees that can contain any given
vertex v of N and have degree at most D − 1 at v. Note that we can make
this assumption because every tree has at least one vertex of degree at most
D − 1, and we encounter this vertex as v at some point. We could even count
only the number of trees that have degree 1 at v, which would improve the
complexity slightly. We do not do that because later we need to reuse T (f,D)
in the analysis, and the description would become more complicated, which does
not seem worth the small improvement. As with skeleton paths, any skeleton
tree can consist of at most f edges.

Figure 6: A skeleton tree is shown thick. The dashed edges show the possible
edges (and corresponding sites) that can still be used to complete the skeleton
tree to a real tree. Some dashed edges have both endpoints on the skeleton tree;
these need to be preprocessed before we can solve the problem.

The number of skeleton trees containing a given root vertex with degree at
most D − 1 at the root can be bounded by the number of (D − 1)-ary trees,
which is known to be

(

(D − 1)k

k − 1

)

/k =

(

(D−1)k
k

)

(D − 2)k + 1
≈ (D − 1)(D−1)k+1/2

(D − 2)(D−2)k+3/2

/

√
k3 ≤ ek · (D − 1)k,

if they contain k vertices (and k−1 edges), cf. [5], see also [35] for an elementary
proof. (The approximation uses Stirling’s formula, and e ≈ 2.718 is Euler’s
constant.) We conclude that T (f,D) ≤ (e(D − 1))f+1. The total number of
skeleton trees is now at most m · T (f,D). Again, for each skeleton we compute
the best tree that has that skeleton, and report the best solution.

For i = 1, . . . ,m · T (f,D), let Ei denote the set of edges adjacent to some
vertex of the ith skeleton tree. Again, let mi denote the number of edges in
Ei and let ni denote the number of sites on the edges in Ei. Now, all edges
that are adjacent to a given skeleton tree might be used partially in a solution.
Some of these edges are connected to the skeleton by only one endpoint, and
some by both endpoints, see Figure 6. Therefore, as a preprocessing step, we
compute for each edge e in N three lists. The first list stores, for each integer
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k, the shortest possible path, starting at the left1 endpoint of e, within e, that
contains k sites (in practice it is enough to store the distance to the kth site
from the left). The second list stores the same information, but starting from
the right endpoint. The third list stores the shortest pair of paths within e,
starting at the left and right endpoints of e, which contains k sites. We can
easily compute all of these lists in quadratic time.

With this information, we can solve the problem for a given skeleton tree by
considering the correct lists for all adjacent edges (depending on which endpoints
are in the skeleton tree). We need to find the best combination of partial edges,
which can be done in O(mini + n2

i ) time with the algorithm from Section 3.
Now, observe that mi is at most f ·D. Furthermore, we can bound

∑

i ni.
Every edge uv of N is adjacent to the at most 2 · T (f,D) skeleton trees that
have u or v as a leaf, and therefore:

∑

i

ni ≤ n · 2 · T (f,D).

The total running time now becomes:

O(
∑

i

(mini + n2
i )) ≤

∑

i

O(fDni + n2
i + 1)

≤
∑

i

O(fDni) +
∑

i

O(n2
i ) +O(m · T (f,D))

= O(fDn · T (f,D) + (n · T (f,D))2 +m · T (f,D))

= O(m · T (f,D) + n2 · T (f,D)2)

= O(m(e(D − 1))f+1 + n2 · (e(D − 1))2f+2).

Theorem 13 On graphs with degree at most D and smallest edge length s, GT

can be solved in O(m(e(D − 1))d/s+1 + n2 · (e(D − 1))2d/s+2) time.

6 Conclusions and open problems

In this paper we studied a point pattern identification problem motivated from
hotspot detection. Not surprisingly, the most general versions of the problem,
where the network is a graph, were shown NP-complete. Thus we focused on
finding cases for which polynomial-time solutions are possible. We showed that
if the network N is a tree, efficient algorithms exist to solve the problem. In
particular, we gave a linear-time algorithm for the TP variant and a simpler
O(mn + n2)-time algorithm for TT. Furthermore, we gave exact polynomial-
time algorithms for networks N of bounded treewidth and for the realistic case
in which the maximum degree of the vertices and the minimum edge length in
N are bounded.

1For ease of explanation we assume here that the endpoints of each edge are arbitrarily
defined as ‘left’ or ‘right’.
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Various extensions of this work are possible and some open problems remain.
First of all, can we give an effective heuristic for the general problem based on
our exact and efficient solutions to special cases? For example, we could consider
to test various spanning trees of an input network and overlay the solutions to
arrive at a global solution. Judging the quality of such an approach requires an
extensive experimental evaluation.

On the more theoretical side, how does the problem change if we associate
a weight with each site? Our current algorithms for TP and TT cannot solve
the weighted versions. Another question, again inspired by geographic analysis:
How about a setting where there are two types of sites, for example cars and
accidents? Then we would be interested in a short fragment where the ratio
between cars and accidents is small—a question which is related to so-called
ratio-clustering.
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