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Abstract

Motivated by several open questions on triangulations and pseudotriangulations, we give closed form

expressions for the number of triangulations and the number of minimum pseudo-triangulations of n

points in wheel configurations, that is, with n − 1 in convex position. Although the numbers of triangu-

lations and pseudotriangulations vary depending on the placement of the interior point, their difference

is always the (n − 2)nd Catalan number.

We also prove an inequality #PT ≤ 3i#T for the numbers of minimum pseudo-triangulations and

triangulations of any point configuration with i interior points.

1 Introduction

A triangulation of a set P of n points in the plane is a partition of the convex hull of P into triangles using
as corners all the points of P and no other point. Equivalently, a triangulation is a straight-line embedding
of a planar graph whose vertex set is P , and whose faces are triangles, except for the outer face which is the
exterior of the convex hull of the points. (We assume that all point sets in this paper are in general position:
that no three points lie on a common line.)

Although there have been many interesting results on counting and enumerating triangulations in the
plane, there remain elementary open questions, such as what point sets have the most and the fewest
triangulations. A series of upper bounds are known on the number of triangulations of a given point set,
with a recent count of 59n+o(n) by Santos and Seidel [14] replacing the previous best of 28.12n+O(log n) by
Denny and Sohler [6]. Bespamyatnikh [3] has the fastest enumeration algorithm for triangulations, and an
algorithm of Pocchiola can be generalized to enumerate pseudotriangulations [4]. Aichholzer [2] maintains a
list of the leading examples that are known for up to 20 points.
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A pseudo-triangle is a planar polygon that has exactly three convex vertices,

Figure 1:
Pseudo-triangles

called corners, with internal angles less than π. A pseudo-triangulation for a set
P of n points in the plane is a partition of the convex hull of P into pseudo-
triangles whose vertex set is exactly P . Pseudo-triangulations, which have also
been called geodesic triangulations, have been studied because of their applications
to visibility [11, 12], ray shooting [5, 7], kinetic collision detection [1, 8, 9], and
rigidity [15] in the plane.

A pseudo-triangulation is minimum if it uses n − 2 pseudo-triangles [15]. In a minimum pseudo-
triangulation, every vertex is pointed—all of the edges emanating from it lie in a cone of angle less than
π. In a triangulation, only the vertices of the convex hull are pointed. Minimum pseudo-triangulations have
nice properties: Every edge except the convex hull edges can be flipped, and the flip incidence graph is
connected, regular and polytopal [13].

a) b)

Figure 2: Pseudotriangulations of wheels

For n points in convex position, the only pseudo-triangulations are the triangulations. Their number is
well-known to be the (n − 2)nd Catalan number, 1

n−1

(

2(n−2)
n−2

)

. For convenience, we denote this number Cn,
instead of the standard notation Cn−2.

We are interested in counting the number of triangulations, #T, and minimum pseudo-triangulations,
#PT, for given point configurations. We would like to know the relationships between these numbers, and
the n-point sets that give rise to their minimum and maximum values. For example, from the data in [2] it
seems plausible that a double circle has the smallest number of triangulations among all planar configurations
with n points. (A double circle consists of n/2 vertices of a convex polygon and an additional interior point
very close to each edge of the polygon.) We conjecture that #T ≤ #PT, with equality only for points in
convex position. In this note we merely scratch the surface of these questions, and show that for wheel
configurations, with n−1 points in convex position and one somewhere inside the convex hull, the difference
#PT − #T equals the (n − 2)nd Catalan number, although the numbers #T and #PT can vary (Lemmas
1 to 4 and Corollary 6). We also prove that #PT ≤ 3i#T for any configuration (Theorem 8), where i is the
number of interior points (those which are not vertices of the convex hull).

