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Abstract

A curve has increasing chords if AD � BC for any four points A;B;C;D lying

on the curve in that order. The length of such a curve that connects two points at

distance 1 is at most 2�=3 in two dimensions, which is the optimal bound, and less

that 30 in three dimensions.

AMS 1991 Mathematics Subject Classi�cations: 52A40 (51K99, 51M04,

51M25, 52A38)

1 Introduction

Let AB denote the Euclidean distance between two points A and B. If f : [0; 1]! R
n is a

curve, f [t1; t2] denotes the part of the curve between f(t1) and f(t2), and length(f [t1; t2])

denotes its length. The length of the whole curve is denoted by length(f).

De�nition. Let f : [0; 1]! R
n be an n-dimensional curve.

1. f has increasing chords, if for 0 � t1 � t2 � t3 � t4 � 1, f(t1)f(t4) � f(t2)f(t3).

2. The minimum growth rate of f is

inf

(
f(t1)f(t2)

length(f [t1; t2])
: 0 � t1 < t2 � 1

)
;

if f is recti�able and 0 otherwise.

The conditions in these de�nitions express some sort of \smoothness" of the curves,

although piecewise linear curves are not forbidden. De�nition 2 contains the minimum

growth rate as a numerical parameter, and thus it allows us to express various \degrees"

of smoothness of curves. In this paper we investigate relations between these concepts

of smoothness.

Larman and McMullen [2] showed that the minimum growth rate of a plane curve

with increasing chords is at least 1=
p
12 � 0:289 and indicated how this bound can

be improved to approximately 0.3. They conjectured that the true lower bound is
3

2�
� 0:477, which is the minimum growth rate of two 60� arcs around the endpoints

f(0) and f(1), see �gure 1. This conjecture is mentioned as problem G3 in the book of

Croft, Falconer, and Guy [1].
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Figure 1: The longest path with increasing chords between A and B

We prove this conjecture, and we bound the minimum growth rate of curves with

increasing chords in higher dimensions.

The results in this paper have applications in the context of piecewise linear ap-

proximations of a curve, where the above concepts are used to de�ne \well-behaved"

curves for which simple algorithms su�ce to compute good or optimal approximations

because certain anomalies cannot arise, see Rote and Tichy [3]. For the correctness of a

certain greedy-like approximation algorithm we needed a condition which prevents the

curve from going from a point A to a distant point B and returning to A again while

remaining inside a narrow, in�nitely long cylinder. In other words, the curve is not

allowed to \turn around" inside a narrow cylinder. On the other hand, we did not want

to exclude polygonal curves, because very often the curves are given in a discretized,

i. e., polygonal way. So the simple idea of bounding the curvature cannot be applied.

We also did not want to exclude a curve which closes itself after making a \large" turn.

One way to restrict curves in a meaningful manner with respect to the mentioned aims

is to impose any one of the conditions 1{2 in the above de�nition locally, i. e., only

for points f(t1); f(t2); : : : whose distance along the curve is smaller than some speci�ed

bound.

2 Increasing Chords in The Plane

Theorem 1 The minimum growth rate of a plane curve with increasing chords is at

least 3

2�
.

Proof: Let f : [0; 1]! R
2 be our curve with increasing chords, starting at A = f(0) and

ending at B = f(1). It is su�cient to show that length(f) � 2�

3
�AB.

By the de�nition of curve length,

length(f) := sup
mX
i=1

f(ti�1)f(ti); (1)

where the supremum is taken over all subdivisions 0 = t0 < t1 < t2 < � � � < tm�1 <

tm = 1 of the curve.

Let me �rst give an overview of the proof. We take any �xed subdivision as above.

In the �rst step we will simplify f and replace it by a more manageable curve g from

A = f(0) to B = f(1) which goes through the points f(t1), f(t2), : : : in that order,
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and whose length is at most the length of f (and of course bigger than the sum on the

right side of (1)). In particular, each piece of g between f(ti) and f(ti+1) consists of at

most one convex piece turning to the left, one straight segment, and one convex piece

turning to the right, in that order or in the reverse order. Still, we ensure that g has

increasing chords.

In the second step we follow an idea that was also used in Larman and McMullen [2]:

We convexify g and obtain a convex curve ~g with the same endpoints and with the same

length as g. Intuitively, we cut g into small pieces and rearrange them according to

decreasing slope.

