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Abstract. We show that a positive definite integral ternary form can
be reduced with O(M(s) log2 s) bit operations, where s is the binary
encoding length of the form and M(s) is the bit-complexity of s-bit
integer multiplication.

This result is achieved in two steps. First we prove that the the classical
Gaussian algorithm for ternary form reduction, in the variant of Lagarias,
has this worst case running time. Then we show that, given a ternary
form which is reduced in the Gaussian sense, it takes only a constant
number of arithmetic operations and a constant number of binary-form
reductions to fully reduce the form.

Finally we describe how this algorithm can be generalized to higher di-
mensions. Lattice basis reduction and shortest vector computation in
fixed dimension d can be done with O(M(s) logd−1 s) bit-operations.

1 Introduction

A positive definite integral quadratic form F , or form for short, is a homogeneous
polynomial

F (X1, . . . , Xd) = (X1, . . . , Xd)A (X1, . . . , Xd)T,

where A ∈ Zd×d is an integral positive definite matrix, i.e., A = AT and xTAx >
0 for all x 6= 0. The study of forms is a fundamental topic in the geometry of
numbers (see, e.g., [2]). A basic question here is: Given a form F , what is the
minimal nonzero value λ(F ) = min{F (x1, . . . , xd) | x ∈ Zd, x 6= 0 } of the form
which is attained at an integral vector? This problem will be of central interest
in this paper.

Problem 1. Given a form F , compute λ(F ).

At least since Lenstra’s [9] polynomial algorithm for integer programming in
fixed dimension, the study of quadratic forms has also become a major topic
in theoretical computer science. Here, one is interested in the lattice variant of
Problem 1, which is: Given a basis of an integral lattice, find a shortest nonzero
vector of the lattice w.r.t. the `2-norm.
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In fixed dimension, Problem 1 can be quickly solved if F is reduced (see
Theorem 4 in Sect. 5). In our setting, this shall mean that the product of the
diagonal elements of A satisfies

d∏
i=1

aii ≤ γd ∆F (1)

for some constant γd depending on the dimension d only. Here ∆F = detA is
the determinant of the form F . Algorithms which transform a form F into an
equivalent reduced form are called reduction algorithms.

In algorithmic number theory, the cost measure that is widely used in the
analysis of algorithms is the number of required bit operations. The famous LLL
algorithm [8] is a reduction algorithm which has polynomial running time, even
in varying dimension. In fixed dimension, the LLL reduction algorithm reduces
a form F of binary encoding size s with O(s) arithmetic operations on integers
of size O(s). This amounts to O(M(s) s) bit-operations, where M(s) is the bit-
complexity of s-bit integer multiplication. If one plugs in the current record for
M(s) = O(s log s log log s) [11], this shows that a form F can be reduced with a
close to quadratic amount of bit-operations.

A form in two variables is called a binary form. Here one has asymptotically
fast reduction algorithms. It was shown by Schönhage [10] and independently
by Yap [16] that a binary quadratic form can be reduced with O(M(s) log s)
bit-operations, see also Eisenbrand [3] for an easier approach.

In his famous disquisitiones arithmeticae [4], Gauß provided a “reduction
algorithm” for forms in three variables, called ternary forms. He showed how to
compute a ternary form, equivalent to a given form, such that the first diagonal
element of the coefficient matrix is at most 4

3
3
√

∆F . A form which is reduced in
the Gaussian sense is not necessarily reduced in the sense of (1). The Gaussian
notion of reduction was modified by Seeber [13] such that a reduced form satisfies
(1) with γ3 = 3. Gauß [5] showed later that γ3 = 2.

The “reduction algorithm” of Gauß was modified by Lagarias [7] to produce
so called quasi-reduced forms. They satisfy the slightly weaker condition that
the first diagonal element is at most twice the cubic root of the determinant.
Lagarias proved that his modified ternary form algorithm runs in polynomial
time. However, a quasi-reduced form is not necessarily reduced in the sense
of (1).

