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Convex Approximation by Spherical Patches

Kevin Buchin∗‡ Simon Plantinga †‡ Günter Rote∗‡ Astrid Sturm∗‡ Gert Vegter†‡

Abstract

Given points in convex position in three dimensions,
we want to find an approximating convex surface
consisting of spherical patches, such that all points
are within some specified tolerance bound ε of the
approximating surface. We describe a greedy al-
gorithm which constructs an approximating surface
whose spherical patches are associated to the faces
of an inscribed polytope. We show that deciding
whether an approximation with not more than a given
number of spherical patches exists is NP-hard.

1 Introduction

Problem Statement. We are given a set P of n three
dimensional points in convex position. We want to
find a convex approximating surface S that consists
of spherical patches. A spherical patch is part of the
boundary of a sphere. There are two quality criteria
that we want to optimize: (a) the approximation er-
ror, which is defined as the maximum distance from
a point of P to S; and (b) the number of patches.

Motivation. Our motivation for studying this prob-
lem is based on open problems in polytope approxi-
mation as well as on practical considerations. Surface
reconstruction and surface simplification is an impor-
tant area of computer graphics and geometric model-
ing [1]. One goal is to approximate complex objects
by simpler shapes. A lot of research has been done in
the field of approximation of three dimensional point
sets with polytopes with surfaces of higher order [3].

A first natural step to higher order approxima-
tion is the approximation with spheres or spherical
patches. Since polyhedral facets can be seen as spher-
ical patches with infinite radius, spherical patch ap-
proximation generalizes polytope approximation.

We initiate the study of this problem by considering
convex surfaces only, for simplicity. The results might
nevertheless be interesting for real data sets, e.g. data
sets from imaging procedures such as MRT. A wide
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range of objects scanned for data consist of parts that
are convex, and thus our results remain valid at least
on a local scale.

The complexity of the approximation problem is
related to open problems in polytope approximation,
in particular to the complexity of the minimum facet
polytope approximation. We hope to use our new
methods from the NP-hardness proof of the more gen-
eralized problem to solve the complexity question of
the minimum facet polytope approximation.

Results and Techniques. We present an algorithm
for solving the approximation problem with a speci-
fied error bound ε. It is based on a triangulated in-
scribed polytope which is the convex hull of a sub-
set of the input points, and on which the spherical
patches are built. This polytope is successively re-
fined in a greedy manner. We attempt to extend the
well-known Douglas-Peuker algorithm for polygonal
line approximations of curves to our setting.

Proofs are omitted due to space constraints. A full
version is available1.

2 Approximation of a convex point set by Spher-
ical Patches

Outline The optimization problem we are consider-
ing is the Approximation by Spherical Patches prob-
lem (ASP): the approximation of a convex point set
with a number g of spherical patches resulting in a
convex surface with all points within some specified
tolerance to the surface. We construct a point set
defining an instance of the ASP with zero tolerance
such that - in the satisfiable case - a minimal solution
of the approximation problem corresponds to a truth
assignment in the NP-hard grid-3-SAT problem. This
point set is lifted to a paraboloid and extended with
additional points. We describe the minimal solution
in the satisfiable case and prove that more patches
than g are needed in the non-satisfiable case for the
ASP.

Grid-3-Satisfiability 3-SAT statements consist of a
Boolean conjunction of clauses, where each clause
consists of a disjunction of three boolean variables,
each of which may be negated. Such a statement can
be represented by a bipartite graph, where variables

1http://page.mi.fu-berlin.de/ sturm/Spheres.pdf
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and clauses are represented by vertices. Each clause
vertex is connected to its three variable vertices by an
edge marked + or − depending on whether this vari-
able occurs negated in that clause. The 3SAT prob-
lem is NP hard even if the variable-clause graph of a
formula of length n in 3-conjunctive normal form can
be embedded on a c ·n2 grid with c some constant [2].