In the third step we show that this curve lies in the intersection of the two disks

with radius 1 centered at A and B. The curve length is therefore bounded by the length

of the two upper 60� arcs of the two circles, and we are done. In this step we will

have to establish a correspondence between pieces of ~g and pieces of g, and there the

above-mentioned properties of the simpli�ed curve g will help us.

Below we will discuss the three steps in detail. We will assume w. l. o. g. that

A = f(0) = (0; 0) and B = f(1) = (1; 0). Let us state the following easy lemma, which

is already given in Larman and McMullen [2].

Lemma 1 The curve f is strictly monotone in the x-direction, i. e., if f(t) =
�
x(t)

y(t)

�
,

then 0 � t1 < t2 � 1 implies x(t1) < x(t2).

Let us use the notation Ai = f(ti). In the �rst step of the proof we look at each

part f [ti; ti+1] of the curve in turn and replace it by the shortest possible curve between

Ai and Ai+1 such that the new piece together with the original curve from A to Ai

and from Ai+1 to B still has increasing chords. We say that a curve f : [a; b]! R
2 has

increasing chords with respect to some set S if for all P 2 S and for all a � t1 � t2 � b,

Pf(t1) � Pf(t2).

Lemma 2 A curve f has increasing chords with respect to a set S if and only if it has

increasing chords with respect to the convex hull of S.

Proof: For a � t1 < t2 � b with f(t1) 6= f(t2), the bisector of f(t1) and f(t2) divides

the plane into two halfplanes. The curve f has increasing chords with respect to S if

and only if for all a � t1 < t2 � b with f(t1) 6= f(t2), the closed halfplane bounded by

the bisector on the side of f(t1) contains S. From this the lemma follows immediately.

We want our new curve gi from Ai to Ai+1 to have increasing chords with respect

to f [0; ti]. It is therefore su�cient to look at the convex hull C of f [0; ti], see �gure 2.

The area where g is allowed to run from Ai to Ai+1 is bounded by the two convex

smooth involutes of C starting at Ai that are generated by a string that is unrolled

around C. In addition, this area is bounded by the two involutes of the convex hull of

f [ti+1; 1] starting at Ai+1. We take gi to be the shortest curve from Ai to Ai+1 which

does not cross the four involute boundaries. Obviously the curve f [ti; ti+1] must ful�ll

this condition, and therefore gi exists.

The following lemma states a couple of quite intuitive properties of the curves, whose

formal proof is nevertheless relatively long.
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Figure 2: Replacing the part of the curve between Ai and Ai+1 by a new curve gi

Lemma 3 (i) The typical shape of gi consists of

(1) an initial piece of one of the involutes starting in Ai,

(2) a straight-line segment, and

(3) an initial piece of one of the involutes starting in Ai+1,

in the given order. Parts (1) and (3) may be missing. If any of (1) or (3) is

present, the segment (2) is tangent to it. The segment (2) may also be missing

in the extreme cases that parts (1) and (3) are tangent to each other or that part

(1) goes through Ai+1 or part (3) goes through Ai. If parts (1) and (3) are both

present they turn in opposite directions.

(ii) Parts (1) and (3) of the curve each turn by less than 90�.

(iii) The curve gi has increasing chords with respect to f [0; ti].

(iv) The inverse curve of gi has increasing chords with respect to f [ti+1; 1].

(v) The curve gi itself has increasing chords (\with respect to itself", so-to-speak).

(vi) The curve gi is not longer than f [ti; ti+1].

(vii) The convex hull of gi is contained in the convex hull of f [ti; ti+1].

Proof: Statement (i) follows directly from the fact that the involutes are convex and

bend outwards.

To see (ii), let ~� be the initial tangent direction of gi at Ai, and let ~�0 be the normal

direction pointing towards the inner (concave) side of the involute. Now consider a

point T on part (1) of the curve gi where the tangent direction has turned by 90� and

is parallel to ~�0. By the properties of an involute, there is either a single point P on

the curve f [0; ti] lying on the concave (inner) side of the involute, such that the angle

between
��!
PAi and ~� is 90�, or there is a sequence Pj of points approaching Ai such that
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the corresponding angle approaches 90�. In the �rst case, T must lie at least as far

in the direction ~�0 as P , and it follows that PT < TAi. In the second case, the same

relation holds for some point Pj which is close enough to Ai and whose angle is close

enough to 90�.

