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Abstract

We show that any d-colored set of points in general position in R? can be partitioned
into n subsets with disjoint convex hulls such that the set of points and all color classes
are partitioned as evenly as possible. This extends results by Holmsen, Kyn¢l & Valculescu
(2017) and establishes a central case of their general conjecture. Our proof utilizes a result of
Soberén (2012) on simultaneous equipartitions of d continuous measures in R¢ by n convex
regions, which gives a convex partition of R? with the desired properties, except that points
may lie on the boundaries of the regions. In order to resolve the ambiguous assignment of
these points, we set up a network flow problem. The equipartition of the continuous measures
gives a fractional flow. The existence of an integer flow then yields the desired partition of the
point set.

1 Introduction

A (finite) set X of points in R is in general position if every subset of size at most d+ 1 is affinely
independent. A partition X = X; U---U X, of X into m disjoint subsets is an m-coloring of X.
The sets X, ..., X,, are called color classes and we say that the set X is m-colored. A subset
Y C X containing points from at least 7 distinct color classes is said to be j-colorful.

In this language, the classical partition result of Akiyama and Alon reads as follows.

Theorem 1 (Akiyama—Alon [2]]). Let n,d be positive integers, and let X be a d-colored set of
points in general position in R, with each color class containing n points. Then there is a parti-
tion of X into n d-colorful sets of size d whose convex hulls are pairwise disjoint.
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Akiyama and Alon gave a beautifully simple proof using a discrete version of the ham sand-
wich theorem, which is a well known consequence of the Borsuk—Ulam theorem. The use of such
topological methods created a lot of progress in solving discrete partitioning problems. In fact,
many related partition results have both a continuous mass partition as well as a discrete colored
version—often equivalent.

In this paper, we consider the following conjecture of Holmsen, Kyn¢l and Valculescu [5,
Conjecture 3].

Conjecture 2 (Holmsen—Kync¢l-Valculescu, 2016). Let m, k,n, and d be positive integers, and
let X be an m-colored set of kn points in general position in R%. Suppose there is a partition of
X into n d-colorful sets of size k. Then there is also such a partition with the additional property
that the convex hulls of the n sets are pairwise disjoint.

Here, the assumption involves no geometry, and it depends only on the number of color classes
and their sizes. It is obviously a necessary condition. In particular, it implies that m > d and
k> d.

answers the case when kK = m = d. The case m > k = d = 2 was settled
by Aichholzer et al. [1]] and by Kano, Suzuki and Uno [8]. Further developments on the planar
case were made independently by Bespamyatnikh, Kirkpatrick and Snoeyink [3l], Ito, Uehara and
Yokoyama [6] as well as Sakai [10], who confirmed the conjecture for two colors (m = d = 2)
where the sizes of the color classes are divisible by n. Holmsen, Kyn¢l and Valculescu resolved the
conjecture for the remaining cases in the plane, as well as for the case when k — 1 =m =d > 2,
the latter by giving a particular discretization of the ham sandwich theorem [5]. Their method is
similar to the one used by Kano and Kyn¢l in [7] to establish the case m — 1 = d = k, who
proved a generalization of the ham sandwich theorem for d 4 1 measures in R? and called it the
hamburger theorem.

Holmsen et al. emphasized the connection of the conjecture with a continuous analogue for
the case m = d, proved in the plane by Sakai [10] and extended to arbitrary Euclidean space
by Soberén [[12]]. (A more general version, for functions that are not necessarily measures, was
obtained soon after by Karasev, Hubard and Aronov [9] and by Blagojevi¢ and Ziegler [4].)

Theorem 3 (Soberoén [12]]). Let n, d be positive integers, and let i1, . . ., pg be absolutely contin-
uous finite measures on R¢ with respect to the Lebesgue measure. Then there exists a partition
of R into n convex regions C1, . . ., Cy, that simultaneously equipartitions all d measures, that is,

pi(Cy) = iR

forallie {1,...,d}andall j € {1,...,n}.
Holmsen, Kyn¢l and Valculescu state:
“However, going from the continuous version to the discrete version seems to require,

in many cases, a non-trivial approximation argument, and we do not see how the
continuous results [... ] could be used to settle our Conjecture 3 for the case m = d.”