Results. We prove that ternary forms can be reduced with a close to linear
amount of bit-operations, as it is the case for binary forms. More precisely, a
ternary form F of binary encoding length s can be reduced in the sense of (1)
with γ3 = 16

3 using O(M(s) log2 s) bit-operations. Unfortunately, the complexity
of the proposed reduction procedure has still an extra (log s)-factor compared
to the complexity of binary form reduction. However our result largely improves
on the O(M(s) s) complexity of algorithms for ternary form reduction which are
based on the LLL algorithm.
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We proceed as follows. First we show that the Gaussian ternary form al-
gorithm, in the variant of Lagarias [7], requires O(M(s) log2 s) bit-operations.
This is achieved via a refinement of the analysis given by Lagarias. Then we
prove that, given a quasi-reduced ternary form, it takes at most O(M(s) log s)
bit-operations to compute an equivalent reduced form. Therefore, a ternary form
can be reduced with O(M(s) log2 s) bit-operations. This improves on the best
previously known algorithms. It follows that, for ternary forms, Problem 1 can
be solved with O(M(s) log2 s) bit-operations.

Finally we generalize the described algorithm to any fixed dimension d.
The resulting lattice basis reduction algorithm requires O(M(s) logd−1 s) bit-
operations.

Related work. Apart from the already mentioned articles, three-dimensional
lattice reduction was extensively studied by various authors. Vallée [15] invented
a generalization of the two-dimensional Gaussian algorithm in three dimensions.
Vallée’s algorithm requires O(M(s) s) bit-operations. Semaev [14] provides an
algorithm for three-dimensional lattice basis reduction which is based on pair
reduction. The running time of his algorithm is O(s2) bit-operations even if one
uses the naive quadratic methods for integer multiplication and division. This
matches the complexity of the Euclidean algorithm for the greatest common
divisor.

2 Preliminaries and Notation

The letters Z and Q denote the integers and rationals respectively. The running
times of algorithms are always given in terms of the binary encoding length of the
input data. The cost measure is the amount of bit operations. The function M(s)
denotes the bit-complexity of s-bit integer multiplication. All basic arithmetic
operations can be done in time O(M(s)) [1].

We will only consider positive definite integral quadratic forms. We identify
a form F with its coefficient matrix MF ∈ Zd×d such that

F (X1, . . . , Xd) = (X1, . . . , Xd) MF (X1, . . . , Xd)T.

The function size(F ) denotes the binary encoding length of MF . Two forms
F and G are equivalent if there exists a unimodular matrix U ∈ Zd×d with
MG = UTMF U . We say that U transforms F into G. The number ∆F = detMF

is the determinant of the form. The determinant is invariant under equivalence.
See, e.g., [2] for more on the theory of quadratic forms. The coefficient matrix
MF ∈ Zd×d has a unique RTDR factorization, i.e, a factorization MF = RTDR,
where R ∈ Qd×d is an upper triangular matrix with ones on the diagonal and
D is a diagonal matrix. The matrix R has a unique normalization R′ = RU ,
where U is unimodular and R′ is upper triangular with ones on the diagonal and
elements above the diagonal in the range (− 1

2 , 1
2 ]. The corresponding matrix

R′TDR′ defines a form F ′ which is equivalent to F . The form F ′ is called the
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Gram-Schmidt normalization of F . This is the normalization step of the LLL
algorithm [8], translated into the language of quadratic forms. In fixed dimen-
sion, the Gram-Schmidt normalization of a form F of size s can be computed
with a constant number of arithmetic operations, and hence with O(M(s)) bit-
operations. We say that a form G is a γ-reduction of F , if G is equivalent to F
and if the product of the diagonal elements of MG is at most γ ∆F .

2.1 Binary Forms

A binary form is a form in two variables. We denote binary forms with lower
case letters f or g. The binary form f is reduced if Mf =

(
a11 a12
a12 a22

)
satisfies

a11 ≤ a22 (2)
|a12| ≤ 1

2a11. (3)

If f is reduced one has
3
4 a11 a22 ≤ ∆f . (4)

The unimodular matrix
(

1 −r
0 1

)
, where r is the nearest integer to a12

a11
, transforms

a binary form f to an equivalent form which is called the normalization of f .
The normalization of f satisfies (3).

We have the following result of Schönhage [10] and Yap [16].

Theorem 1. Given a positive definite integral binary quadratic form f of size
s, one can compute with O(M(s) log s) bit-operations an equivalent reduced form
g and a unimodular matrix U ∈ Z2×2 which transforms f into g. ut

2.2 Ternary Forms

Ternary forms will be denoted by capital letters F or G. Let F be given by its
coefficient matrix

MF =


a11 a12 a13

a12 a22 a23

a13 a23 a33


 .

