
Collapse

Günter Rote∗ Uri Zwick†

Abstract

The problem of checking whether a given tower of
bricks is stable can be easily answered by checking
whether a system of linear inequalities has a feasible
solution. A more challenging problem is to determine
how an unstable tower of bricks collapses. We use
Gauß’ principle of least restraint to show that this, and
more general rigid-body simulation problems in which
many parts touch each other, can be reduced to solving
a sequence of convex quadratic programs, with linear
constraints, corresponding to a discretization of time.
The first of these quadratic programs gives an exact
description of initial infinitesimal collapse. The results
of the subsequent programs need to be integrated over
time to yield an approximation of the global motion of
the system.

1 Introduction

Paterson and Zwick (SODA’06) [16, 17] (see also Pater-
son et al. (SODA’08) [14, 15]) have asked for the maxi-
mum overhang that can be achieved with a stable tower
of n identical bricks (without rotating them), see Fig-
ure 1. Before one can go about designing such a tower,
the basic question is whether a given tower of bricks is
stable. It is known that this question can be reduced to
solving a system of linear inequalities, whose variables
model the forces exchanged between bricks lying on top
of each other.

table overhang

Figure 1: The overhang of a tower of bricks

We go here one step further: for the case of an un-
stable tower, as in Figure 2, we want to know how it will
collapse. This problem has two versions. In the easier

∗Freie Universität Berlin. E-mail: rote@inf.fu-berlin.de.
†Tel Aviv University, E-mail: zwick@tau.ac.il.

version, we are just interested in the initial collapse,
i.e., in the accelerations of the different bricks when the
tower, which is initially at rest, starts collapsing. We
want to determine which bricks remain in contact and
which bricks start to lift off from each other. We show
that an exact solution of the initial collapse problem
can be obtained by solving a single convex quadratic
optimization problem. In the more demanding version,
we are interested in an accurate description of the po-
sitions, velocities and accelerations of all the bricks as
a function of time. This is, of course, a much more
challenging task. We get accurate approximations of
all these quantities by discretizing time and solving a
sequence of convex quadratic problems.

Figure 2: A tower of 5 × 5 bricks, which is unstable

This is a problem of rigid-body simulation. The
motion (velocity and acceleration) at any particular in-
stant can be computed by solving a quadratic optimiza-
tion problem subject to linear constraints that is ob-
tained using Gauß’ principle of least restraint, which
dates back to 1829 [11], see Section 3. The constraints

603 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



of this system model the fact that the bricks are rigid
and are not allowed to overlap, see Section 2. The par-
ticular constraints that have to be imposed at some in-
stant depend on the current positions and velocities of
the bricks (for example, which pairs of bricks are in con-
tact). The solution of the optimization problem results
in infinitesimal motions (accelerations and velocities).
These motions define a system of ordinary differential
equations. Integrating this system over time produces
the global motion.

Related Work. Physical simulations arise in a
variety of areas. In many applications like computer
games, a realistic impression is all that is needed. In
other circumstances, closeness to reality is important,
for example in industrial settings when mixing granular
materials. According to the well-known Brazil nut
effect [21], in a mixture that is shaken, larger grains
will rise to the top. There is, however, sometimes
the opposite effect [23], and our understanding of this
phenomenon is far from complete.

When rigid-body simulation is treated in computer
graphics, the focus lies on fast computation of a motion
that looks natural enough. Algorithms are typically il-
lustrating by a large number of balls running through
an hourglass or objects falling on the ground. Interac-
tions between touching objects are usually handled on
a pairwise basis, cf. [18, 10, 9, 3, 24, 22].

By contrast, our goal is to compute a mathemati-
cally correct answer soundly based on physical princi-
ples, apart from the necessity to perform discrete time
steps instead of a continuous motion.

A few papers have used Gauß’ principle for rigid-
body simulation, see Bruyninckx and Khatib [4] and Re-
don et al. [20]. They were impeded by the fact that soft-
ware for quadratic programming has not readily been
available. Baraff [1, 2] has formulated the necessary
consistency conditions on contact forces as a linear com-
plementarity problem, noting that they can be solved as
convex quadratic programming problems (and thus im-
plicitly rederiving Gauß’ principle, without mentioning
it). Similarly, Lötstedt [12] used a quadratic program-
ming formulation, without referring to Gauß’ principle.
He solves the quadratic optimization problems using an
active set method. His paper includes an error analysis
of the numerical methods for solving the system of dif-
ferential equations resulting from the description of the
motion.

Milenkovic and Schmidl [13] intuitively proposed
a variety of quadratic programming formulations in
terms of translation and rotation parameters (without
a connection to Gauß’ principle or any other physical
justification). They performed simulations with up to
1000 parts.

The typical algorithm loops along the steps shown
in Figure 3. In this feedback loop, the result of the

a) Determine the constraints at the current time
step.

b) Solve the quadratic optimization problem, re-
sulting in accelerations for each vertex.

c) Update the velocities and positions for the next
time step.

d) (Optionally) Correct for errors resulting from
the discretization.

Figure 3: The basic loop of rigid-body simulation

motion computed in step (c) in turn determines the
constraints of the optimization problem (b) whose so-
lution gives the next infinitesimal motion. The time
discretization of the differential equation leads to sys-
tematic errors. If they are not corrected, they can lead
to a deformation of rigid objects. The determination of
the active constraints in (a) is actually very delicate.

