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Principal component analysis (PCA) is commonly used to compute a bounding box of
a point set in R

d. The popularity of this heuristic lies in its speed, easy implementation
and in the fact that usually, PCA bounding boxes quite well approximate the minimum-
volume bounding boxes. We present examples of discrete points sets in the plane, showing
that the worst case ratio of the volume of the PCA bounding box and the volume of the
minimum-volume bounding box tends to infinity. Thus, we concentrate our attention on
PCA bounding boxes for continuous sets, especially for the convex hull of a point set.
Here, we contribute lower bounds on the approximation factor of PCA bounding boxes
of convex sets in arbitrary dimension, and upper bounds in R

2 and R
3.

1. Introduction

Substituting sets of points or complex geometric shapes with their bounding boxes
is motivated by many applications. For example, in computer graphics, it is used to
maintain hierarchical data structures for fast rendering of a scene or for collision detection.
Additional applications include those in shape analysis and shape simplification, or in
statistics, for storing and performing range-search queries on a large database of samples.

Computing a minimum-area bounding box of a set of n points in R
2 can be done in

O(n logn) time, for example with the rotating calipers algorithm [15]. O’Rourke [12]
presented a deterministic algorithm, a rotating calipers variant in R

3, for computing
the minimum-volume bounding box of a set of n points in R

3. His algorithm requires
O(n3) time and O(n) space. Barequet and Har-Peled [2] have contributed two (1+ǫ)-
approximation algorithms for the minimum-volume bounding box of point sets in R

3, both
with nearly linear complexity. The running times of their algorithms are O(n + 1/ǫ4.5)
and O(n log n + n/ǫ3), respectively.

Numerous heuristics have been proposed for computing a box which encloses a given
set of points. The simplest heuristic is naturally to compute the axis-aligned bounding
box of the point set. Two-dimensional variants of this heuristic include the well-known
R-tree, the packed R-tree [13], the R∗-tree [3], the R+-tree [14], etc.

A frequently used heuristic for computing a bounding box of a set of points is based
on principal component analysis. The principal components of the point set define the
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axes of the bounding box. Once the axis directions are given, the dimension of the
bounding box is easily found by the extreme values of the projection of the points on
the corresponding axis. Two distinguished applications of this heuristic are the OBB-tree
[6] and the BOXTREE [1], hierarchical bounding box structures, which support efficient
collision detection and ray tracing. Computing a bounding box of a set of points in R

2 and
R

3 by PCA is simple and requires linear time. To avoid the influence of the distribution
of the point set on the directions of the PCs, a possible approach is to consider the convex
hull, or the boundary of the convex hull CH(P ) of the point set P . Thus, the complexity
of the algorithm increases to O(n log n). The popularity of this heuristic, besides its
speed, lies in its easy implementation and in the fact that usually PCA bounding boxes
are tight-fitting, see [10] for some experimental results.

Given a point set P ⊆ R
d we denote by BBpca(P ) the PCA bounding box of P and

by BBopt(P ) the bounding box of P with smallest possible volume. The ratio of the two
volumes λd(P ) = Vol(BBpca(P ))/Vol(BBopt(P )) defines the approximation factor for P ,
and

λd = sup
{

λd(P ) | P ⊆ R
d, Vol(CH(P )) > 0

}

defines the general PCA approximation factor. Here, we give lower bounds on λd for
arbitrary dimension d, and upper bounds on λ2 and λ3.

1

The organization and the main results of the paper are as follows: In Section 2 we review
the basics of principal component analysis. In particular, we introduce the continuous
version of PCA, which results in a series of approximation factors λd,i, where i ranges
from 0 to d and denotes the dimension of the faces of the convex hull that contribute to
the continuous point set for which the principal components are computed. In Section 3
we give lower bounds on λd,i for arbitrary values of d and 1 ≤ i ≤ d. First, we show that
λd,i = ∞ for any d ≥ 4 and any 1 ≤ i < d− 1. Next, we show that λ3,2 ≥ 4 and λ3,3 ≥ 4.
When d is a power of two, we show that λd,d−1 ≥ dd/2 and λd,d ≥ dd/2. The rest of the
lower bounds, we obtain by combination of the above bounds. In Section 4, we present
upper bounds in R

2 and R
3, showing that λ2,1 ≤ 2.737, λ2,2 ≤ 2.104 and λ3,3 ≤ 7.807.