Now, T is used by gi, and this means that the curve f [ti; ti+1] must necessarily cross

the ray from T in the tangent direction ~�0 in some point T 0 in order to reach Ai+1. The

distance of T 0 from Ai is bigger than its distance from P or Pj, respectively, and this

contradicts the increasing chord property.

Statement (iii) is true for part (1), because the involute has this property: C is

always contained on one side of the normal line of the curve. When the curve changes

from part (1) to part (2), the normal line of g, which was previously tangent to C,

moves away from C, and hence the distance from C increases. This holds also if part

(1) is missing. When part (3) of the curve starts, the normal line turns even further

away from C. The only thing that can happen is that the normal line hits C on the

other side of the curve, but this can also be excluded: It would mean that the normal

line q contains the following three points in the given order: The current point P on the

involute, the point on f [ti+1; 1] which is the center about which the involute currently

rotates, and an extreme point of C, i. e., a point of f [0; ti]. As P is used by gi, it means

that f [ti; ti+1] must intersect q in a point which lies before P (in the above order on q).

The three points of f on q now clearly violate the increasing chord property.

Statement (iv) is analogous to (iii), and (v) follows easily from (i) and (ii).

Statement (vi) is clear from the de�nition of g, and (vii) can be seen by considering

the possible shapes of gi according to (i) and the possible paths that f [ti; ti+1] can take.

By (vii) and lemma 2, each curve gi has not only increasing chords with respect to

the other parts of f , but also with respect to the other pieces gk. Therefore we can put

together the pieces g1, g2, : : : , and we obtain a curve g with the desired properties: It

has increasing chords, its length lies between
Pm

i=1 f(ti�1)f(ti) and the length of f , and

it consists of �nitely many convex pieces and straight line segments. In the remainder

of the proof we will only work with the simpli�ed curve g.

In the second step we convexify the curve g: [0; 1]! R
2. The idea is to cut g into

in�nitesimal pieces and rearrange them according to slope. Since g has �nitely many

convex pieces we need not worry about problems with limits and we can give an explicit

construction for the convexi�ed curve ~g.

Formally, let 0 = t0 < t1 < t2 < � � � < tm�1 < tm = 1 be a subdivision of g such

that each piece g[ti�1; ti] is either a straight line segment, strictly convex, or strictly

concave (when viewed as a function of x). The convexi�ed curve ~g: [0; U ] ! R
2 will

be parameterized by a parameter u in the following way: For every piece g[ti�1; ti]

there are two points ri(u) and si(u) in the interval [ti�1; ti] that vary continuously and

monotonically with u. Initially, ri(0) = si(0). Then ri decreases with u and si increases

with u until [ri(U); si(U)] = [ti�1; ti]. Moreover, for each u there exists a direction �(u)

in the range [��=2; �=2] (when measured by its angle with the positive x-axis) such

that for every i, g[ri(u); si(u)] is precisely that piece of g[ti�1; ti] which is steeper than

�(u) (in the sense of having larger slope).

More precisely, let ~�0 be the vector pointing in the direction 90� counterclockwise

from �, i. e., into the upper half-plane. If g[ti�1; ti] is strictly concave (as a function
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of x), we have ri(u) = ti�1 and

si(u) = arg max
ti�1�s�ti

h~�0; g(s)i:

If g[ti�1; ti] is strictly convex, then si(u) = ti and

ri(u) = arg min
ti�1�r�ti

h~�0; g(r)i:

For a straight segment g[ti�1; ti], we can for example set ri(u) = si(u) = ti as long as

�(u) is steeper than the segment. Then there is an interval [u; u0] during which �(u)

remains stationary and parallel to the segment. In this interval ri(u) decreases to ti�1.

For higher values of u, ri(u) and si(u) remain constant again.

Clearly, �(u) is decreasing. It is easy to construct such parameterizations �(u),

ri(u), and si(u). Were it not for the straight pieces of g, we could take � itself as the

parameter. We can also ensure that �(u) is continuous.

The curve ~g: [0; U ]! R
2 is now de�ned by the following equation.