Note that we consider triangulations and pseudotriangulations of a fixed point set. Topological triangu-
lations, which fix the topology of the embedding but not the geometry, are different. In 1962, Tutte [16] gave
an elegant expression for the number of rooted topological triangulations on n vertices and an asymptotic
count of about 2cn+o(n) for 3.245 < c < 3.246. In the upcoming ICALP, Li and Nakano [10] give a nice
enumeration algorithm.

2 Triangulations of the wheel

We will consider point configurations that we call wheels: n points with n − 1 in convex position and one
point inside. Two examples are given in Figure 2a and b. We determine #T and #PT for wheels by counting
in a special case in which the inner point is close to one side of the convex hull, as in Figure 2b.

Lemma 1 An n-point wheel, with inner point near one side, has #T = Cn − Cn−1.

Proof: Any triangulation of a wheel with inner point q close to edge pr includes the triangle △pqr. By
removing edge pr and moving q into convex position we have a bijection between triangulations of this
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wheel and the Cn − Cn−1 triangulations of a convex n-gon that do not use the edge pr.

Lemma 2 An n-point wheel, with inner point near one side, has #PT = 2Cn − Cn−1.

Proof: With only one inside point q close to edge pr, a minimum pseudo-triangulation will be a triangula-
tion with exception of one quadrilateral that involves p, q, and r. We can form such pseudo-triangulations
in two ways: First, from any of the Cn − Cn−1 triangulations of the wheel, we may remove either edge
qp or qr, producing 2(Cn − Cn−1) distinct pseudo-triangulations. Second, we may add edges qp and qr
to any of the Cn−1 triangulations of the n − 1 points in convex position.

We are now interested in moving the inner point and observe how #T and #PT change. Change occurs
when three points become colinear; in the wheel, when the inner point crosses a chord of the convex (n− 1)-
gon. We use the term i-chord to refer to a directed chord whose introduction splits the convex (n − 1)-gon
into a convex (i + 1)-gon on the left and an (n− i)-gon on the right, as in Figure 3. Crossing an i-chord will
always be meant from the left side.

i-chord
(i +1)

(n – i) gon

pq

r

Figure 3: i-chord

Lemma 3 As the inner point in an n-point wheel crosses an i-chord, #T
increases by Ci+1Cn−i+1 − Ci+2Cn−i.

Proof: When q crosses i-chord pr from left to right, triangulations that do
not use edge pq are unchanged. Those that change consist of a triangulation
of a convex polygon and a wheel of the type counted by Lemma 1. Thus,
there are Ci+1(Cn−i+1−Cn−i) triangulations gained and Cn−i(Ci+2−Ci+1)
lost.

Lemma 4 As the inner point in an n-point wheel crosses an i-chord, #PT
increases by Ci+1Cn−i+1 − Ci+2Cn−i.

Proof: When q crosses i-chord pr from left to right, two types of pseudo-triangulations change. The
first type are those that use edge pr: as in the proof of Lemma 3, we gain Ci+1(2Cn−i+1 −Cn−i) pseudo-
triangulations and loose Cn−i(2Ci+2 −Ci+1). The second type are those using both pq and pr. Of these
we gain Cn−iCi+2 and loose Ci+1Cn−i+1. Thus, the net gain is Ci+1Cn−i+1 − Ci+2Cn−i.

Corollary 5 For any wheel with n points in general position, #PT = #T + Cn.

Proof: By Lemmas 1 and 2, when the inner point is close to a side, the difference #PT − #T = Cn.
By Lemmas 3 and 4, this difference does not change as the inner point moves across chords.

Lemmas 1 to 4 also imply that the minimum of #PT and #T are obtained when the interior point
is close to an edge and the maximum when the interior point is “at the center” (except the center is only
well-defined for a regular wheel). The next result gives the value of this maximum:

Corollary 6 Among all odd wheels, with 2m−1 points in convex position and one point inside, the maximum
numbers of triangulations and pseudo-triangulations occur when the vertices are evenly spaced along a circle
and the interior point is in the center. The numbers are:

#T =
1

2

(

C2m+1 − (2m − 1)(Cm+1)
2
)

#PT =
1

2

(

C2m+1 + 2C2m − (2m − 1)(Cm+1)
2
)

.