We conclude with open problems in Section 5.

2. Principal Component Analysis and PCA Bounding Boxes

The central idea and motivation of PCA [8] (also known as the Karhunen-Loeve trans-
form, or the Hotelling transform) is to reduce the dimensionality of a point set by iden-
tifying the most significant directions (principal components). Let X = {x1, x2, . . . , xm}
be a set of vectors (points) in R

d, and c = (c1, c2, . . . , cd) ∈ R
d be the center of gravity of

X. For 1 ≤ k ≤ d, we use xik to denote the k-th coordinate of the vector xi. Given two
vectors u and v, we use 〈u, v〉 to denote their inner product. For any unit vector v ∈ R

d,
the variance of X in direction v is

var(X, v) =
1

m

m
∑

i=1

〈xi − c , v〉2. (1)

1Preliminary results were presented in [4] and [5].
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The most significant direction corresponds to the unit vector v1 such that var(X, v1) is
maximum. In general, after identifying the j most significant directions Bj = {v1, . . . , vj},
the (j + 1)-th most significant direction corresponds to the unit vector vj+1 such that
var(X, vj+1) is maximum among all unit vectors perpendicular to v1, v2, . . . , vj.

It can be verified that for any unit vector v ∈ R
d,

var(X, v) = 〈Cv, v〉, (2)

where C is the covariance matrix of X. C is a symmetric d× d matrix where the (i, j)-th
component, cij , 1 ≤ i, j ≤ d, is defined as

cij =
1

m

m
∑

k=1

(xik − ci)(xjk − cj). (3)

The procedure of finding the most significant directions, in the sense mentioned above,
can be formulated as an eigenvalue problem. If χ1 > χ2 > · · · > χd are the eigenvalues of
C, then the unit eigenvector vj for χj is the j-th most significant direction. All χjs are
non-negative and χj = var(X, vj). Since the matrix C is symmetric positive definite, its
eigenvectors are orthogonal. If the eigenvalues are not distinct, the eigenvectors are not
unique. In this case, an orthogonal basis of eigenvectors is chosen arbitrarily. However,
we can always achieve distinct eigenvalues by a slight perturbation of the point set.

The following result summarizes the above background knowledge on PCA. For any set
S of orthogonal unit vectors in R

d, we use var(X, S) to denote
∑

v∈S var(X, v).

Lemma 1 Assume that the covariance matrix C of a point set X ∈ R
d has distinct

eigenvalues. For 1 ≤ j ≤ d, let χj be the j-th largest eigenvalue of C and let vj denote the
unit eigenvector for χj. Let Bj = {v1, v2, . . . , vj}, sp(Bj) be the linear subspace spanned
by Bj, and sp(Bj)

⊥ be the orthogonal complement of sp(Bj). Then χ1 = max{var(X, v) :
v ∈ R

d, ‖v‖ = 1 }, and for any 2 ≤ j ≤ d,

i) χj = max{var(X, v) : v ∈ sp(Bj−1)
⊥, ‖v‖ = 1}.

ii) χj = min{var(X, v) : v ∈ sp(Bj), ‖v‖ = 1}.

iii) var(X, Bj) ≥ var(X, S) for any set S of j orthogonal unit vectors.

Since bounding boxes of a point set P (with respect to any orthogonal coordinate system)
depend only on the convex hull of CH(P ), the construction of the covariance matrix
should be based only on CH(P ) and not on the distribution of the points inside. Using
the vertices, i.e., the 0-dimensional faces of CH(P ) to define the covariance matrix C we
obtain a bounding box BBpca(d,0)(P ). We denote by λd,0(P ) the approximation factor for
the given point set P and by

λd,0 = sup
{

λd,0(P ) | P ⊆ R
d, Vol(CH(P )) > 0

}

the approximation factor in general. The example in Fig. 1 shows that λ2,0(P ) can be
arbitrarily large if the convex hull is a thin, slightly “bulged rectangle”, with a lot of
additional vertices in the middle of the two long sides. Since this construction can be
lifted into higher dimensions we obtain a first general lower bound.
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Figure 1. Four points and their PCA bounding-box (a). A dense collection of additional
points significantly affect the orientation of the PCA bounding-box (b).

