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Principal component analysis (PCA) is commonly used to compute a bounding box of
a point set in R?. The popularity of this heuristic lies in its speed, easy implementation
and in the fact that usually, PCA bounding boxes quite well approximate the minimum-
volume bounding boxes. We present examples of discrete points sets in the plane, showing
that the worst case ratio of the volume of the PCA bounding box and the volume of the
minimum-volume bounding box tends to infinity. Thus, we concentrate our attention on
PCA bounding boxes for continuous sets, especially for the convex hull of a point set.
Here, we contribute lower bounds on the approximation factor of PCA bounding boxes
of convex sets in arbitrary dimension, and upper bounds in R? and R3.

1. Introduction

Substituting sets of points or complex geometric shapes with their bounding boxes
is motivated by many applications. For example, in computer graphics, it is used to
maintain hierarchical data structures for fast rendering of a scene or for collision detection.
Additional applications include those in shape analysis and shape simplification, or in
statistics, for storing and performing range-search queries on a large database of samples.

Computing a minimum-area bounding box of a set of n points in R? can be done in
O(nlogn) time, for example with the rotating calipers algorithm [15]. O’Rourke [12]
presented a deterministic algorithm, a rotating calipers variant in R®, for computing
the minimum-volume bounding box of a set of n points in R3. His algorithm requires
O(n?) time and O(n) space. Barequet and Har-Peled [2] have contributed two (14-¢)-
approximation algorithms for the minimum-volume bounding box of point sets in R?, both
with nearly linear complexity. The running times of their algorithms are O(n + 1/¢19)
and O(nlogn + n/e®), respectively.

Numerous heuristics have been proposed for computing a box which encloses a given
set of points. The simplest heuristic is naturally to compute the axis-aligned bounding
box of the point set. Two-dimensional variants of this heuristic include the well-known
R-tree, the packed R-tree [13], the R*-tree [3], the R -tree [14], etc.

A frequently used heuristic for computing a bounding box of a set of points is based
on principal component analysis. The principal components of the point set define the



axes of the bounding box. Once the axis directions are given, the dimension of the
bounding box is easily found by the extreme values of the projection of the points on
the corresponding axis. Two distinguished applications of this heuristic are the OBB-tree
[6] and the BOXTREE [1], hierarchical bounding box structures, which support efficient
collision detection and ray tracing. Computing a bounding box of a set of points in R? and
R3 by PCA is simple and requires linear time. To avoid the influence of the distribution
of the point set on the directions of the PCs, a possible approach is to consider the convex
hull, or the boundary of the convex hull C'H(P) of the point set P. Thus, the complexity
of the algorithm increases to O(nlogn). The popularity of this heuristic, besides its
speed, lies in its easy implementation and in the fact that usually PCA bounding boxes
are tight-fitting, see [10] for some experimental results.

Given a point set P C R? we denote by BB, (P) the PCA bounding box of P and
by BB,,:(P) the bounding box of P with smallest possible volume. The ratio of the two
volumes A\g(P) = Vol(BB,.,(P))/Vol(BB,,(P)) defines the approximation factor for P,
and

Aa = sup {\(P) | P C R? Vol(CH(P)) >0}

defines the general PCA approximation factor. Here, we give lower bounds on \; for
arbitrary dimension d, and upper bounds on Ay and Az. !

The organization and the main results of the paper are as follows: In Section 2 we review
the basics of principal component analysis. In particular, we introduce the continuous
version of PCA, which results in a series of approximation factors A;;, where i ranges
from 0 to d and denotes the dimension of the faces of the convex hull that contribute to
the continuous point set for which the principal components are computed. In Section 3
we give lower bounds on Ag; for arbitrary values of d and 1 < i < d. First, we show that
Agi = oo forany d >4 and any 1 <¢ < d—1. Next, we show that A\32 >4 and A\33 > 4.
When d is a power of two, we show that A\gq 1 > d¥? and A\gq > d¥/?. The rest of the
lower bounds, we obtain by combination of the above bounds. In Section 4, we present
upper bounds in R? and R3, showing that Ay; < 2.737, Agp < 2.104 and 33 < 7.807.
We conclude with open problems in Section 5.

2. Principal Component Analysis and PCA Bounding Boxes

The central idea and motivation of PCA [8] (also known as the Karhunen-Loeve trans-
form, or the Hotelling transform) is to reduce the dimensionality of a point set by iden-
tifying the most significant directions (principal components). Let X = {x1,x9,..., 2T}
be a set of vectors (points) in R%, and ¢ = (cy, co, . .., cq) € RY be the center of gravity of
X. For 1 <k <d, we use x;;, to denote the k-th coordinate of the vector x;. Given two
vectors u and v, we use (u,v) to denote their inner product. For any unit vector v € R?,
the variance of X in direction v is

var(X, v) —ii (1)

m

!Preliminary results were presented in [4] and [5].
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The most significant direction corresponds to the unit vector v; such that var(X,v;) is

maximum. In general, after identifying the j most significant directions B; = {vy, ..., v},
the (j + 1)-th most significant direction corresponds to the unit vector v;i; such that
var(X, v;41) is maximum among all unit vectors perpendicular to vy, v, . .., v;.

It can be verified that for any unit vector v € R¢,
var(X,v) = (Cv, v), (2)

where C'is the covariance matriz of X. C'is a symmetric d x d matrix where the (7, j)-th
component, ¢;;,1 <4,7 <d, is defined as

Z Ti — &) (x5 — ¢;). (3)

The procedure of finding the most significant directions, in the sense mentioned above,
can be formulated as an eigenvalue problem. If x; > y2 > - -+ > x4 are the eigenvalues of
C, then the unit eigenvector v; for x; is the j-th most significant direction. All x;s are
non-negative and x; = var(X,v;). Since the matrix C' is symmetric positive definite, its
eigenvectors are orthogonal. If the eigenvalues are not distinct, the eigenvectors are not
unique. In this case, an orthogonal basis of eigenvectors is chosen arbitrarily. However,
we can always achieve distinct eigenvalues by a slight perturbation of the point set.

The following result summarizes the above background knowledge on PCA. For any set
S of orthogonal unit vectors in R?, we use var(X, S) to denote Y g var(X,v).