Our contribution. We provide (in Section 5) a
purely position-based simulation step that can be used
to replace the simulation step given in Figure 3. (In
other words, the variables of the quadratic optimization
problem are now positions, and not velocities or accel-
erations.) This greatly simplifies the process and pro-
duces, we believe, more accurate results. An additional
advantage of our formulation is that it deals automati-
cally with collisions and impulses, if we decide to accept
totally inelastic collisions where the total energy of the
impulse is destroyed, see Section 7. The algorithm has
been implemented as a prototype, see Section 8.

Outlook. For simplicity, we restrict our attention
to a two-dimensional world. The extension to three (or
higher) dimensions is straightforward. Completely rigid
objects are of course an idealization, and we abstract
from many aspects that are relevant in actual materials.
The algorithm can accommodate any model of friction,
as, for example, in [2, 12], and it can be extended to
handle collisions (see Section 7), but we ignore friction
completely, and we do only a rudimentary handling
of (completely inelastic) collisions. Still, we view our
work as a step towards the goal of realistic and reliable
simulations.

2 Constraints on the Motion

We assume that the objects are rigid polygons that may
be attached to each other at vertices. We model them
as a bar-and-joint framework as shown in Figure 4.

604 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Additional diagonal bars are inserted into polygons

pi

pj

Figure 4: A brick made of rigid bars

(triangulation) to make them rigid. Each vertex i has a

position pi(t) =
(

xi(t)
yi(t)

)
which depends on the time t,

a velocity vi(t) = ṗi(t) =
(

ẋi(t)
ẏi(t)

)
and an acceleration

ai(t) = v̇i(t) = p̈i(t) =
(

ẍi(t)
ÿi(t)

)
.

The constraints are of two types. (i) Length
constraints: each bar (i, j) has a fixed length: ‖pi(t) −
pj(t)‖ is constant, and consequently the derivatives are
zero. It is more convenient look at the derivatives of the
squared lengths:

d
dt‖pi(t) − pj(t)‖2 = 0(L1)
d2

dt2 ‖pi(t) − pj(t)‖2 = 0(L2)

(ii) Non-penetration constraints: A vertex is pk not
allowed to enter another brick by crossing an edge pipj ,
see Figure 5a. We model this by a sidedness constraint
saying that the (doubled) signed area A(pi,pj ,pk) of
the triangle pipjpk is nonnegative (Figure 5b).

A(pi,pj ,pk) =

∣∣∣∣∣∣
1 1 1
xi xj xk

yi yj yk

∣∣∣∣∣∣ ≥ 0

Note that this is a local condition, which has to prevent
penetration when pk is near the edge pipj . The point
pk may cross the line through pipj by making a “global”
detour (Figure 5c), and then A(pi,pj ,pk) becomes
negative.

The first-order condition that prevents
A(pi,pj ,pk) = 0 from becoming negative is as
follows:

(S1)
If the point pk lies on the segment pipj

(and hence A(pi,pj ,pk) = 0),
then d

dtA(pi,pj ,pk) ≥ 0.

For given positions pi, this is a linear inequality in the
velocities (first derivatives).

In terms of accelerations (second derivatives), the
condition is written as follows:

(S2)

If the point pk lies on the segment pipj

(and hence A(pi,pj ,pk) = 0)
and d

dtA(pi,pj ,pk) = 0,
then d2

dt2 A(pi,pj ,pk) ≥ 0.

Thus, for given positions (pi) and velocities (vi) at some
time instant, we have the following linear constraints
that govern the possible accelerations (ai): the length
equations,

(L2)
d2

dt2
‖pi − pj‖2 = 0, for all bars (i, j),

and the sidedness inequalities:

(S2)
d2

dt2
A(pi,pj ,pk) ≥ 0, for certain triples (i, j, k).

After expanding the derivatives, the constraints become
linear inequalities in the variables (ai), see Section 4.

3 The Principle of Least Restraint

We now assume that each vertex i is a point of mass
mi, and some external force field (gi) is applied at the
vertex. In our case, we have gravity, which is uniform
everywhere and so we just write g. If there were no
constraints, each point would just follow the external
force and we would set ai = g. Gauß’ principle of
least restraint (Prinzip des kleinsten Zwanges) [11], see
also [4, 20], states that the system will minimize the
weighted sum of the squared differences between the de-
sired accelerations g and the actual accelerations ai:1

(Q) minimize
n∑

i=1

mi · ‖ai − g‖2

subject to (L2) and (S2).
This is an optimization problem with a convex

quadratic objective function and linear constraints. It
turns out that the dual variables for the constraints can
be interpreted as internal forces between vertices that
are joined by bars or push against other bars. These in-
ternal forces balance the external forces with the accel-
eration forces and maintain an equilibrium at every ver-
tex [19]. Gauß derived his principle from d’Alembert’s
method of virtual velocities (virtual displacements).

Gauß’ principle is stated in terms of accelerations
(see [8]), and this is also how it is commonly used in
the robotic simulation literature [4, 20]. The algorithm
shown in Figure 6 follows the outline of Figure 3. It
takes current positions p(�)

i and velocities v(�)
i for step

�, computes new accelerations ai and uses them for
generating new positions p(�+1)

i and velocities v(�+1)
i for

iteration �+1 for all vertices i. This is just the simplest
update scheme; more refined schemes might for example
update the positions by (v(�)

i + v(�+1)
i )/2 · Δt.