Proposition 1 λd,0 = ∞ for any d ≥ 2.

To overcome this problem, one can apply a continuous version of PCA taking into account
(the dense set of) all points on the boundary of CH(P ), or even all points in CH(P ). In
this approach X is a continuous set of d-dimensional vectors and the coefficients of the
covariance matrix are defined by integrals instead of finite sums. If CH(P ) is known, the
computation of the coefficients of the covariance matrix in the continuous case can also
be done in linear time, thus, the overall complexity remains the same as in the discrete
case. Note that for for d = 1 the above problem is trivial, because the PCA bounding
box is always optimal, i.e., λ1,0 and λ1,1 are 1.

2.1. Continuous PCA
Variants of the continuous PCA applied to triangulated surfaces of 3D objects were

presented by Gottschalk et. al. [6], Lahanas et. al. [10] and Vranić et. al. [16]. In what
follows, we briefly review the basics of the continuous PCA in a general setting.

Let X be a continuous set of d-dimensional vectors with constant density. Then, the
center of gravity of X is

c =

∫

x∈X
xdx

∫

x∈X
dx

. (4)

Here,
∫

dx denotes either a line integral, an area integral, or a volume integral in higher
dimensions. For any unit vector v ∈ R

d, the variance of X in direction v is

var(X, v) =

∫

x∈X
〈x − c, v〉2dx
∫

x∈X
dx

. (5)

The covariance matrix of X has the form

C =

∫

x∈X
(x − c)(x − c)T dx
∫

x∈X
dx

, (6)

with its (i, j)-th component

cij =

∫

x∈X
(xi − ci)(xj − cj)dx
∫

x∈X
dx

, (7)
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where xi and xj are the i-th and j-th component of the vector x, and ci and cj the i-th
and j-th component of the center of gravity. It can be verified that relation (2) is also
true when X is a continuous set of vectors. The procedure of finding the most significant
directions can be also reformulated as an eigenvalue problem and consequently Lemma 1
holds.

For point sets P in R
2 we are especially interested in the cases when X represents

the boundary of CH(P ), or all points in CH(P ). Since the first case corresponds to
the 1-dimensional faces of CH(P ) and the second case to the only 2-dimensional face of
CH(P ), the generalization to a dimension d > 2 leads to a series of d−1 continuous PCA
versions. For a point set P ∈ R

d, C(P, i) denotes the covariance matrix defined by the
points on the i-dimensional faces of CH(P ), and BBpca(d,i)(P ), denotes the corresponding
bounding box. The approximation factors λd,i(P ) and λd,i are defined as

λd,i(P ) =
V ol(BBpca(d,i)(P ))

V ol(BBopt(P ))
, and

λd,i = sup
{

λd,i(P ) | P ⊆ R
d, V ol(CH(P )) > 0

}

.

3. Lower Bounds

The lower bounds we are going to derive are based on the following connection between
the symmetry of a point set and its principal components.

Lemma 2 Let P be a d-dimensional point set symmetric with respect to a hyperplane H
and assume that the covariance matrix C has d different eigenvalues. Then, a principal
component of P is orthogonal to H.

Proof. Without loss of generality, we can assume that the hyperplane of symmetry is
spanned by the last d − 1 standard base vectors of the d-dimensional space and the
center of gravity of the point set coincides with the origin of the d-dimensional space,
i.e., c = (0, 0, . . . , 0). Then, the components c1j and cj1, for 2 ≤ j ≤ d, are 0, and the
covariance matrix has the form

C =











c11 0 . . . 0
0 c22 . . . c2d
...

...
. . .

...
0 cd2 . . . cdd











. (8)

Its characteristic polynomial is

det(C − χ I) = (c11 − χ)f(χ), (9)

where f(χ) is a polynomial of degree d − 1, with coefficients determined by the elements
of the (d − 1) × (d − 1) submatrix of C. From this it follows that c11 is a solution of
the characteristic equation, i.e., it is an eigenvalue of C and the vector (1, 0, ...,0) is
its corresponding eigenvector (principal component), which is orthogonal to the assumed
hyperplane of symmetry. �

We start with a generalization of Proposition 1.