Indeed, this is not straightforward. However, in this paper we show how this can be done: We
confirm Conjecture 2] when m = d, as a direct corollary of the following main result. For this we
say that a partition of a finite set A into n parts is an equipartition if each of the parts contains
[%] or L%J elements of A.



Theorem 4. Let n, d be positive integers, and let X be a d-colored set of points in general position
in R%. Then there exists an equipartition of X into n subsets which simultaneously equipartition
each of the color classes and whose convex hulls are pairwise disjoint.

To see that Theorem {4 implies Conjecture [2| for the case m = d, observe that in this case the
condition on X of admitting a partition into n pairwise disjoint d-colorful sets of size k implies
that each color class has at least n elements. In an equipartition of a color class X;, each part
contains at least L%J > 1 points. Thus, each part of X contains all d colors. With | X| = kn
and an equipartition of X, we get n sets of size k that each contain at least one point of each of

the d colors.

2 Preliminaries

In order to discretize Theorem [3| we start by employing a classical idea (see e.g. [2, Proof of
Lemma 2]): We replace the points in X with small enough balls and then define measures on
these. The problem with applying the continuous result is that the boundaries of the regions may
cut through some balls, see Figure [I] (left). We will assign every such “ambiguous” point to one
of the regions intersected by the ball centered at the point.

The following lemma shows that, if the radius ¢ of the balls is small enough, we will always get
a partition of X with disjoint convex hulls, no matter how we resolve the ambiguities. In Section
we will prove that we can resolve these ambiguities in such a way that we get an equipartion of
the full point set X as well as of each of the color classes X;.

By general position, no ¢-flat (affine subspace of dimension ¢) with ¢ < d contains more than
¢+ 1 points of X. When we replace the points by balls, we make their radius € > 0 small enough
so that no /-flat with ¢ < d intersects more than ¢ + 1 of these balls.

Lemma 5. Let P C R? be a finite set of points in general position, and let ¢ > 0 be chosen such
that no (-flat with ¢ < d intersects more than { + 1 balls B.(x) of radius € centered at points
from P. Suppose we are given an affine hyperplane H C R%, and a partition of P = P+ U P~

satisfying
PTC{reP:B(x)NH"#0} and P~ C{z € P:B.(x)NH # 0},
where H™ and H™~ are the open half-spaces determined by H. Then
conv PT N conv P~ = ().

Proof. For any ball B, (x) intersecting a half-space, we know that the ball intersects the hyperplane
H or its center x lies in the open half-space. The hyperplane H intersects at most d balls centered
at points of P, and every /-flat with £ < d intersects no more than ¢ + 1 balls. Therefore, as all of
the balls are sufficiently small, by a small movement of H, we can ensure that the centers of these
balls are each on the appropriate side of H without intersecting any further balls. Thus, we get a
hyperplane strictly separating the sets P+ and P~. Consequently, conv P™ Nconv P~ = (. [

In order to assign boundary points to regions we will set up a flow network with a fractional
flow; from this we obtain an integer flow, which in turn will determine the assignment.



In a directed graph D = (V, A) with a set of vertices V" and a set of arcs A, a flow is a function
f+ A — R that assigns to each arc a real number. The excess of the flow f: A — R at the vertex v

of the graph V' is
excess(f,v) : quv vaw

(u,v)€A (vyw)eA

To obtain an integer flow from a fractional one, we will use the following known result; see for
instance [[11} Corollary 11.2i].

Theorem 6. Let D = (V, A) be a directed graph, and let pa,qa: A — Z, and py,qv:V — 7
be integer-valued functions on the arcs and on the vertices, respectively. If there is some flow
f: A— Ron D such that

pa(a) < f(a) < qala) foracA and  py(v) < excess(f,0) < qu(v) forv eV,

then there is also an integer flow f': A — 7 that satisfies the same bounds.

Classical flow networks involve only a single vertex with negative excess (source) and a single
vertex with positive excess (sink), conserving the flow at all other vertices. The network we
consider has several sources and sinks. Additionally, these excesses as well as the “capacity”
bounds on the arcs are not fixed but allowed to vary withing bounds. Such networks can easily be
reduced to the classical situation by modifying the network; see for example [[11, Chapter 11] for
such transformations.

3 Proof of the main result

Proof of TheoremH] Let n and d be positive integers, and let X be a d-colored set of points in
general position in RY. Using the tools presented in Section [2, we now prove our claim that we
can partition X into n sets of size Llf—u or {li(—w with pairwise disjoint convex hulls and which
simultaneously equipartition the color classes. The proof is done in several steps.