The form F defines associated binary forms fij , 1 ≤ i, j ≤ 3, i 6= j which have
coefficient matrix

Mfij =
(

aii aij

aij ajj

)
.

By reducing fij in F , we mean that we compute the unimodular transformation
which reduces fij and apply it to the whole coefficient matrix MF . This changes
only the i-th and j-th row and column of MF and leaves the third diagonal
element akk unchanged. It follows from Theorem 1 that such a reduction of fij

in F can be done with O(M(s) log s) bit-operations on forms F of size s.
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The adjoint F ∗ of F is defined by the coefficient matrix MF∗ = detMF ·M−1
F

and we write

MF∗ =


A11 A12 A13

A12 A22 A23

A13 A23 A33


 .

Clearly MF∗ is integral and positive definite. A unimodular matrix S ∈ Z3×3

transforms F into G if and only if (ST)−1 transforms F ∗ into G∗. The associated
binary forms of F ∗ are denoted by f∗

ij and by reducing such an associated form in
F we mean that we apply the corresponding reduction operations on F . Notice
that size(F ∗) = O(size(F )) and size(F ) = O(size(F ∗)) and that ∆F∗ = ∆2

F .
The ternary form F is quasi-reduced (see [7, p. 162]) if

a11 ≤ 2 3
√

∆F (5)

A33 ≤ 2 3

√
∆2

F (6)

|a12| ≤ 1
2 a11 (7)

|A13| ≤ 1
2 A33 (8)

|A23| ≤ 1
2 A33. (9)

This notion is a relaxation of Gauß’ concept of reduction of ternary forms, which
has the constant 4/3 instead of 2 in (5–6).

3 Computing a Quasi-Reduced Ternary Form

The Gaussian algorithm [4, Arts. 272–275] for ternary form “reduction” proceeds
by iteratively reducing the associated binary forms f12 and f∗

32 in F . Lagarias [7]
modified the algorithm by keeping the entries above and below the diagonal of
the intermediate forms small so that (7–9) are fulfilled after every iteration. So
we only have to see that (5) and (6) are fulfilled. One iterates until

A33 < 2 3

√
∆2

F . (10)

In the following we prove that the number of iterations until a ternary form
F of size s satisfies (10) is O(log s). For F and its adjoint F ∗ one has

A33 = ∆f12 (11)
a11∆F = ∆f∗

32
.

Thus reducing f12 in F leaves A33 unchanged and reducing f∗
32 in F leaves a11

unchanged. Furthermore, after reducing f12 in F one has

a11 ≤
√

4
3 A33 (12)

by (11), (2) and (4). Similarly, after reducing f∗
32 in F one has

A33 ≤
√

4
3 a11∆F . (13)
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This shows that each iteration decreases the binary encoding length of A33 by
roughly a factor of 4 as long as A33 exceeds 3

√
∆2

F by a large amount. We make
this observation more precise.

Let A
(i)
kl denote the coefficients of F ∗ after the i-th iteration of this procedure.

By combining (12) and (13) we get the following relation (see [7, p. 166, (4.65)])

A
(i+1)
33 ≤ (4

3 )(3/4)
√

∆F (A(i)
33 )1/4. (14)

Lagarias then remarks that, if A
(i)
33 ≥ 2 3

√
∆2

F , then

A
(i+1)
33 ≤ (2

3 )3/4 A
(i)
33 (15)

and it follows that the number of iterations is bounded by O(s). Lagarias does
not take full advantage of (14). By rewriting (14) in the form

A
(i+1)
33

4
3∆2/3

F

≤ 4

√√√√ A
(i)
33

4
3∆2/3

F

,

we see that we can achieve
A

(i+1)
33

4
3∆2/3

F

≤ 2

in at most

i = log4 log2

[
A

(0)
33 /(4

3∆2/3
F )

]
≤ log4 log2 A

(0)
33 = O(log s)

iterations. After we have achieved A
(i)
33 ≤ 8

3
3
√

∆2
F , then, by (15), the modified

ternary form algorithm requires at most one additional iteration to obtain an
equivalent quasi-reduced form.

This shows that the modified ternary form algorithm requires O(log s) iter-
ations to quasi-reduce a ternary form of size s. If one iteration of the reduction
algorithm is performed with the fast reduction algorithm for binary forms one
obtains the following result.

Theorem 2. The modified ternary form reduction method reduces a ternary
form of size s in O(M(s) log2 s) bit-operations.