1in the original: Ablenkung jedes Punktes von seiner freien
Bewegung

605 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



pi

pj

pk pi

pj

pk =
(

xk

yk

)
pi

pj

pk
A/2

(a) (b) (c)

Figure 5: Avoiding overlap between the brick containing pk and the brick containing the edge pipj

The constraints (L2) and (S2) are formulated in
terms of the position functions pi(t) and their deriva-
tives. In the context where we consider the motion in
discrete time steps of length Δt, we have to formulate
these constraints in terms of velocities vi and acceler-
ations ai, which are now distinct quantities at every
time step. (They only approximate the derivatives of
the positions.) In the next section we will work out the
resulting constraints. The precise form of these con-
straints is not so interesting per se, but it is necessary
to state them in order to give meaning to the theorem
about the algorithm that we will state below.

a) Determine the active sidedness constraints.

b) Solve the quadratic optimization problem (Q)
in the variables (ai), subject to second-order
length and sidedness constraints (L2) and (S2).

c) Advance velocities and positions:

(3.1)
v(�+1)

i := v(�)
i + ai · Δt,

p(�+1)
i := p(�)

i + v(�+1)
i · Δt,

where Δt is the time increment between succes-
sive steps.

Figure 6: The classical acceleration-based loop of rigid-
body simulation

4 The Explicit Form of the Linear Constraints

The derivatives of the squared length ‖pi(t)−pj(t)‖2 =
〈pi(t) − pj(t),pi(t) − pj(t)〉 are expressed as follows:

d
dt‖pi − pj‖2 = d

dt 〈pi − pj ,pi − pj〉
= 2〈vi − vj ,pi − pj〉

d2

dt2 ‖pi − pj‖2 = 2〈ai − aj ,pi − pj〉(4.2)
+ 2〈vi − vj ,vi − vj〉

For the sidedness constraints, taking derivatives
row-wise, we get

d
dt

A(pi,pj ,pk) =
d
dt

∣∣∣∣∣∣
1 1 1
xi xj xk

yi yj yk

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1 1 1
ẋi ẋj ẋk

yi yj yk

∣∣∣∣∣∣ +

∣∣∣∣∣∣
1 1 1
xi xj xk

ẏi ẏj ẏk

∣∣∣∣∣∣
For the second derivative, we obtain

d2

dt2
A(pi,pj ,pk) =

∣∣∣∣∣∣
1 1 1
ẍi ẍj ẍk

yi yj yk

∣∣∣∣∣∣

+ 2

∣∣∣∣∣∣
1 1 1
ẋi ẋj ẋk

ẏi ẏj ẏk

∣∣∣∣∣∣ +

∣∣∣∣∣∣
1 1 1
xi xj xk

ÿi ÿj ÿk

∣∣∣∣∣∣
We will now make use of the assumption that the

three points pi,pj ,pk are initially aligned whenever we
wish to test the derivatives of the sidedness predicate.
By translation and rotation, we assume without loss of
generality that pi =

(
0
0

)
, pj =

(
�
0

)
, and pk =

(
α�
0

)
for

some 0 ≤ α ≤ 1, where � = ‖pi − pj‖. Then we have
pk = αpj + (1 − α)pi, and the formulas simplify:

d
dt

A(pi,pj ,pk) =

∣∣∣∣∣∣
1 1 1
0 � �α
ẏi ẏj ẏk

∣∣∣∣∣∣
= (ẏk − [αẏj + (1 − α)ẏi]) · �

d2

dt2
A(pi,pj ,pk) = 2

∣∣∣∣∣∣
1 1 1
ẋi ẋj ẋk

ẏi ẏj ẏk

∣∣∣∣∣∣ +

∣∣∣∣∣∣
1 1 1
0 � α�
ÿi ÿj ÿk

∣∣∣∣∣∣
= 2 · A(vi,vj ,vk)

+
(
ÿk − [αÿj + (1 − α)ÿi]

) · �
The expressions ẏi, ÿi, etc., are proportional to the
projections of the vectors vi, ai on the perpendicular
direction n = (pj − pi)⊥ =

(
0
�

)
to the bar pipj . For

example, 〈vi,n〉 = �ẏi and 〈ai,n〉 = �ÿi. We can thus

606 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



write the derivatives of A(pi,pj ,pk) in a coordinate-free
form:

(4.3)
d
dt

A(pi,pj ,pk)

=
〈
vk − [αvj + (1 − α)vi], (pj − pi)⊥

〉

(4.4)
d2

dt2
A(pi,pj ,pk)

= 2·A(vi,vj ,vk)+
〈
ak−[αaj +(1−α)ai], (pj−pi)⊥

〉

In the discretized setting, the second derivatives in
the constraints (L2) and (S2) must be interpreted as
the right-hand sides of (4.2) and (4.4), respectively.
In determining for which triples (i, j, k) the constraint
(S2) is imposed, according to condition (S2), (4.3)
must be used for the first derivatives d

dtA(pi,pj ,pk).
Summarizing, we have the following discretized versions
of the constraints:

(L1+) 〈vi − vj ,pi − pj〉 = 0, for all bars (i, j),

(L2+) 〈ai − aj ,pi − pj〉 + 〈vi − vj ,vi − vj〉 = 0,

for all bars (i, j),

and
(S2+)
2 · A(vi,vj ,vk)

≥ −〈
ak − [αaj + (1 − α)ai], (pj − pi)⊥

〉
,

for all triples (i, j, k) consisting of
an edge pipj and a vertex pk with

pk = αpj + (1 − α)pi, for some 0 ≤ α ≤ 1, and〈
vk − [αvj + (1 − α)vi], (pj − pi)⊥

〉
= 0.