Lemma 1 Assume that the covariance matriz C of a point set X € R? has distinct
etgenvalues. For 1 < j < d, let x; be the j-th largest eigenvalue of C' and let v; denote the
unit eigenvector for ;. Let Bj = {vy,vs,...,v;}, sp(B;) be the linear subspace spanned
by B;, and sp(B;)* be the orthogonal complement of sp( ;). Then x1 = max{var(X,v) :
veRY ||lv]| =1}, and for any 2 < j <d,

i) x; = max{var(X,v) : v € sp(Bj_1)*, ||v|| = 1}.
i) x; = min{var(X,v) : v € sp(By), ||v|| = 1}.
iii) var(X, Bj) > var(X, S) for any set S of j orthogonal unit vectors.

Since bounding boxes of a point set P (with respect to any orthogonal coordinate system)
depend only on the convex hull of CH(P), the construction of the covariance matrix
should be based only on C'H(P) and not on the distribution of the points inside. Using
the vertices, i.e., the 0-dimensional faces of C'H(P) to define the covariance matrix C' we
obtain a bounding box BBjpcq,0)(FP). We denote by Ago(P) the approximation factor for
the given point set P and by

)\do—sup{)\do ) | P C R Vol(CH(P) >O}

the approximation factor in general. The example in Fig. 1 shows that Ay o(F) can be
arbitrarily large if the convex hull is a thin, slightly “bulged rectangle”, with a lot of
additional vertices in the middle of the two long sides. Since this construction can be
lifted into higher dimensions we obtain a first general lower bound.
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Figure 1. Four points and their PCA bounding-box (a). A dense collection of additional
points significantly affect the orientation of the PCA bounding-box (b).

Proposition 1 \;o =00 for any d > 2.

To overcome this problem, one can apply a continuous version of PCA taking into account
(the dense set of) all points on the boundary of CH(P), or even all points in CH(P). In
this approach X is a continuous set of d-dimensional vectors and the coefficients of the
covariance matrix are defined by integrals instead of finite sums. If CH(P) is known, the
computation of the coefficients of the covariance matrix in the continuous case can also
be done in linear time, thus, the overall complexity remains the same as in the discrete
case. Note that for for d = 1 the above problem is trivial, because the PCA bounding
box is always optimal, i.e., A\jp and A;; are 1.

2.1. Continuous PCA

Variants of the continuous PCA applied to triangulated surfaces of 3D objects were
presented by Gottschalk et. al. [6], Lahanas et. al. [10] and Vrani¢ et. al. [16]. In what
follows, we briefly review the basics of the continuous PCA in a general setting.

Let X be a continuous set of d-dimensional vectors with constant density. Then, the
center of gravity of X is

-
ex —. (4)
fmeX €z

Here, [ dx denotes either a line integral, an area integral, or a volume integral in higher
dimensions. For any unit vector v € R?, the variance of X in direction v is

Joex (@ —c,v)de

fmeX d‘r
The covariance matrix of X has the form
Joex (@ —c)(x —c)dx

f:cEX dx 7
with its (4, 7)-th component

_ fxeX(xi —¢;)(wj — ¢j)dx

v fxEX dx 7

CcC =

()

var(X,v) =

C =
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where z; and z; are the i-th and j-th component of the vector z, and ¢; and ¢; the i-th
and j-th component of the center of gravity. It can be verified that relation (2) is also
true when X is a continuous set of vectors. The procedure of finding the most significant
directions can be also reformulated as an eigenvalue problem and consequently Lemma 1
holds.

For point sets P in R? we are especially interested in the cases when X represents
the boundary of C'H(P), or all points in C'H(P). Since the first case corresponds to
the 1-dimensional faces of C'H(P) and the second case to the only 2-dimensional face of
CH(P), the generalization to a dimension d > 2 leads to a series of d — 1 continuous PCA
versions. For a point set P € RY, C(P,4) denotes the covariance matrix defined by the
points on the i-dimensional faces of CH(P), and BByq(4,:)(P), denotes the corresponding
bounding box. The approximation factors \s;(P) and Ay, are defined as

Vol(BBypea(a.i) (P
MailP) = sy
Aai = sup {Aq;(P) | P CR% Vol(CH(P)) >0} .

and

3. Lower Bounds

The lower bounds we are going to derive are based on the following connection between
the symmetry of a point set and its principal components.

Lemma 2 Let P be a d-dimensional point set symmetric with respect to a hyperplane H
and assume that the covariance matriz C has d different eigenvalues. Then, a principal
component of P is orthogonal to H.

Proof. Without loss of generality, we can assume that the hyperplane of symmetry is
spanned by the last d — 1 standard base vectors of the d-dimensional space and the
center of gravity of the point set coincides with the origin of the d-dimensional space,
ie., ¢ =(0,0,...,0). Then, the components ¢;; and ¢;;, for 2 < j < d, are 0, and the
covariance matrix has the form

C11 0 Ce 0
= 0 0?2 Cad ( 8)
0 ca Cdd

Its characteristic polynomial is

det(C'—x I) = (crn — x)f(x), (9)

where f(x) is a polynomial of degree d — 1, with coefficients determined by the elements
of the (d — 1) x (d — 1) submatrix of C'. From this it follows that ¢;; is a solution of
the characteristic equation, i.e., it is an eigenvalue of C' and the vector (1, 0, ...,0) is
its corresponding eigenvector (principal component), which is orthogonal to the assumed
hyperplane of symmetry. O

We start with a generalization of Proposition 1.



Proposition 2 \;; =00 foranyd>4 and any1 <i<d-—1.