6

Proposition 2 λd,i = ∞ for any d ≥ 4 and any 1 ≤ i < d − 1.

Proof. We use a lifting argument to show that for any point set P ⊆ R
k there is a point

set P ′ ⊆ R
k+1 such that λk,i(P ) ≤ λk+1,i+1(P

′), and consequently λk,i ≤ λk+1,i+1.
Let C be the covariance matrix of P with eigenvalues χ1 > χ2 > . . . > χk, and corre-

sponding eigenvectors v1, v2, . . . vk. We define the point set P ′(h) = P ×{−h, h}, h ∈ R
+.

Let C ′(h) be the covariance matrix of P ′(h). Obviously, the point set P ′(h) is sym-
metric with respect to the hyperplane H = R

k × {0}, and by Lemma 2, the vector
vk+1 = (0, . . . , 0, 1) is an eigenvector of C ′(h). Let χ(h) be the corresponding eigenvalue
of vk+1. Since χ(h) = var(P ′, vk+1) is a quadratic function of h, with limh→0 χ(h) = 0,
we can choose a value h0 such that χ(h0) is smaller than the other eigenvalues of C ′. Let
v be an arbitrary direction in R

k. Then, by definition of P ′, the variance of P ′ in the
direction (v, 0) remains the same as the variance of P in the direction v. Thus, we can
conclude that the eigenvalues of C ′ are χ1 > χ2 > . . . > χk > χ(h0), with corresponding
eigenvectors (v1, 0), (v2, 0), . . . (vk, 0), vk+1, and consequently V ol(BBpca(k+1,i+1)(P

′)) =
2 h0 V ol(BBpca(k,i)(P )).

On the other hand, the bounding box BBh0 = BBopt(P )× [−h0, h0] is also a bounding
box of P ′. Therefore, we obtain

λk+1,i+1 ≥ λk+1,i+1(P
′) =

V ol(BBpca(k+1,i+1)(P
′))

V ol(BBopt(P ′))
≥ V ol(BBpca(k+1,i+1)(P

′))

V ol(BBh0
)

≥ 2h0V ol(BBpca(k,i)(P ))

2h0V ol(BBopt(P ))
≥ λk,i.

Now, we can establish λd,i ≥ λd−1,i−1 ≥ . . . ≥ λd−i,0 = ∞. �

This way, there remain only two interesting cases for a given d: the factor λd,d−1 corre-
sponding to the boundary of the convex hull, and the factor λd,d corresponding to the full
convex hull.

3.1. Lower bounds in R
2

The result obtained in this subsection can be seen as a special case of the result obtained
in Subsection 3.3. To gain a better understanding of the problem and the obtained results,
we consider it separately.

Theorem 1 λ2,1 ≥ 2 and λ2,2 ≥ 2.

Proof. Both lower bounds can be derived from a rhombus. Let the side length of the
rhombus be 1. To make sure that the covariance matrix has two distinct eigenvalues, we
assume that the rhombus has an angle α > 90◦. Since the rhombus is symmetric, its PCs
coincide with its diagonals. In Fig. 2 (b) its optimal-area bounding boxes, for 2 different
angles, α > 90◦ and β = 90◦, are shown, and in Fig. 2 (a) its corresponding PCA bounding
boxes. As the rhombus’ angles in limit approach 90◦, the rhombus approaches a square
with side length 1, i.e., the vertices of the rhombus in the limit are ( 1√

2
, 0), (− 1√

2
, 0), (0, 1√

2
)

and (0,− 1√
2
) (see Fig. 2 (a)), and the dimensions of its PCA bounding box are

√
2×

√
2.

According to Lemma 2, the PCs of the rhombus are unique as long its angles are not 90◦.
This leads to the conclusion that the ratio between the area of the PCA bounding box in
Fig. 2 (a), and the area of the optimal-area bounding box in Fig. 2 (b), in limit goes to
2. �
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α → 90◦

11

α

11

α → 90◦

x

y

α

β β

(b)

Figure 2. An example which gives the lower bound of the area of the PCA bounding box
of an arbitrary convex polygon in R

2.