���!
A~g(u) =

mX
i=1

�����������!
g(ri(u))g(si(u)): (2)

This is only a weakly monotonic parameterization of the curve. It is clear that ~g is a

curve from A to B. It is convex because in each point ~g(u) the line with direction �(u)

is a supporting line. The curve ~g lies in the upper half-plane, and moreover, it has the

same length as g. This is due to the following fact: As u increases by a small amount

the parts of g that are added to ~g are essentially parallel.

��������!
~g(u)~g(u+ ") =

mX
i=1

��������������!
g(ri(u+ "))g(ri(u)) +

mX
i=1

��������������!
g(si(u))g(si(u+ ")):

The direction of the non-zero vectors in this sum lies in the range [�(u+"); �(u)]. Thus

the length of the vector sum di�ers from the sum of the lengths of the vectors by at

most a factor of cos(�(u)� �(u+ ")), which can be made arbitrarily close to 1.

In the third step of the proof, we show that each point of the curve ~g has distance

at most 1 from A and B. Assume the contrary, for example that the largest distance

from B is bigger than 1. Then there must be a point T on ~g di�erent from A with a

supporting line of direction � such that the normal to � through T passes above B,

see �gure 3. We take � in the direction of the curve ~g running from A to B, and we �nd

a parameter value u such that �(u) is this direction. According to the representation

(2), we can cut the curve g into parts at the points rj(u) and sj(u). We get two kinds of

parts: The \upward" parts g[rj(u); sj(u)], where the slope is always bigger than �, and

the remaining \downward" parts g[sj�1(u); rj(u)], g[0; s1(u)], and g[tm(u); 1], where the

slope is smaller. By discarding empty \parts" and merging together adjacent non-empty

parts which are all upward or which are all downward we can assume that upward and

downward parts alternate on the curve, and that the parts are proper parts of positive

length. The sum of the upward vectors is
�!
AT , by (2), and the downward vectors sum

to
�!
TB. Since the inner product h�!TB; �i < 0, there must be a downward part g[u; v]

whose starting point g(u) lies higher in the � direction than its endpoint g(v). This

part must be adjacent to some upward part (see �gure 4, where the case of an upward

part which precedes g[u; v] is shown). However, this leads to a contradiction with the
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Figure 3: How the curve exits the circle of radius 1 around B

increasing chord property: As one moves away from the common subdivision point on

the upward part (in �gure 4 this is the point g(u)), the distance to the other endpoint

(g(v) in the �gure) of the downward part decreases.

Now the proof of theorem 1 is complete: the longest convex curve from A to B which

is contained in the intersection of the two disks follows the boundary of this intersection,

as in �gure 1, and this length is 2�=3.

Note that a curve with a positive minimum growth rate less than 1 does not neces-

sarily have increasing chords, as the example of a su�ciently fast winding logarithmic

spiral shows.

3 Higher Dimensions

We will now establish a positive lower bound on the growth rate of a curve with in-

creasing chords in three and higher dimensions. Since the proof for three dimensions

contains all the essential ideas, we will �rst prove this case in su�cient detail and derive

an explicit bound.

First we need a lemma. We say that a curve is monotone in the direction of a vector

a if the inner product hf(t); ai increases along the curve.

Lemma 4 Suppose that a curve f : [0; 1]! R
n from f(0) = A to f(1) = B is monotone

in the linearly independent directions q1; q2; : : : ; qn. Then the curve is contained in the

parallelotope (parallelepiped)

P = f x 2 Rn : hA; qii � hx; qii � hB; qii for i = 1; : : : ; n g;
and its length is bounded by the length of n successive edges of P leading from A to B.

Proof: First of all it is clear that the curve is contained in P and that the path formed

by n successive edges of P is monotone in the directions q1; q2; : : : ; qn. Therefore the

claimed bound can actually be achieved.

7



�

g

g(v)

g(u)

Figure 4: Deriving the contradiction to the increasing chord property

Let Q be the matrix whose rows are the vectors q1; q2; : : : ; qn, and transform the

coordinates x of the curve by

�x = Qx:

Let us denote the basis vectors of the transformed coordinate system (the columns

of Q�1) by ri. We may w. l. o. g. normalize the vectors qi in such a way that the

vectors ri are unit vectors. The transformed coordinates �xi are just the scalar products

with the directions qi:

�xi = hx; qii:
By assumption, these coordinates increase monotonically along the curve f , and there-

fore we may parameterize the curve by u := �x1 + �x2 + � � �+ �xn. Let us assume that

f : [u0; U ]! R
n is this parameterization.