Proof: Sketch: Starting with a point near an edge, the numbers of triangulations and pseudo-triangulations
increase as we cross i-chords with 1 < i < m. The maximum number of such chords which we can cross
for a given i is (i + 1), and in the regular wheel we have crossed exactly that number when the point is
in the center. By Lemmas 1 and 3 the number of triangulations is

#T = C2m − C2m−1

+
∑

1≤i<m

(i + 1)[Ci+1C2m−i+1 − Ci+2C2m−i].

This can be reduced to the closed form of the corollary.
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Figure 4: Converting a triangulation of the (2m − 1)-wheel to a triangulation of a regular (2m + 1)-gon.

The formula #T = 1
2 (C2m+1 − (2m − 1)C2

m+1) implies that the number of triangulations of the regular
(2m− 1)-wheel is approximately one half of the number of triangulations of the regular (2m + 1)-gon, since
the second term in the formula is small. In the rest of this section, we prove this by establishing a bijection
using a probabilistic argument.

Let T be a triangulation of the regular (2m− 1)-wheel. We denote the central vertex by 0. Let us choose
a distinguished vertex of the given (2m−1)-gon and number the vertices from 1 to 2m−1 in clockwise order,
beginning from the distinguished vertex. let a be the first vertex in this sequence which is adjacent to the
central vertex. As in Figure 4, we cut the polygon along the edge from a to the central vertex, expanding a
into two copies a′ and a′′. We get a non-simple (2m + 1)-gon with vertex sequence

1, 2, . . . , a′, 0, a′′, a + 1, . . . , 2m − 1.

We can draw this polygon as a regular (2m+1)-gon, opening up the angle a′0a′′, and we get a triangulation
T̃ of that convex (2m + 1)-gon. If we renumber the vertices from 1 to 2m + 1, starting from the same
distinguished point, the old central vertex will be numbered ã := a + 1.

We can reverse this process: All vertices adjacent to ã become neighbors of the central vertex 0, and the
two neighbors ã − 1 and ã − 1 are identified. However, if we start from an arbitrary triangulation T̃ and
select an arbitrary vertex ã, this procedure might fail, for two reasons: (a) we might not be able to draw the
central point in the center because its neighbors do not completely “surround” it. (b) The vertex a resulting
from the identification of ã − 1 and ã − 1 might not be the first neighbor of 0 in the sequence 1, 2, . . ..

We now describe the conditions that are necessary and sufficient for reversing the process.
In T̃ , there is one central triangle which contains the center of the regular polygon.

(i) The vertex ã must be a vertex of the central triangle, and it must be the first vertex in the sequence
2, 3, . . .. Let b̃ and c̃ be the other two vertices (in increasing order.)

(i) Let e be the third vertex of the triangle incident to the side (ã−1, ã). (The possible range of e extends
between c̃ and ã−2, inclusive, where these indices are taken modulo 2m+1.) Then e must lie between
c̃ and 2m + 1.

(iii) The difference c̃ − b̃ (modulo 2m + 1) is less than m. (This difference could otherwise possibly be as
large m.)

Conditions (i) and (ii) ensure that a is indeed the first neighbor of 0. Condition (iii) ensures that the
center lies in the convex hull of its neighbors.

Lemma 7 Conditions (i)–(iii) ensure that conversion of a triangulation T of the (2m − 1)-wheel to a tri-
angulation T̃ of a regular (2m + 1)-gon by the operation of Figure 4 is reversible.
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Proof: Consider a triangulation T of the (2m−1)-wheel, with a, b, and c identified according to Figure 4.
By the definition of a we must have 1 ≤ a ≤ m− 1. Let b be the largest neighbor of 0 which is ≤ a + m,
and let c be next neighbor of 0 after b, which satisfies a + m + 1 ≤ c ≤ 2m − 1. These three neighbors
exist, since 0 is contained in the convex hull of its neighbors.