Proof. We use a lifting argument to show that for any point set P C R* there is a point
set P’ C RFFL such that A (P) < Agy1ie1(P), and consequently Ap; < Apyi1ir1-

Let C be the covariance matrix of P with eigenvalues x; > x2 > ... > x4, and corre-
sponding eigenvectors vy, vy, . .. vp. We define the point set P'(h) = P x {—h,h},h € RT.
Let C’(h) be the covariance matrix of P’(h). Obviously, the point set P’(h) is sym-
metric with respect to the hyperplane H = R* x {0}, and by Lemma 2, the vector
Vg1 = (0,...,0,1) is an eigenvector of C’(h). Let x(h) be the corresponding eigenvalue
of vgy1. Since x(h) = var(P’,vr41) is a quadratic function of h, with lim, o x(h) = 0,
we can choose a value hgy such that y(hg) is smaller than the other eigenvalues of C’. Let
v be an arbitrary direction in R¥. Then, by definition of P’, the variance of P’ in the
direction (v,0) remains the same as the variance of P in the direction v. Thus, we can
conclude that the eigenvalues of C' are x1 > x2 > ... > xx > X(ho), with corresponding
eigenvectors (vy,0), (vg,0),...(vk,0),vk41, and consequently Vol(BBpea(kt1,i+1)(P')) =
2 ho Vol(BBpea(k,i) (P)).

On the other hand, the bounding box BB, = BBy (P) X [—hyg, ho] is also a bounding
box of P’. Therefore, we obtain

Vol(BB +1)(P"))  Vol(BB 1) (P))
. . AN pca(k+1,i+1) pca(k+1,i+1)
Aktt,it1 = Mg (P) = Vol(BBop:(P)) 2 Vol(BBng)

2hoVol(BBpea(k,i) (P)) >
— 2h0v0l(BBopt(P)) -

>

Now, we can establish A\g; > A\g_1,-1 > ... > Ag_ij0 = 00. O

This way, there remain only two interesting cases for a given d: the factor \g4_1 corre-
sponding to the boundary of the convex hull, and the factor Ay 4 corresponding to the full
convex hull.

3.1. Lower bounds in R?

The result obtained in this subsection can be seen as a special case of the result obtained
in Subsection 3.3. To gain a better understanding of the problem and the obtained results,
we consider it separately.

Theorem 1 A3 > 2 and \gp > 2.

Proof. Both lower bounds can be derived from a rhombus. Let the side length of the
rhombus be 1. To make sure that the covariance matrix has two distinct eigenvalues, we
assume that the rhombus has an angle o > 90°. Since the rhombus is symmetric, its PCs
coincide with its diagonals. In Fig. 2 (b) its optimal-area bounding boxes, for 2 different
angles, & > 90° and = 90°, are shown, and in Fig. 2 (a) its corresponding PCA bounding
boxes. As the rhombus’ angles in limit approach 90°, the rhombus approaches a square
with side length 1, i.e., the vertices of the rhombus in the limit are (%, 0), (—%, 0), (0, %)
and (0, —%) (see Fig. 2 (a)), and the dimensions of its PCA bounding box are v/2 x /2.
According to Lemma 2, the PCs of the rhombus are unique as long its angles are not 90°.
This leads to the conclusion that the ratio between the area of the PCA bounding box in
Fig. 2 (a), and the area of the optimal-area bounding box in Fig. 2 (b), in limit goes to

2. U
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Figure 2. An example which gives the lower bound of the area of the PCA bounding box
of an arbitrary convex polygon in R2.

Alternatively, to show that the given squared rhombus fits into a unit cube, one can apply
the following rotation matrix

32:%“ _H (10)

It can be verified easily that all coordinates of the vertices of the rhombus transformed
by Ry are in the interval [—0.5,0.5]. We use similar arguments when we prove the lower
bounds in higher dimensions.

3.2. Lower bounds in R?
Theorem 2 A35 > 4 and N33 > 4.

Proof. Both lower bounds are obtained from a dipyramid, having a rhombus with side
length v/2 as its base. The other sides of the dipyramid have length @ Similarly as in R?,
we consider the case when its base, the rhombus, in limit approaches the square, i.e., the
vertices of the square dipyramid are (1,0,0),(—1,0,0),(0,1,0),(0,—1,0), (0,0,g) and
(0,0, —?) (see Fig. 3 (a)). The dimensions of its PCA bounding box are 2 x 2 x v/2. Now,
we rotate the coordinate system (or the square dipyramid) with the rotation determined
by the following orthogonal matrix

S 0

1/5 1\/5 1 ( )
Rs=| % 1 L. 11

R T

2 2 V2

It can be verified easily that the square dipyramid, after rotation with Rj3 fits into the box
[—0.5,0.5]% (see Fig. 3 (b)). Thus, the ratio of the volume of the bounding box, Fig. 3 (a),
and the volume of its PCA bounding box, Fig. 3 (b), in limit goes to 4. O



Figure 3. An example which gives the lower bound of the volume of the PCA bounding
box of an arbitrary convex polygon in R3.

3.3. Lower bounds in R?

Theorem 3 If d is a power of two, then A\gq_1 > d¥? and Mg 4 > d¥?.

Proof. For any d = 2*, let a; be a d-dimensional vector, with a;; = @ and a;; = 0
for i # j, and let b; = —a;. We construct a d-dimensional convex polytope P; with
vertices V' = {a;,b;|1 < i < d}. It is easy to check that the hyperplane normal to a; is a
hyperplane of reflective symmetry, and as consequence of Lemma 2, a; is an eigenvector
of the covariance matrix of P,;. To ensure that all eigenvalues are different (which implies
that the PCA bounding box is unique), we add ¢ > 0 to the i-th coordinate of a;, and
—¢; to the i-th coordinate of b;, for 1 < 7 < d, where €; < €5 < ... < €;. When all
€, 1 < i < d, arbitrary approach 0, the PCA bounding box of the convex polytope P,
converges to a hypercube with side lengths v/d, i.e., the volume of the PCA bounding
box of P; converges to d%/?. Now, we rotate Py, such that it fits into the cube [—%, %]d

For d = 2F, we can use a rotation matrix derived from a Hadamard matriz?, recursively
defined by

Ra| Ra
Ra | —Ra
2 2

1
R_—
! \/§

where we start with the matrix Ry defined above (10) for d = 2. A straightforward
calculation verifies that P rotated with Ry fits into the cube [—0.5,0.5]%. O

: (12)

Remark: Theorem 3 holds for all dimensions d for which a d x d Hadamard matrix
exists. As it was shown in the proof of the theorem, this is always true when d is a power
of two. Moreover, Hadamard conjectured that a d x d Hadamard matrix exists when d is
a multiple of four. This conjecture is known to be true for d < 664 [9].