Modifying the grid The first step of the reduction
requires a refinement of the grid, vertices correspond
to facets and edges correspond to rectilinear paths on
the grid. Further we disperse the grid cells by a small
constant factor δ which creates free space between the
cells. Depending on the label of the edge in the vari-
able clause graph, we change the number of facets in
the path on the grid corresponding to the edge. A
negatively labeled edge is represented by a path with
an odd number of cells and a positively labeled edge
corresponds to a path with an even number of cells.
To achieve this correspondence we need sufficiently
many cells on a straight path. The inclusion of an ad-
ditional cell is done by reducing the size of the cells in
a straight segment of the path and fitting in another
cell of this size. Next we delete all grid cells corre-
sponding to clauses (the clauses will be represented
later by a single point). We also drop the lower right
vertex of each grid cell.

Clause

Inclusion of negation cell Variable

Figure 1: refinement of the grid

Lifting to a paraboloid The next step is a lifting
of the point triples of the grid cells onto a very flat
paraboloid. The distance between vertices in one grid
cell is set to one. For a c · (n × n) grid we pick a
paraboloid of the form z = λ ·

(
x2 + y2

)
. The param-

eter λ has to be chosen in such a way that for two
neighboring point triples the disks Di and Dj cor-
responding to the circles Ci and Cj intersect. This
guarantees the existence of valid spherical patches.
For a lifting of a δ dispersed c · (n×n) grid this leads

to an upper bound on λ of

q
(1−1/

√
2)2−δ2

δ2+2δ(c+δ)n . For this, δ

has to be chosen less than 1− 1/
√

2. For our explicit
construction we choose δ := 1/10 and λ := 1/(10m)
with m = c(1 + δ)n a bound on the width and length
of the dispersed grid (see Theorem 4).

Fill points After lifting the point set we place one
point into each triangular face defined by point triples

corresponding to grid cell vertices of cells which did
not belong to the 3SAT. We refer to these four points
as a set of fill-points.

Lemma 1 Each set of fill points induces exactly one
spherical patch and all sets cannot be covered with
less than one patch per set.

Wire The wire corresponds to edges in the variable-
clause graph. An edge in the variable-clause graph
corresponds to a set of the lifted point triples. Each
point triple Pi defines a circle Ci. These circles do
not lie on the paraboloid, but (since λ is small) lie
close to the lifted circumcircles of the base squares
(which are ellipses). The supporting plane of each
circle splits the space into an inner half space con-
taining the convex hull of the original point set and
an outer half space. Each circle Ci defines a family
of spheres, i.e. set of all spheres induced by the circle
Ci. Candidates for valid patches are only spheres with
centers in the inner half space. Furthermore adjacent
spherical patches need to intersect properly. The in-
tersection of the outer half space with the circle Cj

of an adjacent patch has to lie outside the spherical
patch, i.e., the spherical patch should pass below the
circular arcs of its neighbors.

We build a wire out of consecutive spherical patches
to propagate information from the variables to the
clauses. The main idea of the reduction is to place
points on the intersection of consecutive spherical
patches in the wire. These points narrow down the
choice from a family of spheres to only two spheres
for each patch a flat or bulbous patch. Furthermore
the points force alternating spherical patches in the
wire.

The approximating surface is constructed by taking
the inner upper hull of the patch intersection. This
is the surface of the intersection of the patch defining
spheres. We need to guarantee that the additional
points on the flat and bulbous patches will lie on the
approximating surface (see Lemma 3). We place four
points, Fk, on the intersection circle of consecutive
flat patches and four points, Bki

, on the intersection
of bulbous patches. The points Fki

lie on the circular
arc which is in between the intersection of the defin-
ing circles and the points Bki lie on the circular arc
outside the intersection (see Figure 2).

For the wire gadget we need to place a point (ap-
proximately) on the intersection of two neighboring
“bulbous” spheres. If at least one of the two bul-
bous spheres is chosen the point must lie on the inner
hull of the construction. In the following we formu-
late conditions under which a point lies on the inner
hull. Then we pick such a point and prove that the
conditions hold.