Now take any subdivision u0 < u1 < u2 < � � � < um = U of the parameter interval

and consider the length of the corresponding polygonal path.

L :=
mX
j=1

f(uj�1)f(uj): (3)

Let us look at one term of this sum, for �xed values of uj�1 and uj with �u := uj�uj�1,

and consider the maximum possible value of f(uj�1)f(uj) for a given �u. Let ��x

denote the di�erence between the transformed coordinates of f(uj) and f(uj�1): ��x :=

Q(f(uj)� f(uj�1)). Then we have for the coordinates ��xi of ��x:

��xi � 0, for i = 1; : : : ; n, and

��x1 +��x2 + � � �+��xn = �u:
(4)

The vector
���������!
f(uj�1)f(uj) whose norm we want to maximize is given by

���������!
f(uj�1)f(uj) = Q�1 ���x =

nX
i=1

��xi � ri:
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The possible resulting vectors
���������!
f(uj�1)f(uj) subject to the constraints (4) form a simplex

with vertices �u � ri. Since the norm is a convex function, it takes its maximum at one

of the vertices of the feasible region. In our case, all vertices maximize the norm: their

length is �u = uj � uj�1. So we obtain for (3)

L =
mX
j=1

f(uj�1)f(uj) �
mX
j=1

(uj � uj�1) = U � u0;

and the maximum is obtained when every segment f(uj�1)f(uj) is parallel to one of the

edge directions qi.

Larman and McMullen [2] used a special case of this lemma in two dimensions.

They proved it by a more direct argument, rearranging segments according to slope as

we did in the second step of the proof of theorem 1.

We will now specialize this lemma to three dimensions and we will actually compute

the maximum possible length of the curve for three vectors q1, q2, and q3 in a special

position.

Lemma 5 Suppose that a three-dimensional curve f : [0; 1] ! R
3 from f(0) = A to

f(1) = B is monotone in the three directions q1, q2, and q3, where q3 =
�!
AB, the angle

between q1 and q2 is �=3 and the angle between q3 and the plane spanned by q1 and q2

is �=3. Then the length of the curve is at most

�p
4=3 +

p
13=12

�
�AB � 2:2 �AB:

Proof: We assume w. l. o. g. that q1, q2, and q3 are unit vectors, q1 is parallel to the

x-axis, and q2 lies in the x-y-plane. The matrix Q in the previous theorem whose rows

are the vectors qi can thus be written as follows:

Q =

0
B@q

1

q2

q3

1
CA =

0
B@ 1 0 0

cos(�=3) sin(�=3) 0

cos(�=6 + �) cos(�=3) sin(�=6 + �) cos(�=3) sin(�=3)

1
CA ;

where �=6 + � is the angle that the projection of q3 on the x-y-plane makes with the

x-axis. We have

R = Q�1 = (r1; r2; r3) =

0
B@ 1 0 0

�1=p3 2=
p
3 0

�2 sin(�=6� �)=3 �2 sin(�=6 + �)=3 2=
p
3

1
CA :

The lengths of the edges of the parallelotope P are given by krikhqi; q3i=kq3k, because
the projection of the edge parallel to ri onto qi is equal to the projection of

�!
AB = q3

onto qi. After some computation and straightforward manipulations we obtain the

following expression for the sum of the three edges:

�p
12 + cos(�=6+�)

q
4� cos(�=6��)2 + cos(�=6��)

q
4� cos(�=6+�)

2
� .

3 (5)

Neglecting constant terms and factors, this expression is of the form

b
p
4� a2 + a

p
4� b2; (6)
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with a = cos(�=6 + �) and b = cos(�=6� �). For any �xed a in the range �1 � a � 1,

the value of b in the range �1 � b � 1 which maximizes this expression is b = 1.

Substituting this value into (6) and maximizing a, one sees that the maximum is achieved

for a = b = 1. Since a and b are cosines this means that the angles must be zero:

�=6 + � = �=6� � = 0. Substituting the value � = 0 into (5) gives the bound claimed

in the lemma.