Proof. Lagarias proves that the sizes of the intermediate ternary forms are O(s).
We have seen that the number of iterations is O(log s). One iteration requires
O(M(s) log s) bit-operations if one uses the fast reduction for binary forms. ut

4 From Quasi-Reduced to Reduced

A quasi-reduced form (or a form which is reduced in the sense of Gauß) is not
necessarily reduced. For example, the form F given by

MF =


4x 2x 0

2x x + 1 0
0 0 2x2


 , MF∗ =


2x3 + 2x2 −4x2 0

−4x2 8x3 0
0 0 4x



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with ∆F = 8x3 is quasi-reduced, but it is far from being reduced, for x → ∞.
In this section we show that we can compute a 16

3 -reduction of a quasi-reduced
ternary form F with O(M(s) log s) bit-operations.

The following lemma states that, if F has two small entries on the diagonal
which belong to an associated reduced binary form, then the Gram-Schmidt
normalization of F is reduced.

Lemma 1. Let F be a ternary form such that f12 is reduced and a11, a22 ≤
κ 3
√

∆F for some κ. Then one has

a′
11a

′
22a

′
33 ≤ (4

3 + 1
2κ3) ∆F ,

for the Gram-Schmidt normalization F ′ of F .

Proof. Let

a11 a12 a13

a12 a22 a23

a13 a23 a33


 =


 1 0 0

r12 1 0
r13 r23 1





d1 0 0

0 d2 0
0 0 d3





1 r12 r13

0 1 r23

0 0 1




be the RTDR factorization of the coefficient matrix of F . Since ∆f12 = d1d2,
f12 is reduced, and d1 = a11, it follows that

d2 ≥ 3
4 a22. (16)

Now ∆F = d1d2d3 and (16) imply

d3 ≤ 4
3

∆F

a11 a22
. (17)

Let F ′ = R′TDR′ be the Gram-Schmidt normalization of F , then

a′
33 = d3 + (r′23)

2 d2 + (r′13)
2 d1 ≤ d3 + (r′23)

2 a22 + (r′13)
2 a11

≤ d3 + 1
2κ 3

√
∆F . (18)

Since f12 is reduced we have not only a′
11 = a11 but also a′

22 = a22 since |r12| ≤ 1
2 .

By combining (17) and (18) and the assumption that a11, a22 ≤ κ 3
√

∆F , one
obtains

a′
11 a′

22 a′
33 = a11 a22 a′

33

≤ a11 a22 (d3 + 1
2κ 3

√
∆F )

≤ 4
3∆F + 1

2κ3 ∆F = (4
3 + 1

2κ3) ∆F .

Now we are ready to prove that, given a quasi-reduced ternary form F , an
equivalent γ-reduction is readily available, for γ = 16

3 .

Proposition 1. Given a quasi-reduced ternary form F of size s, one can com-
pute with O(M(s) log s) bit-operations a 16

3 -reduction G of F .
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Proof. Let F be quasi-reduced and let F ∗ be the adjoint of F . First reduce f∗
32

in F . This leaves a11 unchanged and maybe decreases A33. Recall that a11 ≤
2 3
√

∆F . It follows from (4) that

3
4A33 A22 ≤ det f∗

32 = a11∆F . (19)

We normalize f12 in F . This leaves the form f13 unchanged. Also normalizing
f13 in F leaves f12 unchanged. Therefore normalizing f12 and f13 in F leaves
A33 = ∆f12 and A22 = ∆f13 unchanged. If, after these normalizations, f12 or f13

is not reduced, (2) must be violated and we have two diagonal elements of value
at most 2 3

√
∆. By one more binary form reduction step performed on f12 or f13

in F , we are in the situation of Lemma 1 with κ = 2 after swapping the second
and third row and column if necessary. It is clear that the computations in the
proof of Lemma 1 can be carried out in O(M(s)) bit operations. In this case we
compute a γ-reduction of F with γ ≤ 4

3 + 4 = 16
3 .

If f12 and f13 are reduced then (4) implies

A33 = det f12 ≥ 3
4a11a22

A22 = det f13 ≥ 3
4a11a33

We conclude from (19) that

a11∆F ≥ (3
4 )3 a2

11 a22 a33

and thus that
∆F ≥ (3

4 )3 a11 a22 a33 ≥ 3
16 a11 a22 a33,

and we have a 16
3 -reduction of F . The overall amount of bit operations is

O(M(s) log s), where the factor log s is required for the binary reduction steps
that may be necessary. ut

By combining Theorem 2 and Proposition 1 we have our main result.