Alternatively, to show that the given squared rhombus fits into a unit cube, one can apply
the following rotation matrix

R2 =
1√
2

[

1 1
1 −1

]

. (10)

It can be verified easily that all coordinates of the vertices of the rhombus transformed
by R2 are in the interval [−0.5, 0.5]. We use similar arguments when we prove the lower
bounds in higher dimensions.

3.2. Lower bounds in R
3

Theorem 2 λ3,2 ≥ 4 and λ3,3 ≥ 4.

Proof. Both lower bounds are obtained from a dipyramid, having a rhombus with side
length

√
2 as its base. The other sides of the dipyramid have length

√
3

2
. Similarly as in R

2,
we consider the case when its base, the rhombus, in limit approaches the square, i.e., the
vertices of the square dipyramid are (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0,

√
2

2
) and

(0, 0,−
√

2
2

) (see Fig. 3 (a)). The dimensions of its PCA bounding box are 2×2×
√

2. Now,
we rotate the coordinate system (or the square dipyramid) with the rotation determined
by the following orthogonal matrix

R3 =







1√
2

− 1√
2

0
1
2

1
2

− 1√
2

1
2

1
2

1√
2






. (11)

It can be verified easily that the square dipyramid, after rotation with R3 fits into the box
[−0.5, 0.5]3 (see Fig. 3 (b)). Thus, the ratio of the volume of the bounding box, Fig. 3 (a),
and the volume of its PCA bounding box, Fig. 3 (b), in limit goes to 4. �
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Figure 3. An example which gives the lower bound of the volume of the PCA bounding
box of an arbitrary convex polygon in R

3.

3.3. Lower bounds in R
d

Theorem 3 If d is a power of two, then λd,d−1 ≥ dd/2 and λd,d ≥ dd/2.

Proof. For any d = 2k, let ai be a d-dimensional vector, with aii =
√

d
2

and aij = 0
for i 6= j, and let bi = −ai. We construct a d-dimensional convex polytope Pd with
vertices V = {ai, bi|1 ≤ i ≤ d}. It is easy to check that the hyperplane normal to ai is a
hyperplane of reflective symmetry, and as consequence of Lemma 2, ai is an eigenvector
of the covariance matrix of Pd. To ensure that all eigenvalues are different (which implies
that the PCA bounding box is unique), we add ǫi > 0 to the i-th coordinate of ai, and
−ǫi to the i-th coordinate of bi, for 1 ≤ i ≤ d, where ǫ1 < ǫ2 < . . . < ǫd. When all
ǫi, 1 ≤ i ≤ d, arbitrary approach 0, the PCA bounding box of the convex polytope Pd

converges to a hypercube with side lengths
√

d, i.e., the volume of the PCA bounding

box of Pd converges to dd/2. Now, we rotate Pd, such that it fits into the cube [−1
2
, 1

2
]
d
.

For d = 2k, we can use a rotation matrix derived from a Hadamard matrix 2, recursively
defined by

Rd =
1√
2

[

R d
2

R d
2

R d
2

−R d
2

]

, (12)

where we start with the matrix R2 defined above (10) for d = 2. A straightforward
calculation verifies that Pd rotated with Rd fits into the cube [−0.5, 0.5]d. �

Remark: Theorem 3 holds for all dimensions d for which a d × d Hadamard matrix
exists. As it was shown in the proof of the theorem, this is always true when d is a power
of two. Moreover, Hadamard conjectured that a d× d Hadamard matrix exists when d is
a multiple of four. This conjecture is known to be true for d ≤ 664 [9].

We can combine lower bounds from lower dimensions to get lower bounds in higher
dimensions by taking Cartesian products. If λd1 is a lower bound on the ratio between

2A Hadamard matrix is a ±1 matrix with orthogonal columns.
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the PCA bounding box and the optimal bounding box of a convex polytope in R
d1 , and λd2

is a lower bound in R
d2 , then λd1 ·λd2 is a lower bound in R

d1+d2 . This observation together
with the results from this section enables us to obtain lower bounds in any dimension.
For example, for the first 10 dimensions, the lower bounds we obtain are given in Table 1.