Since the radii of the bulbous spheres have been
chosen in such a way that they only come close to
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Figure 2: Placing of the points on the circular arc
of the FF and BB patch intersection. The light gray
points are on BB.

the grid polytope at the face by which it is defined,
it suffices to consider the local configuration. The
grid polytope is the polytope obtained by lifting all
the grid vertices restricted to the region of the 3SAT
construction. Thus, for a point to lie on the inner hull
the following conditions are sufficient:

1. The point lies above (i.e. on the same side as the
grid polytope) both of the planes defined by the
two triples of points.

2. The point lies below (i.e. on the other side than
the grid polytope) the face of the grid polytope
between the two faces defining the spheres.

3. The projection of the point lies within (possibly
on the boundary of) the face of the grid polytope
between the two faces defining the spheres.

For two neighboring triples of points there are two
points p1 and p2, one of each triple, neighboring in
the grid. Let e be the plane orthogonal to the z-axis
through these two points. For the intersection point
of the plane e with the two spheres we can prove that
the conditions above hold.

For a flat patch we choose the sphere with center
at infinity, the plane defined by the point triple. For
a bulbous patch we request that all points of the grid
polytope except the point triple defining the patch
lie inside the “bulbous” ball. This leads to a set of
constraints on the radius of the ball by considering
the radii of the balls defined by the point triple and a
set of possible fourth points. These constraints can be
fulfilled by a radius linear in n. To guarantee further
that all points of the grid polytope except the point
triple have distance of at least 1/n2 to the surface of
the ball the radius can be chosen quadratic in n. We
choose for all bulbous patches the same radius.

Variable A variable is a point triple which is han-
dled as a wire point set. Choosing the flat patch cor-
responds to a 0 assignment and the bulbous patch
to a 1 assignment. Choosing the flat patch will re-
sult in a covering of all flat points in the free space
around the variable point triple, therefore all consecu-
tive wire patches will propagate the same information

- all wires starting from this variable will start with a
bulbous patch. The case of picking a bulbous patch
for a variable point triple is symmetric.

Clause Before the lifting a clause corresponds to a
grid cell in the plane which is connected to three wires
(from three variables). The vertices of this grid cell
are not lifted. In the lifted point set the clause corre-
sponds to a single point. This point is placed in the
free space between the three wire point triples and is
the intersection point of the bulbous patches of these
point sets.

Theorem 2 There exists a true assignment for the
grid 3SAT instance if and only if the lifted point set
with all additional points can be approximated with s
spherical patches. For a c(n× n) grid, with g clauses
and t cells included for negation, s = c(n2) + t− g

Lemma 3 All point sets Fki
and Bki

are on the ap-
proximating surface.

Theorem 4 For a SAT instance on a c(n × n) grid
let P be the set of points in convex position con-
structed as above with δ := 1/10, λ := 1/(10m),m :=√

2(1 + δ)cn, and the common radius of the bulbous
spheres r := 10m. Let P ′ equal P with the excep-
tion that the points on the bulbous-bulbous sphere
intersections might be displaced by ε := 1/m2. For
sufficiently large m the following holds: If the SAT
instance is feasible, then there is a surface with g
patches such that all points have distance at most ε
to a patch. If the SAT instance is infeasible, then for
every surface with at most g patches there is at least
one point which has distance more than 100ε from all
patches.

3 Greedy algorithm

In this section we present a construction of curved
surfaces based on inscribed polytopes, resulting in a
convex surface consisting of spherical patches. The
inscribed polytope approach makes our construction
suitable for various incremental algorithms. We start
with a minimal inscribed polytope consisting of a
tetrahedron, and incrementally extend this polytope
until the corresponding surface is a valid approxima-
tion.