We can combine lower bounds from lower dimensions to get lower bounds in higher
dimensions by taking Cartesian products. If A4 is a lower bound on the ratio between

2A Hadamard matrix is a £1 matrix with orthogonal columns.
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the PCA bounding box and the optimal bounding box of a convex polytope in R% | and A4,
is a lower bound in R%, then g, - Ag, is a lower bound in R%*492, This observation together
with the results from this section enables us to obtain lower bounds in any dimension.
For example, for the first 10 dimensions, the lower bounds we obtain are given in Table 1.

Table 1
Lower bounds for the approximation factor of PCA bounding boxes for the first 10 di-
mensions.

dimension |R |R2 |R3 |R* | R° | RS | R” | R® R? R0
lower bound | 1 | 2 4 |16 ] 16 | 32 | 64 | 4096 | 4096 | 8192

4. Upper Bounds

4.1. An upper Bound on Ay,

Given a point set P C R? and an arbitrary bounding box BB(P) we will denote
the two side lengths by a and b, where a > b. We are interested in the side lengths
Aopt(P) 2 bopt(P) and apeq(P) > bpea(P) of BBypi(P) and BBpe,2,1)(P), see Fig. 4. The
parameters o = a(P) = apea(P)/aopt(P) and B = B(P) = bpea(P)/bopt(P) denote the
ratios between the corresponding side lengths. Hence, we have \g1(P) = a(P) - B(P).
If the relation to P is clear, we will omit the reference to P in the notations introduced
above.

Since the side lengths of any bounding box are bounded by the diameter of P, we can
observe that in general bye,(P) < @pea(P) < diam(P) < v/2a,,(P), and in the special
case when the optimal bounding box is a square Ag;(P) < 2. This observation can be
generalized, introducing an additional parameter 7(P) = aopt(P)/bopt(P).

Lemma 3 X\y;(P) <7+ % and  Aoa(P) <n+ % for any point set P with fized aspect
ratio n(P) = 1.

Proof. We have for both a,e, and bye, the upper bound diam(P) < /a2, + b2, =

2
Aopty/ 1 + 17% Replacing agpe by 1-bope in the bound on b, we obtain a3 < 7 (, /14 77%) =
n+ - O

Unfortunately, this parametrized upper bound tends to infinity for n — oo. Therefore, we
are going to derive another upper bound that is better for large values of 7. In this process
we will make essential use of the properties of BBycq(2,1)(P). In order to distinguish clearly
between a convex set and its boundary, we will use calligraphic letters for the boundaries,
specifically P for the boundary of CH(P) and BB, for the boundary of the rectangle
BB,,:(P). Furthermore, we denote by d*(P, ) the integral of the squared distances of the
points on P to a line [, i.e., d*(P,l) = [ _,d*(x,1)ds. Let Iy, be the line going through
the center of gravity and parallel to the longer side of BB)cq2,1)(P) and 1 be the bisector
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lpca

Figure 4. A convex polygon P, its PCA bounding box and the line [,.,, which coincides
with the first principal component of P (a). The optimal bounding box and the line [ 1
going through the middle of its smaller side, parallel with its longer side (b).

¢<BBS —\

Gopt

—

ol—

bupt

Figure 5. The convex polygon P, its optimal bounding box, and the staircase polygon
BBg (depicted dashed).

of BB, py parallel to the longer side. By Lemma 1, part ii) [, is the best fitting line of
P and therefore,

d*(P.lpea) < &*(P,11). (13)

2 3
Lemma 4 d*(P,l1) < bopt% n bogt ‘
2

Proof. If a segment of P intersects the line ll we split this segment into two segments,
with the intersection point as a split point. Then to each segment f of P flush with
the side of the PCA bounding box, we assign a segment identical to f. To each re-
maining segment s of P, with endpoints (z1,y1) and (z2,y2), where |y1| < |ya|, we as-
sign two segments: a segment s;, with endpoints (z1,y;) and (z1,%9), and a segment
S, with endpoints (z1,¥y2) and (x2,y2). All these segments form the boundary BBg of
a staircase polygon (see Fig. 5 for illustration). Two straightforward consequences are
that d*(BBs,l1) < d*(BBo,l1), and d*(s,11) < d*(s1,11) + d*(s2,11), for each segment
s of P. Therefore, d*(P,11) is at most d*(BBs, 1), which is bounded from above by

2

bopt
P(BBop,13) =4 [+ 2 dw+2 [ (22)? dop = lenttont bt O

Now we look at P and its PCA bounding box (Fig. 6). The line I, divides P into an
upper and a lower part, Py, and Piyy. Ly denotes the orthogonal projection of P,
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Us
1% 7—11]:1) P
lpea a1 a2 U2 Lo
U Ly by )
770“* bp(ta
Apea L3

Figure 6. The convex polygon P, its PCA bounding box, and a construction for a lower
bound on d*(P, lyea)

P
P! K 7—1: PP b

upp 4 3 pea
, ‘

l pea

s .
770 w p/ P]uuv

Apea

Figure 7. Two polylines P, and P, , (depicted dashed) formed from P.

upp

onto l,eq, with U; and Uy as its extreme points, and ., denotes the orthogonal projection
of Pioywy onto lyeq, with Ly and Ly as its extreme points. 7y, = A(U1U2Us) is a triangle
inscribed in P,p,, where point Us lies on the intersection of P, with the upper side of
the PCA bounding box. Analogously, 7., = A(L1L2L3) is a triangle inscribed in P,,.

Lemma 5 d2(7), lpca) Z d2(7'upp’ lpca) + d2(7;ow7 lpca)-

Proof. Let ) denote a chain of segments of P, which does not touch the longer side of the
PCA bounding box, and whose one endpoint lies on the smaller side of the PCA bounding
box, and the other endpoint on the line [,.,. We reflect @) at the line supporting the side
of the PCA bounding box touched by (. All such reflected chains of segments, together
with the rest of P, form two polylines: P, ,, and P}, (see Fig. 7 for illustration). As a
consequence, to each of the sides of the triangles 7;,, and 7,,,, Li1Ls, LyLs, U;Us, UyUs,
we have a corresponding chain of segments R as shown in the two cases in Fig. 8. In both
cases d?(t,lpea) < d*(R, lpeq). Namely, we can parametrize both curves, R and ¢, starting
at the common endpoint A that is furthest from [,.,. By comparing two points with the
same parameter (distance from A along the curve) we see that the point on ¢ always has
a smaller distance to [, than the corresponding point on R. In addition ¢ is shorter, and
some parts of R have no match on t.