5 Elimination of Acceleration and Velocity

While the length constraints (L2) are always there, the
sidedness constraints (S2) are required only for certain
triples. The conditions under which the sidedness con-
straint (S2) is imposed are equality conditions. This
leads to problems in practice when testing these condi-
tions. Imagine a brick B1 whose edge pipj slides along
the corner pk of another brick B2, keeping constant con-
tact. Since the motion described by accelerations and
velocities over discrete time steps is only a second-order
approximation of the true motion, it is unavoidable that
the point pk will slightly drift away from the brick B1,
or worse, creep into the brick B1. If the point pk loses
contact with B1 and the distance becomes so large that
the corresponding non-penetration constraint (S2) is no

longer enforced, it means that it will “fall into” B1 in
the next step, like in a collision. It is thus necessary
to constantly monitor the length and non-penetration
constraints and correct the positions pi and velocities
vi (Step (d) of Figure 3).

The position-based procedure of Figure 7, which is
our main contribution, eliminates the need to perform
these corrections. It starts by estimating the velocities
from the positions at the two previous iterations � − 1
and � and computes new positions p(�+1)

i for iteration
� + 1.

a) Linear extrapolation: p̄i := p(�)
i + [p(�)

i − p(�−1)
i ]

b) Apply external forces: p̃i := p̄i +g ·(Δt)2, where
Δt is the time increment between successive
steps.

c) Solve the quadratic optimization problem in the
variables (pi).

(Q′) minimize
n∑

i=1

mi · ‖pi − p̃i‖2

subject to adapted length and sidedness con-
straints (L′) and (S′).

d) Use the solution pi as positions p(�+1)
i for the

next iteration.

Figure 7: The purely position-based simulation iteration

The new length constraints that correspond to (L2)
are

(L′) 〈pi − pj ,p
(�)
i − p(�)

j 〉
= ‖p(�)

i − p(�)
j ‖2 − ‖(p(�)

i − p(�−1)
i ) − (p(�)

j − p(�−1)
j )‖2

for all bars (i, j).

If we look only at the first term on the right-hand
side, this condition says that the projection of the
new segment pipj on the line through the old segment
p(�)

i p(�)
j is equal to the previous length of this segment.

p(�)
i p(�)

j . Since in one step, we assume the segment is
rotated only slightly, this projected length is a good
(first-order) substitute for the true length of pipj . The
last term offsets the small effects of the rotation. The
precise form of this term results from the computation
in Theorem 5.1 below.

The new sidedness constraints that correspond to

607 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



(S2) are

(S′) 〈pk − (αpi + (1 − α)pj), (p
(�)
j − p(�)

i )⊥〉

≥ −2 · A(p(�)
i − p(�−1)

i ,p(�)
j − p(�−1)

j ,p(�)
k − p(�−1)

k )
Δt

,

for certain triples (i, j, k),

where (p(�)
j −p(�)

i )⊥ denotes the vector p(�)
j −p(�)

i rotated
by 90 degrees, and the scalar α = αijk is defined by
the condition that the projection of pk on the segment
p(�)

i p(�)
j divides this segment in the ratio (1 − α) : α,

that is,

〈p(�)
k ,p(�)

j − p(�)
i 〉 = 〈αp(�)

i + (1 − α)p(�)
j ,p(�)

j − p(�)
i 〉.

We give a geometric interpretation for this condition
for the case when the segment pipj (initially) does
not rotate. In this case, the right-hand side is zero.
Nonnegativity of the left-hand term says that that the
point pk remains on the correct side of the edge pipj

if we just consider the component of the “motion”
pi − p(�)

i , pj − p(�)
j , pk − p(�)

k perpendicular to the

direction of the edge p(�)
i p(�)

j , see Figure 8. This is a
first-order approximation of the true sidedness condition
for pi,pj ,pk. The formula on the right-hand side gives
a correction term for the case when the segment rotates.

p(�)
i

p(�)
j

p(�+1)
j

p(�+1)
i

p(�)
k ≈ αp(�)

i + (1 − α)p(�)
j

p(�+1)
k

n := (p(�)
j − p(�)

i )⊥

α

1 − α

Figure 8: Geometric interpretation of the linearized
sidedness constraints

The relation between this model and the original
acceleration-based approach of Figure 6 is expressed in
the following theorem:

Theorem 5.1. Assume that the current velocities v(�)
i

satisfy the first-order length constraints (L1+), and the
active constraints in (S2+) are determined by evaluating
the conditions of (S2+) exactly. Then the acceleration-
based algorithm of Figure 6 yields the same positions
p(�+1)

i as the optimization of (Q′) subject to constraints
(L′) and the corresponding inequalities (S′).

The proof of this theorem is a straightforward
substitution. It is given in the next section.