Constructing a curved surface In order to produce
a valid surface, we require that spherical caps pass
through triples of input points ensuring that adjacent
caps intersect properly. The approximating surface
is generated by a convex triangulation, in particular
the convex hull of a subset of the input points. The
triangles of this hull are called supertriangles. Our
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goal is to inflate this polytope by replacing its faces
with curved, spherical patches.

First we construct the spherical caps. The sup-
porting plane of each supertriangle splits space into
an inner halfspace containing the convex hull, and an
outer halfspace. For each supertriangle we construct
a spherical cap by first taking a sphere through its
vertices with its center in the inner halfspace. Then
we take the intersection of this sphere with the outer
halfspace. The intersection of the outer halfspace with
the circumcircle of an adjacent supertriangle has to
lie outside the spherical cap (see Figure 3), i.e., the
spherical cap should pass below the circular arcs of
its three neighbors.

Figure 3: Supertriangle with spherical cap.

For each neighboring supertriangle, the circumcir-
cle and dihedral angle give a lower bound on the ra-
dius of the spherical cap, to ensure that the cap is
flat enough to pass below that circumcircle. Taking
the maximum over the three adjacent supertriangles
results in a single lower bound for the cap radius. The
centre of the spherical cap now has to lie on a halfline
perpendicular to the supertriangle. The approximat-
ing surface consists of the inner hull of the union of
these spherical patches.

Lemma 5 If neighboring spherical caps intersect
properly, the inner hull of the union of caps forms
a convex surface.

Incremental construction We can now construct a
curved convex surface from a subset S of the input
points P . The convex hull of S generates a surface
as long as the patch radii are large enough, to ensure
proper intersection.

For an incremental approach, we initialize S to the
four extremal points of the point set P , in the di-
rections of the normals of a regular tetrahedron. Re-
specting the lower bound on the radii, we try to choose
cap radii such that the caps are closer than ε to the
remaining input points. If this is not possible we add
more input points to S.

A supertriangle is valid if there exists a correspond-
ing spherical cap with radius larger than its lower
bound, such that all points inside the outer halfspace
of the supertriangle are closer than ε to this spherical
cap.

If all supertriangles of the inscribed polytope are
valid, all input points lie closer than ε to the union

of caps. However, it is still possible that they are not
ε-close to the inner hull of these caps, especially if
adjacent supertriangles have a large dihedral angle or
if some supertriangles are obtuse. We therefore have
to test whether the input points that are ε-close to a
cap but not to the patch, are ε-close to their nearest
patch.

Testing supertriangles for validity results in more
bounds for the patch radius. The centre of the spher-
ical cap has to lie on the centre line of the supertrian-
gle, which is the line passing through the circumcentre
and is perpendicular to that triangle. If an input point
inside the corresponding halfspace needs to be ε-close
to the spherical cap, this condition gives an interval of
valid cap centres on the centre line. If the intersection
of all of these intervals together with the half-line is
nonempty, the supertriangle is valid. Since the lower
bound for proper intersection of caps corresponds to
the surface being convex, we expect the intersection
of these intervals to lie within that valid half-line.

First we test all supertriangles for validity. If there
are invalid supertriangles, we add an input vertex to
S and update the convex hull incrementally. We then
test the validity for the newly constructed supertrian-
gles and for previously invalid neighbors of new super-
triangles. This way we gradually refine the approx-
imating curved surface without having to revalidate
the entire structure.

For an invalid supertriangle we choose the outly-
ing input point corresponding to the smallest radius
of the spherical cap. As we increase the number of
spherical caps, we increase the radius. This is mo-
tivated by the fact that we want flatter patches as
the dihedral angles between supertriangles decrease.
The incremental algorithm now moves gradually from
a curved surface consisting of four patches, to the en-
tire convex hull of P .

The extra test for points close to caps but not to
the corresponding patch can also reveal points that
are further than ε from the approximating surface.
These points are also added to S.

Lemma 6 The greedy algorithm terminates.
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