Consequently, d*(P’, Lpea) = d*(Topp U Tiow lpea) = @ (Topps Lpea) + % (Tiow, lpea), and since
d* (P lpea) = d*(P, lpea) = d*(Pupp U Prows lpea), the proof is completed. O
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lpca, & . *

(a)

Figure 8. Two types of chains of segments (depicted dashed and denoted by R), and
their corresponding triangles’ edges (depicted solid and denoted by ). The base-point of
t corresponds to the most left point of 7,,, from Fig. 6 and Fig. 7.

Since P is convex, the following relations hold:

v bpea — U

|luznp‘ > b—apcav and |llow‘ > pb Apea - (14)
pca pca

The value

d2(ZLPP>lpca) = fo ary (\/ﬁb’f do + fg ar (\/ﬁb’f do
= (AT 02+ \Jd] 1 VP)

is minimal when a; = ay = @ With (14) we get
3

b P
2
d (ZLPZ” lpca) Z 3bpca a12)ca + 4b12)ca'

Analogously, we have for the lower part:

bpea — V)
d2(7;0w’ lpCa) > (1)367) a’;%ca + 4b;%ca'

'pca

The sum d*(Zopp, lpea) + d*(Tiow, lpea) is minimal when b = b”% This, together with
Lemma 5, gives:

b2
(P, lpea) > f;a fa2y 4 402, (15)

Combining (13), (15) and Lemma 4 we have:

1 2 1 3 > blzlca 2 2 > b}%ca
§a0ptbopt + gbopt =192 \/ Apea + 4bpca = Eapca- (16)

Replacing a,,: with nb,,, on the left side, bfm with ﬁ%ﬁm and ape, With aag, = anbyy on
the right side of (16), we obtain:

n, 1Y\ Bran .,
(§+6) Vot = 5 Vo




Bounds on the Quality of the PCA Bounding Boxes 13

which implies

161 + 2
< .
= Q

This gives the second upper bound on Ay ;(P) for point sets with parameter 7:

6 2 6 2 1

ap < 1T )O‘s\/”+ J1+ = (17)
n n n

Lemma 6 \;;(P) < 4/ 67’—;2, /1+ 17% for any point set P with fized aspect ratio n(P) = n.

This implies the final result of this subsection.

Theorem 4 The PCA bounding box of a point set P in R? computed over the boundary
of CH(P) has a guaranteed approximation factor Aoy < 2.737.

Proof. The theorem follows from the combination of the two parametrized bounds from
Lemma 3 and Lemma 6 proved above:

1 6n+2 |/ 1
Ao, 1 <supq min | n+ —, \/ nt 1+ — )
n>1 n Ui N

It is easy to check that the supremum s =~ 2.736 is obtained for n ~ 2.302. O

Although this result concerns a continuous PCA version, the proof is mainly based on
arguments from discrete geometry. In contrast to that, the upper bound proofs for g
and A3 3, presented in the next two subsections, essentially make use of integral calculus.

4.2. An upper bound on X\;,

Bcha(2,2)<P)

Lpea CH(P)

Qe

Apea

(a) (b)

Figure 9. A convex hull of the point set P, its PCA bounding box (a) and its optimal
bounding box (b).

First, we note that due to Lemma 3, we already have a parametrized upper bound
on Ag9. Since this bound tends to infinity for n — oo, we are going to derive another
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upper bound on \g5 that is better for large values of n. We derive such a bound by
finding a constant that bounds (8 from above. In this process we will make essential use
of the properties of BBjuq2,2)(P). We denote by d*(CH(P),1) the integral of the squared
distances of the points on CH(P) to a line [, i.e.,

P(CH(P),1) = / 2 (s,1)ds.
seCH(P)

Let l,., be the line going through the center of gravity, parallel to the longer side of
BBpca2,2)(P), and [y, be the line going through the center of gravity, parallel to the
longer side of BB, p) (see Fig. 9). By Lemma 1, part ii) [y, is the best fitting line of P
and therefore,

d*(CH(P),lpca) < d*(CH(P), lops). (18)

We obtain an estimate of 3 by determining a lower bound on d*(C H(P), l,..,) that depends
on byeq, and an upper bound on d*(C' H(P), l,,) that depends on b,,;. Having an arbitrary
bounding box of CH(P) (with side lengths a and b, a > b) the area of CH(P) can be
expressed as

b
0

b a
a=acne) = [ [ vonu sy = [ iy
o Jo
where xcu(py(x,y) is the characteristic function of CH(P) defined as

1 (z,y) € CH(P)

0 (z,y) ¢ CH(P),

XCH(P)(xa y) =

and g(y) = [ xcup)(x, y)dz is the length of the intersection of C'H(P) with a horizontal
line at height y. In the following we call g(y) the density function of C H(P) for computing
the area with the integral fobg(y)dy. Since C'H(P) is a convex set, g(y) is continuous and
convex in the interval [0,b] (see Fig. 10 (a) for an illustration). Let b; denote the y-
coordinate of the center of gravity of CH(P). The line I, (y = b;) divides the area of
CH(P) into A; and A,.

Theorem 6, which is derived from the generalized first mean value theorem of integral

calculus (Theorem 5), is our central technical tool in derivation of the lower and the upper
bound on d*(CH(P),ly,).

Theorem 5 (Generalized first mean value theorem of integral calculus)
If h(x) and g(z) are continuous functions on the interval [a, b], and if g(x) does not change
its sign in the interval, then there is a £ € (a,b) such that

[ 1@t =1 [ gy
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hot

hit

fily)
Sa
A
! ! ! : ! !
by by v b, by y
(a) (b)

Figure 10. Construction of the lower bound on d*(CH(P),l,).