The advantage of the new approach using (Q′) is
that it is less sensitive to the selection of active sidedness
constraints. If the point pk is currently very far from
the line through the edge pipj , but on the correct side,
then the corresponding condition (S′) is fulfilled by a
wide margin, and is therefore effectively inactive. It is
therefore safe to include this constraint in the model.
As pk approaches the segment pipj , we need not worry
when it has actually reached it. The constraint (S′) will
be automatically active whenever it is necessary.

When pk “goes around” the edge pipj and crosses
the line through pipj far from the edge (Figure 5c),
we must deactivate (S′), but this decision is a “macro-
scopic” test and not based on a precise comparison with
0. Care must be taken when pk approaches one of the
vertices pi or pj ; then the activation of the constraint
must be coordinated with that of the adjacent edge, so
that pk does not accidentally slip through the corner
of a brick. Section 8.5 contains a method that works
correctly for convex obstacles.

6 Proof of Theorem 5.1

In the acceleration-based algorithm of Figure 6, by
definition, we have p(�)

i − p(�−1)
i = v(�)

i Δt, and thus
p̄i = p(�)

i + v(�)
i Δt. By (3.1), the new position is

obtained as follows.

p(�+1)
i := p(�)

i + v(�+1)
i · Δt

= p(�)
i + (v(�)

i + ai · Δt) · Δt

= p(�)
i + v(�)

i · Δt + ai · (Δt)2(6.5)

= p̄i + ai · (Δt)2

= p̃i + (ai − g) · (Δt)2(6.6)

From the last expression we get

p(�+1)
i − p̃i = (ai − g) · (Δt)2

It is now obvious that the objective functions (Q) and
(Q′) of the two models are equivalent since they are the
weighted sums of the squared lengths of these vectors:
the objective function (Q′) is expressed in term of the
the unknowns pi = p(�+1)

i on the left-hand side, whereas
the objective function (Q) is expressed in term of the
the unknowns ai on the right-hand side.

We shall now prove equivalence of the length con-
straints (L2+) and (L′) for the two models. By (6.5),
we have

〈p(�+1)
i − p(�+1)

j ,p(�)
i − p(�)

j 〉 = 〈p(�)
i − p(�)

j ,p(�)
i − p(�)

j 〉
+ 〈v(�)

i − v(�)
j ,p(�)

i − p(�)
j 〉 · Δt

+ 〈ai − aj ,p
(�)
i − p(�)

j 〉 · (Δt)2

608 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



By assumption, the velocities fulfill (L1+), and there-
fore, the second term on the right-hand side is 0. By
rearranging and adding the term ‖Δt · (v(�)

i −v(�)
j )‖2 =

‖(p(�)
i − p(�−1)

i ) − (p(�)
j − p(�−1)

j )‖2 to both sides, we
obtain

〈p(�+1)
i − p(�+1)

j ,p(�)
i − p(�)

j 〉 − ‖p(�)
i − p(�)

j ‖2

+ ‖(p(�)
i − p(�−1)

i ) − (p(�)
j − p(�−1)

j )‖2

= (〈ai − aj ,p
(�)
i − p(�)

j 〉 + ‖(v(�)
i − v(�)

j )‖2) · (Δt)2

The new length constraint (L′) requires that the left-
hand side is zero, whereas the original length constraint
(L2+) requires that the right-hand side is zero.

Finally, we shall prove equivalence between the
sidedness constraints (S2+) and (S′). By (6.5), we have

p(�+1)
k −

[
(1 − α)p(�+1)

i + αp(�+1)
j

]

= p(�)
k + v(�)

k · Δt + ak · Δt2

−
[
(1 − α)[p(�)

i + v(�)
i · Δt + ai · Δt2]

+ α[p(�)
j + v(�)

j · Δt + aj · Δt2]
]

=
(
p(�)

k −
[
(1 − α)p(�)

i + αp(�)
j

])

+
(
v(�)

k −
[
(1 − α)v(�)

i + αv(�)
j

])
· Δt

+
(
ak − [(1 − α)ai + αaj ]

)
· (Δt)2

Since p(�)
k = (1 − α)p(�)

i + αp(�)
j , the first term on the

right-hand side is zero. Let us now take the scalar
product with the vector n = (pj−pi)⊥ perpendicular to
the bar pipj . By assumption, the velocities v(�)

i fulfill
(L1+), and this means that the second term vanishes.
Thus we obtain

〈
p(�+1)

k −
[
(1 − α)p(�+1)

i + αp(�+1)
j

]
,n

〉
=

〈
ak − [(1 − α)ai + αaj ],n

〉
· (Δt)2.

This equation together with the identity

A(p(�)
i − p(�−1)

i ,p(�)
j − p(�−1)

j ,p(�)
k − p(�−1)

k )

= A(vi,vj ,vk) · (Δt)3

transforms (S2+) into (S′).

7 Collisions

Collisions of rigid bodies incur a discontinuous change of
velocities and thus are not captured by Gauß’ principle.

time

perfectly inelastic perfectly elastic

Figure 9: Inelastic and elastic collisions

The behavior at a collision is governed by the coefficient
of restitution c, which determines how much of the
kinetic energy resulting from the collision is conserved as
kinetic energy. Figure 9 shows two equal colliding balls
and the two extremes of perfectly inelastic collisions
(c = 0, the relative speed is reduced to zero) and
perfectly elastic collisions (c = 1). Like in every closed
system, the total momentum is always conserved.