Theorem 3. Given an integral positive definite ternary form F of size s, one
can compute with O(M(s) log2 s) bit-operations a 16

3 -reduction of F . ut

5 Finding the Minimum of a Ternary Form

The following theorem is well known.

Theorem 4. If F is a form in d variables with coefficient matrix MF = (aij)
such that

∏d
i=1 aii ≤ γ ∆F , then

λ(F ) = min
{

F (x1, . . . , xd)
∣∣ |xi| ≤ √

γ , xi ∈ Z, i = 1, . . . d
}
. ut

If the dimension is fixed and F is reduced, then Theorem 4 states that λ(F )
can be quickly computed from a constant number of candidates. This gives rise
to the next theorem.
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Theorem 5. The minimum λ(F ) of a positive definite integral ternary form F
of binary encoding length s can be computed with O(M(s) log2 s) bit-operations,
where M(s) is the bit-complexity of s-bit integer multiplication.

Proof. Given a ternary form F of size s, we first compute a 16
3 -reduction G

of F . Now λ(F ) = λ(G) and by Theorem 4, the minimum of G is attained at an

integral vector x ∈ Z3 with |xi| ≤
√

16
3 , i = 1, . . . , 3. By Theorem 3, all this can

be done with O(M(s) log2 s) bit-operations. ut

6 Fast Reduction in any Fixed Dimension

In this section we sketch how the previous technique can be generalized to any
fixed dimension. It is more convenient to describe this in the language of lattices.
For this we review some terminology. A (rational) lattice Λ ⊆ Qd is a set of the
form Λ = Λ(A) = {Ax | x ∈ Zk}, where A ∈ Qd×k is a rational matrix of
full column rank. The matrix A is a basis of the lattice Λ and its columns are
the basis vectors. The lattice Λ is integral if A ∈ Zd×k. The number k is the
dimension of the lattice. If k = d, then Λ is full-dimensional. Let F be the
quadratic form with coefficient matrix ATA. The lattice determinant of Λ is the
number detΛ =

√
∆F and the lattice basis A = (x1, . . . , xk) is reduced if the

form F is reduced. More explicitly, this means that

k∏
i=1

‖xi‖ ≤ γ detΛ (20)

for some constant γ. The Lattice Reduction Problem is the problem of computing
a reduced basis for a given lattice.

The dual lattice of a full-dimensional lattice Λ is the lattice Λ∗ = { y ∈ Qd |
yTx ∈ Z, ∀x ∈ Λ }. Clearly Λ∗ = Λ(AT−1) and detΛ∗ = 1/ detΛ.

6.1 Lattice Reduction, Shortest Vectors, and Short Vectors

The Shortest Vector Problem is the problem of finding a shortest nonzero vector
of a given lattice. This is just the translation of Problem 1 into lattice ter-
minology. Hermite [6] proved that a d-dimensional lattice Λ always contains a
(shortest) vector x with ‖x‖ ≤ (4/3)(d−1)/4(det Λ)1/d. We call the problem of
computing a vector x with

‖x‖ ≤ κ · (det Λ)1/d,

where κ is an arbitrary constant, the SHORT Vector Problem.
Clearly, every shortest vector is also a short vector. If a reduced lattice basis is

available, a shortest vector can be computed fast, as mentioned above in Sect. 5
(Theorem 4). The availability of a reduced lattice bases also implies an easy
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solution of the Short Vector Problem, either directly by (20) or via the Shortest
Vector Problem.

So, the Short Vector Problem is apparently the easiest problem among the
three problems Lattice Reduction, Shortest Vector, and Short Vector. We will
show in Sect. 6.3 that Lattice Reduction (and hence the Shortest Vector Prob-
lem) can be reduced to Short Vector. In Sect. 6.2, we will first describe a solu-
tion of the Short Vector Problem which proceeds by induction on the dimension,
analogously to the procedure of Sect. 3.

6.2 Finding a Short Vector

First we describe how one can find a lattice vector x ∈ Λ of a d-dimensional
integral lattice Λ ⊆ Zd with ‖x‖ ≤ α (4/3)(d−1)/4 d

√
detΛ, for any constant

α > 1. The procedure mimics the proof of Hermite [6] who showed that such a
vector (with α = 1) exists, see also [12, p. 79].