Theorem 6 Let f(x) and g(x) be positive continuous functions on the interval [a,b]

with fabf(:z)dx = fabg(a:)dz, and assume that there is some ¢ € |[a,b] such that f(x) <
g(x), forall x <c and f(x) > g(x), forall x > c. Then

/ab@ b2 (2)da < /ab(x — b)2g(x)dz and

/ab(x _ )2 f(z)dz > /ab(x — a)2g(x)dz.

Proof. We start from the assumptions f; f(x)dx = fabg(x)dx and f(z) < g(x) for all
x < cand f(x) > g(x) for all x > ¢. Thus,

[ 0@ = sndn = [ (7(@) — glapyan = & (19

and the integrands on both sides are nonnegative. Applying Theorem 5 to the following
integrals we obtain

/ (@~ b (g(a) — f@))dr = (& —b) / (gla) — f@))dr = (& — B,

and

[ =020 @ - g@)is = & -07 [ (@) - glaNde = (- 02,

for some & € [a,c] and & € [¢, b]. Therefore,

/ (o= B2(g(e) — f@)de = (€ — BPA > (& — b)PA = / (x — D(f(z) — g(x))de.
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It follows that

/ (2~ )*(g(x) — f(2))de = / (@b (g(x) — f(x))da— / (2~ 0)*(f(x) — g(x))dz > 0,

which proves the first claim

b b
/ (z — b)*f(z)dw < / (z — b)?g(z)dx.
The proof of the second claim follows by symmetry. 0

The following theorem was discovered independently by Griinbaum [7] and Hammer
(unpublished manuscript), and later rediscovered by Mityagin [11]. We use it to prove a
lower and an upper bound of the variance d*(C'H(P), Iy, ).

Theorem 7 (Griinbaum-Hammer-Mityagin) Let K be a compact conver set in R?
with non-empty interior and centroid p. Assume that the d-dimensional volume of K is
one, that is, Voly(K) = 1. Let H be any (d-1)-dimensional hyperplane passing through p
with corresponding half-spaces HT and H~. Then,

d
min{ VOld(KﬂH+), VOld(KmH )} > (djl_ 1)

Moreover, the bound (#‘ll)d is best possible.

Lemma 7 The variance d*(CH(P),1,,) is bounded from below by 5 Ab?.

Proof. We split the integral fob(y —b1)%g(y)dy at by (recall that b, is the y-coordinate of
the center of gravity of CH(P)), and prove lower bounds on both parts in the following

way: For the left part consider the linear function fi(y) = y such that fo fily)dy =

" g(y)dy = A; (see Fig. 10 (b) for an illustration). From fo fi(y)dy = A, it follows
that fi(y) = 2?%”’. Since ¢(y) is convex, ¢g(y) and fi(y) intersect only once, at a point
b € (0,b1). By Theorem 6, we have

/0 1(y —b1)’g(y)dy > /0 1(y — )2 fiy)dy = /0 1( —b)? ledy = Agb%. (20)

Analogously, for the right part consider the linear function fa(y) = ;= b(y b) = _bz 2 (y —
b) such that fbb fo(y)dy = fbl y)dy = Ay (see Fig. 10 (c) for an illustration). From

fb1 fa(y)dy = As, it follows that fo(y) = @( —b). Since g(y) is convex, g(y) and fo(y)
intersect only once, at a point b” € (b, b). By Theorem 6, we have that

fbl _bl )dy > fbl _bl f2 fbl _blz(byl:f ( _bl)d

Aob2
-

(21)
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From (20) and (21) we obtain that

P(CH(P),by) = [ (y — 01)2g(y)dy + [ (y —b1)?g(y)dy > 2 4 222

From the Grﬁnbaum—Hammer—Mityagin theorem, we know that A;, Ay € [gA, gA]. Also,

we know that bl,bg € [3b,20]. It is not hard to show that, under these constrains,
Azbl achieves its minimum of 2140314172 for A; = gA, by = gb or
Ay =3A by = b, 0

29 Ab2

243

Lemma 8 The variance d*>(CH(P),l,,) is bounded from above by

Figure 11. Construction of the upper bound on d?(CH(P),l,).

The proof of Lemma 8 is similar to the proof of Lemma 7. Here, the functions we use to
derive the upper bound on d*(C H(P),l,) are given in Fig 11 (functions f3(y) and f4(y)).

Now, we are ready to derive an alternative parametrized upper bound on Ay o(P) which
is better than the bound from Lemma 3 for big values of 7.

Lemma 9 X\y5(P) < /2.9 <1 + n%) for any point set P with aspect ratio n(P) = n.

Proof. Applying Lemma 7 and Lemma 8 in (18) we obtain

S5 Ay < PP 1) < (P ly) < 243Ab§pt

From (22) it follows that 3 = b”c“ < v/2.9. We have for a,., the upper bound diam(P) <

Aot F 000 = opry /1 + n_2' From this, it follows that a < /1 + n—z. Putting this

together, we obtain af < /2.9 (1 + n%) O

(22)
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Theorem 8 The PCA bounding box of a point set P in R* computed over CH(P) has a
guaranteed approzimation factor Ago < 2.104.

Proof. The theorem follows from the combination of the two parametrized bounds from
Lemma 3 and Lemma 9:

1 1
Ao <supsmin | 7+ —, 1/2.9 (1 + —2) )
n>1 n n

It is easy to check that the supremum s ~ 2.1038 is obtained for n ~ 1.3784. U

4.3. An upper bound on A3

Some of the techniques used here are similar to those used in Subsection 4.2 where we
derive an upper bound on Ay2. One essential difference is that for the upper bound on
A3,3, we additionally need a bound for the ratio of the middle sides of BB).q3,3)(P) and
BB,,:(P), which we derive from the relation in Lemma 13.

Given a point set P C R? and an arbitrary bounding box BB(P), we will denote the
three side lengths of BB(P) by a,b and ¢, where a > b > ¢. We are interested in the
side lengths aopr > bopt > Copt and peq > bpea > Cpea 0f BBoy(P) and BBpe,s3)(P). The
parameters & = a(P) = apea/opt, B = B(P) = bpea/bopt and 7 = Y(P) = Cpea/Copt denote
the ratios between the corresponding side lengths. Hence, we have A3 3(P) =a -3 -7.