The standard way to handle collisions (after detect-
ing them) is to “stop” the motion, compute new ve-
locities according to some model of collision, and con-
tinue the motion from there. A poorly understood phe-
nomenon, however, is the handling of multiple collisions,
which involve not just the two colliding objects but
other objects that are directly or indirectly in touch
with them. Chatterjee and Ruina [5] speak of “the ill-
posed nature of simultaneous multiple collisions”.

Interestingly, we found that, for the case of totally
inelastic collisions, our position-based algorithm of Fig-
ure 7 seems to automatically model collisions correctly
without any special treatment. What we can prove
about our algorithm is formally expressed in the follow-
ing theorem, which follows by a straightforward compu-
tation.

Theorem 7.1. Assume that there are no external
forces: g = 0. Let vold

i := (p(�)
i − p(�−1)

i )/Δt and
let vnew

i := (p(�+1)
i − p(�)

i )/Δt, where p(�+1)
i has been

computed by the position-based algorithm of Figure 7.
Then the “new velocities” vnew

i are equal to the solu-
tions of the following quadratic optimization problem in
the variables vi:

(Q∗) minimize
n∑

i=1

mi · ‖vi − vold
i ‖2

subject subject to length constraints (L1) and sidedness
constraints (S1) on the variables vi.

609 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



We have in mind the following application to col-
lisions: suppose a collision occurs at some time step
�. Let Δt → 0, (but let � continue to refer to the
time of collision). Then the quantities vold

i := (p(�)
i −

p(�−1)
i )/Δt and vnew

i := (p(�+1)
i − p(�)

i )/Δt converge to
the velocities before and after the collision. It follows
from the above theorem that, as Δt → 0, the new veloc-
ities vnew

i converge to the solution of (Q∗). This is true
even in the presence of an external force g, since it en-
ters the calculation with a quadratic factor (Δt)2. Thus
the relative influence of g goes to zero when Δt → 0.

We conjecture that the optimization problem (Q∗)
correctly models the velocity change for perfectly inelas-
tic collision among an arbitrary set of mutually touching
rigid bodies. We have checked that the result coincides
with the standard model of inelastic collision for the case
of two isolated colliding bodies. For the general case, we
have so far not been able to find this optimization prob-
lem, whose form is analogous to Gauß’ principle, in the
physics literature, nor have we been able to derive it
from other physical principles.

The difficulty in applying Theorem 7.1 is that, when
Δt is a fixed positive constant, the effect of the collision
is not expressed in pure form, but it is mixed with the
smooth velocity change according to Gauß’ principle.
But this is even a potential advantage of the model: if
we are just interested in inelastic collisions, we do not
have to stop for collisions or even notice them in the
simulation.

8 Implementation

8.1 Continuous Mass Distributions. So far, we
have described the method for point masses. Contin-
uous mass distributions μ can be replaced by appro-
priately chosen discrete mass distributions which be-
have identically with respect to first and second mo-
ments. For example, a rectangular brick with homoge-
neous mass distribution μ can be simulated by a rigid
structure of 9 point masses. The mass distribution in
Figure 10 ensures that in terms of momentum of iner-
tia and rotational momentum, the discrete structure is
indistinguishable from the homogeneous rectangle. One
has to check that

∫∫
f(x, y) dμ(x, y) =

9∑
i=1

mif(xi, yi)

holds for all polynomial functions f of degree at most 2.
It is sufficient to check this for the six functions f = 1,
x, y, x2, xy, and y2.

8.2 Reducing the Number of Variables. In prac-
tice, to speed up the calculations, one would tradition-

4
36

16
36

4
36

4
36

1
36

1
36

4
36

1
36

1
36

Figure 10: A homogeneous rectangle can be replaced
by a rigid framework of 9 discrete points. (One bar is
redundant.)

ally model a rectangle or any other rigid plane shape
directly with three variables for translation and rota-
tion (six variables for three dimensions), instead of 18
variables with 16 equations, one of which is redundant.
The constraints would have to be rewritten in terms of
the new variables. Our simple point-based model, on
the other hand, is more uniform, and it extends in a
straightforward way to articulated objects whose rigid
parts are connected by joints. In terms of running time
for the optimization problem, it is not a priori clear
that a model with more variables and equations but a
sparse structure would be outperformed by a smaller
but denser system that arises after elimination of vari-
ables.

8.3 Maintaining Lengths. In the program, we have
actually used another modification of the length con-
straint:

(L′′)
〈pi − pj ,p

(�)
i − p(�)

j 〉 = ‖p(0)
i − p(0)

j ‖ · ‖p(�)
i − p(�)

j ‖
for all bars (i, j).

Geometrically, this condition says that the projection of
the new segment pipj should be equal to the original
length of the segment, instead of the previous length
of the segment p(�)

i p(�)
j . This is obviously better

than the constraint (L′) that is used in the theorem,
since it automatically corrects changes in length due to
discretization errors instead of accumulating them. This
improvement incorporates thus elements of Step (d)
of Figure 3. In the limit, as Δt → 0, and without
numerical errors, the length of each bar would be
constant and there is no difference to the original
constraint (L′).