Table 1
Lower bounds for the approximation factor of PCA bounding boxes for the first 10 di-
mensions.

dimension R R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

lower bound 1 2 4 16 16 32 64 4096 4096 8192

4. Upper Bounds

4.1. An upper Bound on λ2,1

Given a point set P ⊆ R
2 and an arbitrary bounding box BB(P ) we will denote

the two side lengths by a and b, where a ≥ b. We are interested in the side lengths
aopt(P ) ≥ bopt(P ) and apca(P ) ≥ bpca(P ) of BBopt(P ) and BBpca(2,1)(P ), see Fig. 4. The
parameters α = α(P ) = apca(P )/aopt(P ) and β = β(P ) = bpca(P )/bopt(P ) denote the
ratios between the corresponding side lengths. Hence, we have λ2,1(P ) = α(P ) · β(P ).
If the relation to P is clear, we will omit the reference to P in the notations introduced
above.

Since the side lengths of any bounding box are bounded by the diameter of P , we can
observe that in general bpca(P ) ≤ apca(P ) ≤ diam(P ) ≤

√
2aopt(P ), and in the special

case when the optimal bounding box is a square λ2,1(P ) ≤ 2. This observation can be
generalized, introducing an additional parameter η(P ) = aopt(P )/bopt(P ).

Lemma 3 λ2,1(P ) ≤ η + 1
η

and λ2,2(P ) ≤ η + 1
η

for any point set P with fixed aspect

ratio η(P ) = η.

Proof. We have for both apca and bpca the upper bound diam(P ) ≤
√

a2
opt + b2

opt =

aopt

√

1 + 1
η2 . Replacing aopt by η·bopt in the bound on bpca we obtain αβ ≤ η

(√

1 + 1
η2

)2

=

η + 1
η
. �

Unfortunately, this parametrized upper bound tends to infinity for η → ∞. Therefore, we
are going to derive another upper bound that is better for large values of η. In this process
we will make essential use of the properties of BBpca(2,1)(P ). In order to distinguish clearly
between a convex set and its boundary, we will use calligraphic letters for the boundaries,
specifically P for the boundary of CH(P ) and BBopt for the boundary of the rectangle
BBopt(P ). Furthermore, we denote by d2(P, l) the integral of the squared distances of the
points on P to a line l, i.e., d2(P, l) =

∫

x∈P d2(x, l)ds. Let lpca be the line going through
the center of gravity and parallel to the longer side of BBpca(2,1)(P ) and l 1

2
be the bisector
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apca

bpca

lpca

P

l1

2

bopt

aopt

P

b′

(a) (b)

Figure 4. A convex polygon P, its PCA bounding box and the line lpca, which coincides
with the first principal component of P (a). The optimal bounding box and the line l 1

2
,

going through the middle of its smaller side, parallel with its longer side (b).

l 1

2

aopt

bopt

BBS P

Figure 5. The convex polygon P, its optimal bounding box, and the staircase polygon
BBS (depicted dashed).

of BBopt(P ) parallel to the longer side. By Lemma 1, part ii) lpca is the best fitting line of
P and therefore,

d2(P, lpca) ≤ d2(P, l 1
2
). (13)

Lemma 4 d2(P, l 1
2
) ≤ bopt

2aopt

2
+ bopt

3

6
.

Proof. If a segment of P intersects the line l 1
2
, we split this segment into two segments,

with the intersection point as a split point. Then, to each segment f of P flush with
the side of the PCA bounding box, we assign a segment identical to f . To each re-
maining segment s of P, with endpoints (x1, y1) and (x2, y2), where |y1| ≤ |y2|, we as-
sign two segments: a segment s1, with endpoints (x1, y1) and (x1, y2), and a segment
s2, with endpoints (x1, y2) and (x2, y2). All these segments form the boundary BBS of
a staircase polygon (see Fig. 5 for illustration). Two straightforward consequences are
that d2(BBS, l 1

2
) ≤ d2(BBopt, l 1

2
), and d2(s, l 1

2
) ≤ d2(s1, l 1

2
) + d2(s2, l 1

2
), for each segment

s of P. Therefore, d2(P, l 1
2
) is at most d2(BBS, l 1

2
), which is bounded from above by

d2(BBopt, l 1
2
) = 4

∫

bopt

2

0
x2 dx + 2

∫ aopt

0
( bopt

2
)2 dx = bopt

2aopt

2
+ bopt

3

6
. �

Now we look at P and its PCA bounding box (Fig. 6). The line lpca divides P into an
upper and a lower part, Pupp and Plow. lupp denotes the orthogonal projection of Pupp
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Tupp