The idea is to compute a sequence of lattice vectors x0, x1, x2, . . . which
satisfy the relation

‖xi+1‖ ≤ (κd−1)d/(d−1)(detΛ)(d−2)/(d−1)2‖xi‖1/(d−1)2 , (21)

for a certain constant κd−1. This is the generalization of (14) to higher dimen-
sions. We rewrite (21) as

‖xi+1‖
(κd−1)(d−1)/(d−2) d

√
detΛ

≤
[ ‖xi‖
(κd−1)(d−1)/(d−2) d

√
detΛ

]1/(d−1)2

.

Arguing as in Sect. 3, we can obtain ‖xi‖ ≤ κd · (det Λ)1/d in i = O(log log ‖x0‖)
steps, if we choose the constant κd > (κd−1)(d−1)/(d−2).

We now describe how the successor of xi is computed. Let xi be given. Con-
sider the (d − 1)-dimensional sub-lattice Ω∗ of Λ∗ defined by

Ω∗ = { y ∈ Λ∗ | yTxi = 0 }.

The lattice Ω∗ has determinant

detΩ∗ ≤ ‖xi‖ detΛ∗ = ‖xi‖ (detΛ)−1.

We find a short vector ỹ in Ω∗ with

‖ỹ‖ ≤ κd−1(‖xi‖ (detΛ)−1)1/(d−1).

This is a Short Vector Problem in d− 1 dimensions, which is solved inductively.
Now we repeat the same procedure, going from the dual lattice back to the
original lattice: consider the (d − 1)-dimensional sub-lattice Γ of Λ defined by

Γ = { x ∈ Λ | ỹ Tx = 0 },
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whose determinant satisfies

det Γ ≤ ‖ỹ‖ · detΛ ≤ κd−1(detΛ)(d−2)/(d−1)‖xi‖1/(d−1).

We find a short vector xi+1 of Γ with ‖xi+1‖ ≤ κd−1 (det Γ)1/(d−1), which im-
mediately yields (21). ut

As a consequence one obtains the following proposition which generalizes
Theorem 2.

Proposition 2. Let d ∈ N, d ≥ 3, and let κd−1 be some constant. Suppose that,
in an integral lattice Γ of dimension d− 1 with binary encoding length s, a short
vector x with

‖x‖ ≤ κd−1 (det Γ)1/(d−1)

can be found in Td−1(s) bit-operations. Then, for an integral lattice basis A ∈
Zd×d with binary encoding length s, we can compute a basis B ∈ Zd×d of the
generated lattice Λ such that the first column vector x of B satisfies

‖x‖ ≤ κd (det Λ)1/d,

in Td(s) = O(Td−1(s) log s+M(s) log s) bit-operations, for any constant κd with
κd > (κd−1)(d−1)/(d−2).

Proof. We start the sequence x0, . . . , xk with an arbitrary vector x0 out of the
basis A. The successors are computed as described above. The computation of
ỹ can be done with O(Td−1(s) + M(s)) bit-operations, since this involves only
one (d − 1)-dimensional shortest vector problem and basic linear algebra. The
same time bound holds for the computation of xi+1. These computations have
to be repeated at most O(log log ‖x0‖) times and we arrive at a lattice vector
x with ‖x‖ ≤ κd (detΛ)1/d. Now we determine an integral vector y ∈ Zd with
Ay = x. With the extended Euclidean algorithm one can find a unimodular
matrix U ∈ Zd×d with first column y/ gcd(y1, . . . , yd). The matrix B = AU is as
claimed. ut

We can use this proposition inductively, starting with κ2 = 4
√

4/3 and
T2(s) = O(M(s) log s). We see that we can choose κd as close to (4/3)(d−1)/4 as
we like. So we obtain:

Corollary 1. In a d-dimensional integral lattice Λ ⊆ Zd, a lattice vector x
with ‖x‖ ≤ κ

d
√

detΛ can be found in O(M(s) logd−1 s) time, for any constant
κ > (4

3 )(d−1)/4. ut

6.3 Augmenting the Number of Short Vectors in the Basis

Now we generalize the approach of Sect. 4 to get a reduced basis. Suppose we
have a basis v1, . . . , vd of the d-dimensional lattice Λ which is not reduced and
such that the first k ≥ 1 basis vectors satisfy ‖vi‖ ≤ α d

√
det Λ, 1 ≤ i ≤ k for some

constant α depending on d and k only. We describe a procedure that computes
a new basis v′1, . . . , v

′
d which satisfies one of the following.
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(a) v′1, . . . , v
′
d is reduced, or

(b) for all 1 ≤ j ≤ k +1 one has v′j ≤ α∗ d
√

detΛ for some constant α∗ depending
on d and k + 1 only.