We have implemented our algorithm in a simple
prototype system. We have provided no special colli-
sion handling mechanism and thus our collision model
defaults to totally inelastic collision of Section 7: two
bricks that hit each other will stick together (for some
short time, at least). For the quadratic optimization
problems, we used the commercial optimization pack-

610 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Figure 11: 5 × 5 bricks that were originally positioned as in Fig. 2.

age Cplex.2 Figure 11 shows a snapshot of an anima-
tion that was produced by the program.3 A simulation
with 1000 time steps takes about 5 minutes on a mod-
erate workstation. In the initial phases, each quadratic
programming problem takes about 1/3 second to solve.
Later, when the tower is dispersed into separate pieces,
this time is reduced to a small fraction of a second.

8.4 Equality Constraints for Redundant Bars.
Equality constraints pose a problem for structures with
redundant bars such as the “overbraced” framework of
Figure 10. While the exact length constraints for these
bars are consistent, numerical errors will lead to an
overdetermined system of equations that is inconsistent.
This problem equally affects the classical acceleration-
based approach of Figure 6 and our new position-
based algorithm. One possibility to avoid this problem
is to remove redundant bars, such that each brick is
represented as a minimally rigid framework. Another

2http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/
3The complete animation can be viewed at http:

//page.mi.fu-berlin.de/rote/Papers/slides/collapse/

Animation/applet/5x5-bricks.html. In this simulation, each
rectangle had four equal point masses at the corners. The astute
reader may wonder about the asymmetry towards the end of the
animation, despite the symmetric starting configuration shown in
Fig. 2. Our version of Cplex could solve quadratic optimization
problems only by an interior-point (“barrier”) method that
stops when a sufficiently close approximation of the optimum is
reached. The initial errors caused by this approximation were
amplified during the process and eventually produced a gross
asymmetry. We have checked that this asymmetry is not due
to the asymmetric insertion of one diagonal as in Figure 4:
the asymmetry persists when we insert both diagonals in each
rectangle. The horizontal gaps in the upper part of Figure 11 are
caused by the same phenomenon.

option is to remove the length constraints and turn them
into a penalty term in the objective function, by adding
the term

M ·
∑

all bars (i, j)

[〈pi − pj ,p
(�)
i − p(�)

j 〉

− ‖p(0)
i − p(0)

j ‖ · ‖p(�)
i − p(�)

j ‖]2
with a large penalty factor M . In our simulations we
have taken M = 100. This approach is no longer
directly related to Gauß’ principle, but it may have
the advantage of avoiding numerical instabilities in
degenerate situations like when a chain of bars becomes
aligned.

8.5 Determining the Active Sidedness Con-
straints. To find the sidedness constraints that are ac-
tive according to (S2+), one has to check which of the
pairs of bricks that were in contact in the previous itera-
tion remains in contact, and one has to detect new con-
tacts. The first task is straightforward, but the second
task effectively amounts to collision detection among
moving objects. Detecting collisions efficiently is a re-
search direction of its own, and there are many different
algorithms in the area of computational geometry and
in robotics.

In our implementation, we have not made an effort
to make the collision test efficient. For each pair of
bricks, we have selected one critical separating line
that goes through an edge pipj of one of the bricks.
We have then included a sidedness constraint between
this edge and all vertices pk of the other brick. The
separating line for a pair of bricks B1 and B2 is chosen
as follows. First, we look at the line through each
edge of B1 and compute the sidedness constraint that is

611 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



“most satisfied” or “least violated” by B2, i.e., has the
largest signed distance separating it from B2. We then
exchange the roles of B1 and B2 and compute the “best
separating” edge of B2 in a similar way. From the two
edges thus selected, we now pick the “least satisfied” (or
“most violated”) one as the critical edge that is used for
the sidedness constraints.

This procedure works for all convex polygons, and
it will safely prevent the bricks from overlapping too
much, even if, due to numeric errors or discretization
errors, a small penetration occurs.

9 Conclusion

Our contribution is to show how the motion of an
arbitrary number of non-overlapping rigid bodies can
be calculated by Gauß’ principle. The novelty lies in
integrating the computation of acceleration, velocity,
and position into one quadratic programming problem.
At the same time we integrate also non-elastic collisions
in the same model.

Our purely position-based approach to rigid-body
simulation may not be entirely new. In fact, when one
reads Gauß’ original paper [11] one gets the impression
that he may have had such a formulation in mind, since
he explicitly talks about new positions of point masses.
However, these are positions after infinitely small time
steps, and the modification of positions is associated
with velocities and forces.

The ad-hoc optimization problems of Milenkovic
and Schmidl [13] are also based purely on new positions,
and the optimization step merely corrects penetrations
that have occurred.

Note that the situation on the right part of Figure 2
represents a different situation: it is the static problem
of finding the state with minimum potential energy. If
we abstract from the vertical thickness of the bricks
and assume that they cannot slide away sideways, this
problem can be solved as a linear programming problem.

Future work includes the use of a reliable quadratic
programming solver and verifier4, making use of the co-
herence of data between successive problems, elimina-
tion of unnecessary constraints (which is related to ef-
ficient collision detection), and an investigation of the
piecewise smoothness of the motion.

It is perhaps interesting in this context that the
solution of the Carpenter’s Rule Problem—unfolding
a given polygonal chain without self-overlap—by Con-
nelly, Demaine and Rote originally also used a quadratic
objective function to define the global motion, as de-
scribed in the proceedings version [6]. However, the

4see http://www.zib.de/Optimization/Projects/MIP/

ExactIP/ExactIPlong.en.html, http://scip.zib.de/

solution of a (strictly convex) quadratic optimization
problem does not necessarily depend smoothly on the
data, and therefore it was finally modified by a loga-
rithmic barrier function [7].