(1) From points to measures.

We replace each point z € X by a ball B.(z) centered at z, with £ > 0 a real number small
enough such that no ¢-flat with £ < d intersects more than ¢ + 1 balls. With each ball centered
at a point in X, we associate a uniformly distributed measure of 1. For each i € {1,...,d} and
a measurable subset A C R?, let y;(A) be the total measure of balls centered at points in X
that is captured by A. Clearly, i1, ..., jiq are absolutely continuous finite measures on R? with
1i(RY) = | X;|. According to Theorem [3| there exists a partition of R into n convex regions
C1,...,Cy, which equipartitions the measures, that is,

|;<"
,u,z‘(Cj) = nl
forall: € {1,...,d} andallj (S {1,...,n}.

(2) A directed graph of incidences.
In order to apply Lemma [5] we show the existence of an assignment of the points in X to the
n regions C1, ..., C), such that for each point = assigned to a region C}, B.(x) intersects C},



Figure 1: A configuration of 11 points/small balls with d = 2 colors in d = 2 dimensions, partitioned into
n = 3 regions, and the corresponding directed graph D with some upper and lower bounds on the flow and
its excess indicated as intervals.

while in total L%'J or (%} points are assigned to each region. Such an assignment may be

modeled as an integer flow from the points in X to the regions in the partition, where each x € X
has an outflow of 1 and each region has an inflow of Lpn(—u or ['f—‘] , the number of points assigned
to it. To guarantee an equipartition of the color classes, we add a middle layer of vertices, one for
each color and region, and set the constraints on these vertices and arcs accordingly.

We define the directed graph D = (V, A) with V = X UY U Z, where
Y={y:1<i<d 1<j<n}

contains a vertex yf for each color ¢ and each region C}, and the set Z = {C1,...,Cy,} contains
a vertex for each region. We have arcs from a point x € X to those vertices in Y corresponding
to the color of  and the regions incident to the ball B.(x) centered at z, as well as arcs from the
vertices in Y to their respective region in Z. More precisely, the set of arcs is

A‘:{(xvyg)ilﬁiﬁd,1§j§n,x€Xi, Be(z)NCj #0}
Ul Cci1<i<d1<j<n}.

For the vertices of D, we define lower bounds py : V' — Z and upper bounds gy : V' — Z on the
excess as follows:
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For the arcs of D, we define lower bounds p4: A — Z and upper bounds g4: A — Z as follows:

pa(z,y) =0 < qalzy) =1
X

pa(y}.Cj) = VT;'J < qa.C { W
(3) A fractional flow.
We now construct a fractional flow f: A — R by setting

j | Xi]
flay]) = m(B(x)NCy)  and  f(y],C) = 0

The lower and upper constraints on the arcs are trivially satisfied,

pa(a) < f(a) < qa(a) for all a € A.
With p;(B:(z)) = 1 for all x € X;, we get

pv(z) = —1 = excess(f, ) ZMZ Cj) = —1 = qv(x).
With y;(Cj) = Ian'I = f(yg, C;) for a vertex yf €Y, the values yield
pv(y]) =0 = excess(f,y]) = Y p(B Cy) = fyl,Cy) =0=qv(y)).

reX

Lastly, fora C; € Z we get

pv(C)) = VXTJJ < excess(f, Cj) :if(yl,c) X1 < ﬁj\

: n
=1

-‘ = qv(C}),

and consequently py (v) < excess(f,v) < qy(v) forallv € V.

(4) Back to geometry.

From the existence of this fractional flow, using Theorem[6] we obtain the existence of an integer
flow on D, satisfying the constraints given by functions p4, ¢4 and py, qy. This in turn gives an
assignment of points into sets of size LlX‘J and | XW equipartitioning X . The middle layer of D

ensures that each of the sets contains L‘ 1‘J or [l ll} points from the color class X, resulting in a
simultaneous equipartition of X and all d color classes.

We now want that, for any two regions Cj and CY, the sets of points P assigned to C; and
P~ assigned to C}, have disjoint convex hulls. For each point = assigned to a region, B.(x)
intersects that region, by the definition of the arc set A. We may therefore apply Lemma [5|to the
set P = PT LU P~ and conclude that the convex hulls of Pt and P~ are disjoint. O
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