Let L be the subspace of Rd which is generated by the vectors v1, . . . , vk and
denote its orthogonal complement by L⊥. Let v̄j denote the projection of vj into
L⊥. Let Λ(1) be the k-dimensional lattice generated by v1, . . . , vk and let Λ(2)

be the (d− k)-dimensional lattice generated by the vectors v̄k+1, . . . , v̄d. Clearly
detΛ(1) detΛ(2) = detΛ. Let

ūk+1, . . . , ūd

be a reduced basis of Λ(2) and suppose that ūk+1 is the shortest among these basis
vectors. Let U ∈ Z(d−k)×(d−k) denote the unimodular matrix which transforms
(v̄k+1, . . . , v̄d) into (ūk+1, . . . , ūd). The vectors v∗j ∈ Λ defined by (v∗k+1, . . . , v

∗
d) =

(vk+1, . . . , vd)U are of the form

v∗j = ūj +
k∑

i=1

µij vi,

with some real coefficients µij . It follows that

v′j = ūk+1 +
k∑

i=1

{µij} vi ∈ Λ,

where {x} denotes the fractional part of x. Clearly

v1, . . . , vk, v′k+1, . . . , v
′
d

is a basis of Λ and
‖v′j‖ ≤ ‖ūj‖ + kα

d
√

detΛ.

There are two cases. If ‖ūk+1‖ >
d
√

detΛ, then for all j = k + 1, . . . , d,

‖v′j‖ ≤ (kα + 1) ‖ūj‖.

Thus we get ‖v′k+1‖ · · · ‖v′d‖ ≤ α2 detΛ(2) for some constant α2 since ūk+1, . . . , ūd

is reduced. Now let v′1, . . . , v
′
k be a reduced basis of Λ(1). Then

‖v′1‖ · · · ‖v′d‖ ≤ α1 det Λ(1) α2 det Λ(2) = α1 α2 det Λ,

which means that v′1, . . . , v
′
d is reduced and thus (a) holds.

If, on the other hand, ‖ūk+1‖ ≤ d
√

detΛ, then the basis v1, . . . , vk, v′k+1, . . . , v
′
d

satisfies (b). ut
Now it is clear how to proceed. We find the first short basis vector by Propo-

sition 2, and we iterate the above procedure as long as case (b) prevails, increas-
ing k. We must eventually end up with a reduced basis, because as soon as k
reaches d, we have ‖vi‖ ≤ α d

√
detΛ for all basis vectors vi, and this implies that

the basis is reduced.
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In this way, we have reduced the Lattice Reduction Problem in dimension d
to one d-dimensional Short Vector Problem and a constant number (fewer than
2d) of lower-dimensional lattice reduction problems, plus some linear algebra
which can be done in O(M(n)) time. Thus we obtain the following theorem by
induction on the dimension.

Theorem 6. Let d ∈ N, d ≥ 2, A ∈ Zd×d be a lattice basis generating Λ and
suppose that the binary encoding length of A is s. Then one can compute with
O(M(s) logd−1 s) bit-operations a reduced basis of Λ or a shortest vector of Λ.

ut
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quadratischen Formen. Loeffler, Mannheim, 1831.
14. I. Semaev. A 3-dimensional lattice reduction algorithm. In: J. H. Silverman (ed.),

CaLC 2001, Cryptography and Lattices Conference, Lecture Notes in Computer
Science, vol. 2146 (this volume), Springer-Verlag, 2001, pp. 181–193.

15. B. Vallée. An affine point of view on minima finding in integer lattices of lower
dimensions. In Proceedings of the European Conference on Computer Algebra,
EUROCAL ’87, volume 378 of Lecture Notes in Computer Science, pp. 376–378.
Springer, Berlin, 1989.

16. C. K. Yap. Fast unimodular reduction: Planar integer lattices. In Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science, pages 437–446,
Pittsburgh, 1992. IEEE Computer Society Press.