References

[1] D. Baraff. Analytical methods for dynamic simulation
of non-penetrating rigid bodies. SIGGRAPH Comput.
Graph., 23(3):223–232, 1989. doi:10.1145/74334.74356.

[2] D. Baraff. Fast contact force computation for nonpen-
etrating rigid bodies. In SIGGRAPH ’94: Proceed-
ings of the 21st annual conference on Computer graph-
ics and interactive techniques, pages 23–34, New York,
NY, USA, 1994. ACM. doi:10.1145/192161.192168.

[3] J. Bender and A. Schmitt. Fast dynamic simulation of
multi-body systems using impulses. In Virtual Real-
ity Interactions and Physical Simulations (VRIPhys),
Madrid, November 6–7, 2006.

[4] H. Bruyninckx and O. Khatib. Gauss’ principle and
the dynamics of redundant and constrained manipula-
tors. In Proc. 2000 IEEE Int. Conf. on Robotics and
Animation (ICRA), pages 470–475. IEEE, 2000.

[5] A. Chatterjee and A. Ruina. A new algebraic rigid-
body collision law based on impulse space considera-
tions. J. Appl. Mech., 65:939–951, 1998.

[6] R. Connelly, E. D. Demaine, and G. Rote. Straighten-
ing polygonal arcs and convexifying polygonal cycles.
In Proceedings of the 41st Annual Symposium on Foun-
dations of Computer Science, Redondo Beach, Cali-
fornia, pages 432–442. IEEE Computer Society Press,
2000. doi:10.1109/SFCS.2000.892131.

[7] R. Connelly, E. D. Demaine, and G. Rote. Straight-
ening polygonal arcs and convexifying polygonal cy-
cles. Discrete and Computational Geometry, 30:205–
239, 2003.

[8] Y. Y. Fan, R. E. Kalaba, H. H. Natsuyama, and
F. E. Udwadia. Reflections on the Gauss principle of
least constraint. Journal of Optimization Theory and
Applications, 127:475484, 2005. doi:10.1007/s10957-
005-7496-7.

[9] J.-A. Ferrez. On the behaviour of spherical and non-
spherical grain assemplies, its modeling and numerical
simulation. Ph.D. thesis, EPFL Lausanne, 2005.

[10] J.-A. Ferrez and T. M. Liebling. Dynamic triangu-
lations for efficient collision detection among spheres
with applications in granular media simulations. Phil.
Mag. B, 82(8):905–929, 2002.

[11] C. F. Gauß. Über ein neues allgemeines Grundgesetz
der Mechanik. J. reine angew. Math. (Crelle’s Jour-
nal), 4:232–235, 1829.

[12] P. Lötstedt. Numerical simulation of time-dependent
contact and friction problems in rigid body dynamics.
SIAM J. Sci. Stat. Comput., 5(2):370–393, 1984.

[13] V. J. Milenkovic and H. Schmidl. Optimization-based
animation. In SIGGRAPH ’01: Proceedings of the
28th annual conference on Computer graphics and

612 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



interactive techniques, pages 37–46, New York, NY,
USA, 2001. ACM. doi:10.1145/383259.383263.

[14] M. Paterson, Y. Peres, M. Thorup, P. Winkler, and
U. Zwick. Maximum overhang. In S.-H. Teng, editor,
Proc. of 19th SODA, pages 756–765. SIAM, 2008.

[15] M. Paterson, Y. Peres, M. Thorup, P. Winkler, and
U. Zwick. Maximum overhang. Amer. Math. Monthly,
116(9):763–787, 2009.

[16] M. Paterson and U. Zwick. Overhang. In Proc. of 17th
SODA, pages 231–240. ACM Press, 2006.

[17] M. Paterson and U. Zwick. Overhang. Amer. Math.
Monthly, 116(1):19–44, 2009.

[18] L. Pournin, T. M. Liebling, and A. Mocellin.
Molecular-dynamics force models for better control of
energy dissipation in numerical simulations of dense
granular media. Phys. Rev. E, 65:011302, 7 pp., 2002.
doi:10.1103/PhysRevE.65.011302.

[19] A. Prékopa. On the development of optimization
theory. Amer. Math. Monthly, 87(7):527–542, 1980.

[20] S. Redon, A. Kheddar, and S. Coquillart. Gauss’ least
constraints principle and rigid body simulations. In
Proc. 2002 IEEE Int. Conf. on Robotics and Animation
(ICRA), pages 517–522. IEEE, 2002.

[21] A. Rosato, K. J. Strandburg, F. Prinz, and R. H.
Swendsen. Why the Brazil nuts are on top—size
segregation of particle matter by shaking. Phys. Rev.
Lett., 58:1038–1040, Mar. 1987.

[22] T. Shinar, C. Schroeder, and R. Fedkiw. Two-way cou-
pling of rigid and deformable bodies. In D. James and
M. Gross, editors, ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA), pages 95–
103, 2008.

[23] T. Shinbrot. Granular materials: The brazil nut
effect—in reverse. Nature, 429:352–353, May 2004.
doi:10.1038/429352b.

[24] R. Weinstein, J. Teran, and R. Fedkiw. Dynamic
simulation of articulated rigid bodies with contact and
collision. IEEE Transactions on Visualization and
Computer Graphics, 12:365–374, 2006.

613 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.