Since the side lengths of any bounding box are bounded by the diameter of P, we
can observe that in general cpeq < bpea < pea < diam(P) < V/3apy, and in the special
case when the optimal bounding box is a cube A3 3(P) < 3v/3. This observation can be
generalized, introducing two additional parameters 17(P) = aopt/bopt and O(P) = aopt [ Copt-

3

Lemma 10 A\33(P) <nf (1 + 77% + 9%) 2 for any point set P with aspect ratios n(P) =n
and 0(P) = 0.

Proof. We have for ayeq, bpea and cpe, the upper bound diam(P) < \/ Ay + 2p + Copy

opt

3
= a 1+ L4+ L. Thus, afy < Zeeebecacpen agpt(H”%)Q Replacing a,,; in the
- opt 772 62" ’ 7 —  Qopt bopt Copt aoptboptcopt ’ p g opt
3

nominator once by 7 b,,; and once by 6 c.,; we obtain A3 3(P) < n@ (1 + 77% + 9%) .

A

Unfortunately, this parametrized upper bound tends to infinity for n — oo or § — oc.
Therefore, we are going to derive another upper bound that is better for large values of n
and 0. We derive such a bound by finding constants that bound § and v from above. In
this process we will make essential use of the properties of BBpeqs,3) (F). We denote by
d*(CH(P), H) the integral of the squared distances of the points on CH(P) to a plane
o, ie., d*(CH(P),H) = [, oy @(s, H)ds. Let Hy be the plane going through the
center of gravity, parallel to the side apcq X bpea 0f BBpeqs3)(F), and H,y, be the bisector
of BB,ppy parallel to the side agp X bop. By Lemma 1, part ii) Hp, is the best fitting
plane of P and therefore,

d*(CH(P), Hyea) < d*(CH(P), Hop)- (23)
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We obtain an estimation for v by determining a lower bound on d*(CH(P), Hp.,) that
depends on ¢, and an upper bound on d*(CH(P), H,y) that depends on c,y. Having
an arbitrary bounding box of CH(P) (with side lengths a, b, and ¢, a > b > ¢), we denote
by H,, the plane going through the center of gravity, parallel to the side a xb. The volume
of CH(P) can be expressed as

vV = V(CH(P fo fo fo Xcoure) (T, Y, )d:)sdydz—fo

where xcn(py (2, Yy, 2) is the characteristic function of CH(P) defined as
1 (z,y,2) e CH(P)
0 (,y,2) ¢ CH(P),

XCH(P) (Ia Y, Z) =

and g(z fo Jo Xcup)(x,y, z)dzdy is the area of the intersection of CH(P) with the
horlzontal plane at height z. As before we call ¢g(z) the density function of CH(P). Let
¢1 denote the z-coordinate of the center of gravity of C H(P). The line I, (y = ¢;) divides
the volume of CH(P) into V; and V4 (see Fig. 13 (a) for an illustration).

Note that g(z) is continuous, but in general not convex in the interval [0, b]. Therefore,
we cannot use linear functions to derive a lower and an upper bound on the function
d*(CH(P), Hy), as we did in Subsection 4.2, because a linear function can intersect g(z)
more than once, and we cannot apply Theorem 6. We will show that instead of linear
functions, quadratic functions can be used.

Proposition 3 Let g(z) be the density function of CH( ) defined as above, and let
f(z) = kz? be the parabola such that [}" f(z)dz = [ g(z)dz. Then, 3co € [0,¢1] such
that f(z) < g(x) for all z < ¢y and f(z) > ()forallcho

Proof. We give a constructive proof. Let ¢y := inf{ d |Vz € [d,c1] g(2) < f(2)}. If
co =0, then f(z) = g(2), and the proposition holds. If ¢y > 0, then consider the polygon
which is the intersection of C'H(P) with the plane z = ¢;. We fix a point pg in CH(P)
with z-coordinate 0 and construct a pyramid @) by extending all rays from py through the
polygon up to the plane z = ¢; (see Fig. 12 for an illustration). Since, f(co) = g(co) the
quadratic function f(z) is the density function of (). Therefore, since the part of ) below
co is completely included in CH(P), we can conclude that f(z) < g(z) for all z < ¢y. On
the other hand, f(z) > g(z) for all z > ¢y by the definition of c. O

Now, we present a lower and an upper bound on the variance d*>(CH(P), Hy), from

which we can derive a bound on v = Z”—c‘z
op

Lemma 11 The variance d*(CH(P), Hy) is bounded from below by -V ¢?.

Proof. We split the integral foc(z — ¢1)%g(2)dz at c;, and prove upper bounds on both

parts in the following way: For the left part consider the parabola f;(z) = h—;z2 such that

o fi(z)dz = [ g(2)dz = Vi (see Fig. 13 (b) for an illustration). From [;* fi(z)dz = V4

we have that fl( ) = 2122 Since fi(z) and g(z) define the same volume on the interval
1
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€0 4

Figure 12. Construction of the intersection of f(z) and g(z).

[0, ¢1], they must intersect, and by Proposition 3 we know that if fi(z) # g(z), then they
can intersect only once, at a point ¢ € (0,¢;). Under these conditions, we can apply
Theorem 6, and obtain

J3' = eg(x)dz > [z — ) filz)dz = [; (= — e1)? 2 22dz = T (24)

Analogously, for the right part consider the parabola fo(2) = (61%)2(2 —c)? = %(z —
2

¢)? such that [ fo(y)dy = [ g(z)dz = Vi (see Fig. 13 (b) for an illustration). From
fccl fa(y)dy = V, we have that fi(z) = %(z — ¢)%. By similar arguments as above in the

I . ; ;
t t
&) c Zz d c c z

Figure 13. Construction of the lower and upper bounds on d?(CH(P), Hy)

case of f1(z), we can show that ¢g(z) and f>(z) intersect only once, at a point ¢’ € (¢q, ¢).
Applying Theorem 6 we have that

Jife gl 2 [ mal Rl = [l o) o )

10




Bounds on the Quality of the PCA Bounding Boxes 21

From (24) and (25) we obtain that

P(CH(P), Hy) = [ (2 — e1)29(2)dz + [ (2 — e1)2g(2)dz > B 4 12

From the Griinbaum-Hammer-Mityagin theorem, we know that Vi, V5 € [V, 22V]. Also,
we know that ci,co € [ic, %c]. It is not hard to show that, under these constrains,

. Viel Vacs . . . 7 17,2 27 _ 3
the expression —;* + -5 achieves its minimum of 55V for Vi = ZV.ep = 3¢ or

— 37 -1
Vi=3V,e =le O

Lemma 12 The variance d*(CH(P), Hy) is bounded from above by B3V 2.