Then ã := a + 1, b̃ := b + 2, and c̃ := c + 2 will form the central triangle of T̃ . This is easy to
check. The vertex e is the first neighbor of 0 in counterclockwise order from a, and thus condition (ii)
ensures that a is indeed the vertex selected according to the rule. If we perform the contraction of the
two neightbors of ã, the new angular distance (when seen from the center) between a and b or c is smaller
than the old angular distance between ã and b̃ or c̃, respectively, which is less than π by the definition of
the central triangle. The only thing that can happen is that the difference c̃ − b̃ achieves its maximum
possible value of m. This would lead to c − b = m, and since there are no other neighbors of 0 between
b and c, the neighbors of 0 would not contain the center in T . Whenever c̃− b̃ < m, the angle between b
and c is less than π, and thus 0 is contained in the convex hull of its neighbors a, b, and c.

Now suppose that we are given an arbitrary triangulation T̃ of the regular (2m + 1)-gon, with vertices
numbered clockwise from some distinguished vertex 1. The number of these triangulations is C2m+1. Con-
dition (i) allows us to uniquely identify the three vertices ã, b̃, and c̃. We will show that precisely one half of
all triangulations fulfill condition (ii). A small fraction of them will violate condition (iii), and they account
for the term that is subtracted from C2m+1/2 in formula for #T .

Let us consider a random rotation of a given triangulation T̃ . In other words, we select the distinguished
starting vertex randomly from the 2m + 1 vertices of the polygon. Let us try to find out, which are the
good choices for the starting vertex. Consider the i1 vertices in the range c̃, . . . , ã − 1, where i1 ≡ ã − c̃
(mod 2m + 1). These are the vertices whose choice results in the given distribution of labels ã, b̃, c̃. Now,
if e is the third vertex of the triangle incident to the side (ã − 1, ã), then the good choices for the starting
point are e, e + 1, . . . , ã − 1.

ã

b̃

c̃

ã − 1e

good positions for vertex 1

Figure 5: The squares shown are the conceivable positions of the distinguished vertex, assuming that ã, b̃, c̃
are correctly labeled.

To analyze the total number of good choices, let us look at a fixed central triangle ãb̃c̃ together with
random triangulations of the (i1 + 1)-gon between c̃ and ã, of the (i2 + 1)-gon between ã and b̃, and of the
(i3+1)-gon between b̃ and b̃, where i1+i2+i3 = 2m+1. Let us first concentrate on the (i1+1)-gon between c̃
and ã. The triangle with edge (ã−1, ã) splits this (i1 +1)-gon into a j1-gon between e and ã−1 and a j′1-gon
between c̃ and e (including the vertex ã), with j1 + j′1 = i1 + 2. the number of good choices between c̃ and ã
is then j1 − 1. By symmetry, the expected value of j1 is (i1 + 2)/2, since this is just a random triangulation
of an (i1 +1)-gon. It follows that the expected number of good points is i1/2. The same argument applies to
the other two sides of the central triangle (except that the vertices would be labeled differently), and hence
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the total expected number of good choices is (i1 + i2 + i3)/2 = (2m + 1)/2. This is precisely the one half of
the number of all possible choices. This explains the term C2m+1/2.

Now let us consider the triangulation which violated condition (iii). They must contain a long edge b̃c̃
with c̃ − b̃ ≡ m (mod 2m + 1). Such a long side splits the (2m + 1)-gon into an (m + 1)-gon and an
(m + 2)-gon, and hence the number of triangulations containing a long edge is

Cm+1Cm+2 = C2
m+1

2(2m − 1)

m + 1
(1)

This expression consideres a fixed long edge. To get all triangulations that contain a long edge, we would
have to multiply this by 2m+1 to account for the possible rotations. But then we would count triangulations
with two long edges doubly; we will actually make use of this overcounting below.

b̃

ã
c̃

no good positions for vertex 1 in this range

ã

b̃
c̃

no good positions for vertex 1 in this range

Figure 6: A long edge b̃c̃ excludes some choices for the distinguished vertex.