Tlow

U1 L1

apca

bpca

lpca

P
b
′

L2U2

U3

L3

a1
a2

b1 b2

Figure 6. The convex polygon P, its PCA bounding box, and a construction for a lower
bound on d2(P, lpca)

Tupp

Tlow

apca

bpca

lpca

P ′
upp

P ′
low

P

Figure 7. Two polylines P ′
upp and P ′

low (depicted dashed) formed from P.

onto lpca, with U1 and U2 as its extreme points, and llow denotes the orthogonal projection
of Plow onto lpca, with L1 and L2 as its extreme points. Tupp = △(U1U2U3) is a triangle
inscribed in Pupp, where point U3 lies on the intersection of Pupp with the upper side of
the PCA bounding box. Analogously, Tlow = △(L1L2L3) is a triangle inscribed in Plow.

Lemma 5 d2(P, lpca) ≥ d2(Tupp, lpca) + d2(Tlow, lpca).

Proof. Let Q denote a chain of segments of P, which does not touch the longer side of the
PCA bounding box, and whose one endpoint lies on the smaller side of the PCA bounding
box, and the other endpoint on the line lpca. We reflect Q at the line supporting the side
of the PCA bounding box touched by Q. All such reflected chains of segments, together
with the rest of P, form two polylines: P ′

upp and P ′
low (see Fig. 7 for illustration). As a

consequence, to each of the sides of the triangles Tlow and Tupp, L1L3, L2L3, U1U3, U2U3,
we have a corresponding chain of segments R as shown in the two cases in Fig. 8. In both
cases d2(t, lpca) ≤ d2(R, lpca). Namely, we can parametrize both curves, R and t, starting
at the common endpoint A that is furthest from lpca. By comparing two points with the
same parameter (distance from A along the curve) we see that the point on t always has
a smaller distance to lpca than the corresponding point on R. In addition t is shorter, and
some parts of R have no match on t.

Consequently, d2(P ′, lpca) ≥ d2(Tupp

⋃Tlow, lpca) = d2(Tupp, lpca)+d2(Tlow, lpca), and since
d2(P ′, lpca) = d2(P, lpca) = d2(Pupp

⋃

Plow, lpca), the proof is completed. �
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lpca lpca

R Rt t

(a) (b)

A A

Figure 8. Two types of chains of segments (depicted dashed and denoted by R), and
their corresponding triangles’ edges (depicted solid and denoted by t). The base-point of
t corresponds to the most left point of Tupp from Fig. 6 and Fig. 7.

Since P is convex, the following relations hold:

|lupp| ≥
b′

bpca
apca, and |llow| ≥

bpca − b′

bpca
apca. (14)

The value

d2(Tupp, lpca) =
∫

√
a2
1+b′2

0
( α√

a2
1+b′2

b′)2 dα +
∫

√
a2
2+b′2

0
( α√

a2
2+b′2

b′)2 dα

= b′2

3
(
√

a2
1 + b′2 +

√

a2
2 + b′2)

is minimal when a1 = a2 = |lupp|
2

. With (14) we get

d2(Tupp, lpca) ≥
b′3

3bpca

√

a2
pca + 4b2

pca.

Analogously, we have for the lower part:

d2(Tlow, lpca) ≥
(bpca − b′)3

3bpca

√

a2
pca + 4b2

pca.

The sum d2(Tupp, lpca) + d2(Tlow, lpca) is minimal when b′ = bpca

2
. This, together with

Lemma 5, gives:

d2(P, lpca) ≥
b2
pca

12

√

a2
pca + 4b2

pca. (15)

Combining (13), (15) and Lemma 4 we have:

1

2
aoptb

2
opt +

1

6
b3
opt ≥

b2
pca

12

√

a2
pca + 4b2

pca ≥
b2
pca

12
apca. (16)

Replacing aopt with ηbopt on the left side, b2
pca with β2b2

opt and apca with αaopt = αηbopt on
the right side of (16), we obtain:
(

η

2
+

1

6

)

b3
opt ≥

β2 α η

12
b3
opt
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which implies

β ≤
√

6η + 2

α η
.