The proof of Lemma 12 is similar to the proof of Lemma 11. Here, the functions we
use to derive the upper bound on d?(C'H(P), Hy) are given in Fig 13 (¢) (functions f3(z)

and fy(2)).

As a consequence of Lemma 11 and Lemma 12, we have the following upper bound on
.

Proposition 4 v < 2.5484.

Proof. By Lemma 11, we have

7 2 2
256 Cpca — d (O ( )? pca) (26)

On the other hand, by Lemma 12, it follows that
d2(CH(P)a Hopt) < —Vcopt ; (27)

From (26), (27) and (23), we obtain
Cpoa _ [12729
= < < 2.5484.
T e = V1060

We are now ready to present a new parametrized bound on A3 3(P), which is good for a
large values of n and 6. The additional crucial relation we exploit in its derivation is the
fact given in the following lemma.

O

Lemma 13 Let (1, 7o, ...,24) and (y1,Ys, - - .,ya) be two sets of orthogonal base vectors
in R, For any point set P € R it holds that

d d
Z var(P, z;) = Z var( P, y;).
i=1 i=1
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Proof. We have that

d d
ZV&I‘(P, l’l) - Z 1 Z d2(pv H:cz)a
i=1 1=1 n peP

where H,, is a hyperplane orthogonal to the vector z;, passing through the origin of the
coordinate system, d?(p, H,,) denotes the Euclidean distance of p to H,,, and n = |P]|.
Since Zle d*(p, H,,) is the squared distance of p to the origin of the coordinate system, it
can be expressed as the sum of squared distances to the (d — 1)-dimensional hyperplanes
spanned by any set of orthogonal base vectors. Therefore,

Zd2p, 2) Zd2p, ,), and

Yvar(Pa) = 13 3L d(p, Hy) = 2,020, dP(p, Hy,)
= Zlevar(P,yi).

When P is a continuous point set,

)
var(P, z; d? p, Hy,)ds
( ) VOI(P) peP ( )
and the claim can be shown as in the discrete case. O

Lemma 14 A\33(P) <6.43,/1 + > + g5 for any point set P with aspect ratios n(P) =1
and 0(P) = 0.

Proof. Let Zpcq, Ypea, Zpea De a set of basis vectors that determine the direction of B B3 3)(P),
and let Zopt, Yopt, zopt De a set of basis vectors that determine the direction of BB,,(C' H(P)).
By Lemma 13, we have that

var(CH(P), Tpea) + var(CH(P), Ypea) + var(CH (P), zpea) = 28)
var(CH(P), xopt) + var(CH(P), yopt) + var(CH(P), Zopt)-

By Lemma 1, part ¢), the variance of CH(P) in the direction x,., is the biggest possible,
and therefore,

var(CH(P), Zpea) > var(CH(P), Zopt)- (29)

Combining (28) and (29) we obtain

var(CH(P), Ypea) + var(CH(P), zpea) <
var(CH(P), Yopt) + var(CH (P), Zopt)-
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We denote by H,, the plane orthogonal to z.,, going through the center of gravity, and
parallel with the side apcabpea Of BBpeqs s)(P). Similarly, we define H,,.,, Hq,p, and Hg,c, .
We can rewrite (30) as

P(CH(P), Hyp,) + P(CH(P), Hy,e,) <

Pbp

(31)
d2(CH(P)? Haobo) + d2(CH(P)? Haoco)'
By Lemma 11, the lower bound on d*(CH(P), Ha,p,) is 555V €2, and the lower bound on

d*(CH(P), H,,.,) is 5V 2,,. By Lemma 12, the upper bound on d*(CH(P), H,,) is

256 pca’

2V 2 ., and the lower bound on d*(CH(P), H,,,) is 223Vb2 ;. Plugging these bounds
into (31) we obtain

7 7 12729 12729
— Ve, + Vb, Vb’ 32
256 oo T 256" e = 71680 Con + 71680 P (32)
Applying v = ’;—;‘; n (32), we obtain

7, 12720 7\ , 12729,
oo (22 L bt 33
256 P~ (71680 256 ) Cort T 71680 P (33)
By Proposition 4, it follows that % — ﬁfy > 0, and since by > Copr, We get from (33)

that

_ Doea 599 2. (34)

bopt

The expression /12.99 — 2~ (> ﬁy) has its maximum of 6.495 for v & 2.5484. This
together with the bound o < /1 + 17_2 + 9—2 gives

1 1
A3a(P)=afy < 6495\/@

Lemma 10 gives us a bound on A3 3(P) which is good for small values of n and 6. In
contrary, the bound from Lemma 14 behaves worse for small values of n and 6, but better
for big values of 1 and 6. Therefore, we combine both of them to obtain the final upper
bound.

O

Theorem 9 The PCA bounding box of a point set P in R® computed over CH(P) has a
quaranteed approzimation factor Azs < 7.81.

Proof. The theorem follows from the combination of the two parametrized bounds from
Lemma 10 and Lemma 14:

3
A33 S SUDyp>1 g1 {min (779<1 +o e%> ©, 6.495, /1 + Zt@ )}

By numerical verification we obtained that the supremum occurs at ~ 7.807. 0J
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5. Open Problems

Improving the upper bound on A3 3, A2 and Ay, as well as obtaining an upper bound
on Az is of interest. The approaches we exploit to obtain the upper bounds require
an estimation of the length ratios between all corresponding side pairs of the minimum-
volume bounding box and the PCA bounding box. However, even in R*, we do not know
how to obtain the estimations of the length ratios for all corresponding side pairs. We
believe that obtaining upper bounds on the approximation factor on the quality of PCA
bounding boxes in arbitrary dimension requires different approaches than those presented
in this paper.
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