Lemma 6 Suppose that a three-dimensional curve f : [0; 1] ! R
3 from f(0) = A to

f(1) = B has increasing chords and is monotone in two directions q1 and q2, where

q2 =
�!
AB and the angle between q1 and q2 is �=3. Then the length of the curve is at

most �
1 + 1=

p
12
� �
4 +

p
13
� �AB � 9:8 �AB:

Proof: Let us assume w. l. o. g. that q1 = (1; 0; 0) and q2 =
�!
AB = (1=2;

p
3=2; 0). Let

0 = t0 < t1 < t2 < � � �< tm�1 < tm = 1 be any subdivision of the curve. We shall re�ne

this subdivision by inserting additional points. What we want is the following property:

We classify the segments f(ti)f(ti+1) into steep and at ones, as the angle between the

segment and the x-y-plane is � �=3 or < �=3. For each steep segment f(ti)f(ti+1),

we will be able to �nd points tj and tk with j � i and k � i + 1 such that the angle

between the segment f(tj)f(tk) and the x-y-plane is exactly equal to �=3. Moreover,

the covering intervals [tj ; tk] that occur in this way should not overlap too much.

We go along the curve from A to B. We start by setting i = 0. If the current

segment f(ti)f(ti+1) is at we proceed to the next segment, i. e., we increase i by 1.

Otherwise we look for the last point f(t), with t > ti, on the curve for which the angle

between the segment f(ti)f(t) and the x-y-plane is equal to �=3. If the angle between

f(ti)B and the x-y-plane is at most �=3, continuity ensures that such a point t exists.

Geometrically, the set of points p for which the segment f(ti)p makes the desired angle

is a circular cone with apex f(ti). We look for the last intersection point f(t) of the

curve with this cone. We insert this point into the subdivision, if necessary, and we

declare [ti; t] to be a covering interval. The next segment that we look at is the segment

from f(t) to the next point on the given subdivision.

As indicated above, it is possible that there is so such intersection point following ti.

In this case we stop. The angle between the segment f(ti)B and and the x-y-plane

must be larger than �=3. So we can �nd the �rst point f(t) on the curve for which

the angle between f(t)B and the x-y-plane is equal to �=3. We must have t < ti. We

�nally insert this point t into the subdivision, if necessary, and we declare [t; 1] to be a

\special" covering interval.

It is now clear that the above desired properties of the subdivision hold: Every steep

segment is covered by at least one covering interval. Moreover, the covering intervals

are disjoint, with the possible exception of the last \special" covering interval.

Now we look at the projection of the curve onto the x-y-plane. We can apply

lemma 4 in two dimensions, and we conclude that the length of this projected curve is

at most cot(�=3)+ 1= sin(�=3) =
p
3.

For any covering interval [tj; tk] we call the segment f(tj)f(tk) a covering segment.

Let a denote the total length of the projections of all at segments which are not

covered by any covering interval. Let b denote the length of the projection of the last

special covering segment. If that segment was not generated, we set b = 0. Let c

denote the total length of the projections of all remaining covering segments. We have

10



a + c � p
3, because the segments accounted for in a and c correspond to parts of the

curve which do not overlap. Since no single segment can be longer than AB = 1 we

have b � cos(�=3) = 1=2.

Now each at segment whose projection has length l has length at most l= cos(�=3) =

2l, giving an overall contribution of 2a. Each covering interval [tj; tk] gives rise to a piece

of the curve to which lemma 5 can be applied: This piece of the curve is monotone in

the direction q3 =
������!
f(tj)f(tk) since the curve has increasing chords (lemma 1). If the

two-dimensional projection of the covering segment f(tj)f(tk) has length l, then that

segment itself has length l= cos(�=3) = 2l, and this must be multiplied by the factor from

lemma 5. Hence the total contribution of all segments which are covered by covering

segments is at most (b + c)
�
4=
p
3 +

p
13=3

�
: Every segment in the subdivision is now

either accounted for in this bound or in the above bound 2a. Regarding the constraints

on a, b, and c, the sum of the two bounds is maximized for c =
p
3 and b = 1=2. This

gives an overall bound of (
p
3+ 1=2)

�
4=
p
3+

p
13=3

�
for the length of the curve.