If b̃c̃ is a long edge, then there are no good choices between c̃ and ã (assuming a clockwise order of ã, b̃,
c̃). So, for each such triangulation, we must subtract i1/2 from our count of good choices, where i1 ≡ ã − c̃
(mod 2m + 1). The central triangle is always incident to the long edge, and ã is the third vertex of that
triangle. If we keep the edge b̃c̃ fixed and consider again a random triangulation of the (m + 2)-gon between
c̃ and b̃, the expected value of i1 is (m + 1)/2. We have to subtract the expected value of i1/2, which is
(m + 1)/4.

Now there are also triangulations with two long edges. These two edges form the central triangle together
with an edge between two adjacent vertices, for example (ã, b̃, c̃) = (1,m + 1, 2m + 1). Then there are no
good choices at all in the range from b̃ to ã. The expression (i1 + i2)/2 = (m + 1)/2 which was accounted
for this range must be subtracted.

Summarizing, let us look at the class of all triangulations that can be obtained from a given triangulation
with a long edge by rotating it in all 2m+1 possible ways. we must subtract an average of (m+1)/4 for each
rotation class of triangulations with a single long edge, and an average of (m + 1)/2 for each class with two
long edges. The expression (1) already counts rotation classes with two long edges twice, so we can simply
multiply it by (m + 1)/4 to get the correct amount that we have to subtract.

C2
m+1

2(2m − 1)

m + 1
·
m + 1

4
= C2

m+1

(2m − 1)

2
.
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3 A general bound

Let now P be an arbitrary point configuration in general position. Let Pi be the subset of interior points of
P . For any subset W ⊆ Pi let PTW denote the set of pseudo-triangulations whose set of pointed interior
vertices is W . In the notation of the previous section, #PTPi

= #PT and #PT ∅ = #T .

Theorem 8 For every W ⊆ Pi and v ∈ W , #PTW ≤ 3#PTW\{v}. In particular, #PT ≤ 3i#T, where
i = #Pi.

Let any vertex in a pseudo-triangulation which is not pointed be called cyclic.

Lemma 9 Given any pseudo-triangulation with pointed vertices W and any interior vertex v ∈ W , one can
add an edge to form a new pseudo-triangulation with pointed vertices W \ {v}.

Proof: Since v is pointed, there is a (unique) pseudo-triangle with v in its boundary and of which v is
not a corner. Let the corners of this pseudo-triangle be x, y, z and assume v lies on the concave chain
between x and y. If the edge vz lies on the interior of this pseudotriangle, then its addition makes v cylic
and z remains pointed (in case it was pointed before). If vz intersects the pseudo-triangle, then there
must be a vertex w lying on the concave chain from x to z, or from y to z, such that vw is tangent to
this chain. It is easy to check that the addition of vw makes v cyclic and it does not make w cyclic.

Given a pseudo-triangulation and a cyclic vertex v, call any edge incident to v critical for v if its removal
makes v pointed.

Lemma 10 for any cyclic vertex v there are at most three critical edges.

Proof: An edge vw is critical for v only if the two angles incident to vw at v together add more than
π. Adding this for all the critical edges we are counting each angle incident to v at most twice, giving a
total of at most 4π. Hence, #critical edges< 4π/π, as stated.

Proof: (of Theorem 8) Adding the numbers of edges which are critical for v over all the pseudo-
triangulations in PTW\{v} we are counting the elements of PTW\{v} at most three times by Lemma
10 and those of PTW at least once by Lemma 9.
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