Theorem 2 The minimum growth rate of a three-dimensional curve with increasing

chords is at least
1�

3 +
p
3=2
� �
4 +

p
13
� � 1

29:4
� 0:034:

Proof: Similarly to the proof of lemma 6 we will classify the segments of a subdivision

into steep and at ones. By re�ning the subdivision we will ensure that every steep

segment is covered by some covering interval. We will bound the length of the at

segments directly and reduce the covering intervals to lemma 6, just as the proof of

lemma 6 reduced them to lemma 5. Since the proof is essentially the same as that of

lemma 6 we will only sketch it, emphasizing the di�erences.

We know that the curve from A to B is monotone in the direction q1 =
�!
AB. We

assume w. l. o. g. that q1 = (1; 0; 0).

A segment of some subdivision of the curve is classi�ed as steep or at according to

its angle with the direction q1: It is called steep if this angle is at least �=3.

The process of introducing new points of the subdivision and declaring covering

intervals is just as in lemma 6. Finally we project all segments onto the x-axis, and

as before we denote by a, b, and c the total lengths of projections of uncovered at

segments, of the special covering segment, and of the remaining covering segments,

respectively. We have a+ c � 1 and b � cos(�=3) = 1=2.

We divide the bound 3=2 on a+b+c by cos(�=3) to take into account the projection

and multiply the result by the factor from lemma 6, giving the bound (3+
p
3=2)(4+

p
13)

for the overall length of the curve.

By choosing di�erent threshold angles in the de�nitions of steep and at segments

one can slightly improve the constant of theorem 2. The best bound that can be obtained

by the above proof method is 29.28. It is achieved by choosing an angle of 1.07 instead

of �=3 in lemma 6, and an angle of 1.003 instead of �=3 in lemma 5.

It is in principle no problem to extend the above proof to more than three dimensions.

Theorem 3 For every n, there is a positive lower bound on the minimum growth rate

of an n-dimensional curve with increasing chords.
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Proof: (Sketch.) One inductively establishes an upper bound on the length of an n-

dimensional curve with increasing chords from A to B which is monotone in i linearly

independent directions q1; q2; : : : ; qi, where
�!
AB = qi has length 1 and for each j, the

angle between qj and the subspace spanned by q1; q2; : : : ; qj�1 is �=3. This is proved

by induction from i = n down to i = 1. The induction basis (i = n) is provided by

lemma 4. The induction proceeds as above from lemma 4 and lemma 5 over lemma 6

to theorem 2. At every step, segments are classi�ed as steep and at ones according to

their angle with the subspace spanned by q1; q2; : : : ; qi. The last case (i = 1) gives the

statement of the theorem, by lemma 1.

4 Lower Bounds

As a generalization of the planar case to n dimensions, it has been proposed that the

curve with increasing chords which has the largest growth rate is given by n successive

edges of a Reuleaux simplex. A Reuleaux simplex is obtained as the intersection of

n + 1 unit balls centered at the vertices of an n-dimensional regular simplex with side

length 1. The total length of three edges of a Reuleaux tetrahedron in three dimensions

is about 3.20, which is very far from the bound 29.4 in theorem 2. However, this

curve does not satisfy the increasing chord property: Let A0, A1, A2, A3 denote the

vertices of the Reuleaux tetrahedron, in the order in which they are visited. The \edge"

from A0 to A1 is a circular arc in the bisecting plane of A2 and A3, centered at the

midpoint of the segment A2A3. Let A0:5 be the point on this edge which is equidistant

from A0 and A1, and similarly, let A2:5 be the point on the edge between A2 and A3

which is equidistant from these two points. Then the distance between A0:5 and A2:5

is
p
3 � p1=2 � 1:025 > 1, and thus the increasing chord property is violated. By

slightly pushing the points A0:5, A1, A2, and A2:5 towards the center one can construct

a modi�ed curve which consists of �ve pieces which are circular arcs that lie in the same

planes as in the original construction, and which does have increasing chords. Its length

is about 3.087, but the construction can surely be modi�ed to yield a longer curve.

Note that lemma 4 in some sense gives an indication what a longest curve with

increasing chords might look like: Lemma 4 says that a curve that is constrained to be

monotone in certain directions achieves its maximum length when it always moves in

one of its extreme possible directions. Locally, the curve of �gure 1 behaves everywhere

exactly in this way, when the monotonicity directions that are implied by the increasing

chord property with respect to the other edges are taken into account. The same holds

(approximately) for the n edges of a Reuleaux simplex.
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