This gives the second upper bound on λ2,1(P ) for point sets with parameter η:

α β ≤
√

(6η + 2)α

η
≤

√

6η + 2

η

√

1 +
1

η2
. (17)

Lemma 6 λ2,1(P ) ≤
√

6η+2
η

√

1 + 1
η2 for any point set P with fixed aspect ratio η(P ) = η.

This implies the final result of this subsection.

Theorem 4 The PCA bounding box of a point set P in R
2 computed over the boundary

of CH(P ) has a guaranteed approximation factor λ2,1 ≤ 2.737.

Proof. The theorem follows from the combination of the two parametrized bounds from
Lemma 3 and Lemma 6 proved above:

λ2,1 ≤ sup
η≥1







min



η +
1

η
,

√

6η + 2

η

√

1 +
1

η2











.

It is easy to check that the supremum s ≈ 2.736 is obtained for η ≈ 2.302. �

Although this result concerns a continuous PCA version, the proof is mainly based on
arguments from discrete geometry. In contrast to that, the upper bound proofs for λ2,2

and λ3,3, presented in the next two subsections, essentially make use of integral calculus.

4.2. An upper bound on λ2,2

lopt

bopt

aopt

CH(P )

apca

bpca

lpca CH(P )

c c

BBpca(2,2)(P ) BBopt(P )

(a) (b)

Figure 9. A convex hull of the point set P , its PCA bounding box (a) and its optimal
bounding box (b).

First, we note that due to Lemma 3, we already have a parametrized upper bound
on λ2,2. Since this bound tends to infinity for η → ∞, we are going to derive another
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upper bound on λ2,2 that is better for large values of η. We derive such a bound by
finding a constant that bounds β from above. In this process we will make essential use
of the properties of BBpca(2,2)(P ). We denote by d2(CH(P ), l) the integral of the squared
distances of the points on CH(P ) to a line l, i.e.,

d2(CH(P ), l) =

∫

s∈CH(P )

d2(s, l)ds.

Let lpca be the line going through the center of gravity, parallel to the longer side of
BBpca(2,2)(P ), and lopt be the line going through the center of gravity, parallel to the
longer side of BBopt(P ) (see Fig. 9). By Lemma 1, part ii) lpca is the best fitting line of P
and therefore,

d2(CH(P ), lpca) ≤ d2(CH(P ), lopt). (18)

We obtain an estimate of β by determining a lower bound on d2(CH(P ), lpca) that depends
on bpca, and an upper bound on d2(CH(P ), lopt) that depends on bopt. Having an arbitrary
bounding box of CH(P ) (with side lengths a and b, a ≥ b) the area of CH(P ) can be
expressed as

A = A(CH(P )) =

∫ b

0

∫ a

0

χCH(P )(x, y)dxdy =

∫ b

0

g(y)dy,

where χCH(P )(x, y) is the characteristic function of CH(P ) defined as

χCH(P )(x, y) =







1 (x, y) ∈ CH(P )

0 (x, y) /∈ CH(P ),

and g(y) =
∫ a

0
χCH(P )(x, y)dx is the length of the intersection of CH(P ) with a horizontal

line at height y. In the following we call g(y) the density function of CH(P ) for computing

the area with the integral
∫ b

0
g(y)dy. Since CH(P ) is a convex set, g(y) is continuous and

convex in the interval [0, b] (see Fig. 10 (a) for an illustration). Let b1 denote the y-
coordinate of the center of gravity of CH(P ). The line lb1 (y = b1) divides the area of
CH(P ) into A1 and A2.

Theorem 6, which is derived from the generalized first mean value theorem of integral
calculus (Theorem 5), is our central technical tool in derivation of the lower and the upper
bound on d2(CH(P ), lb1).

Theorem 5 (Generalized first mean value theorem of integral calculus)
If h(x) and g(x) are continuous functions on the interval [a, b], and if g(x) does not change
its sign in the interval, then there is a ξ ∈ (a, b) such that

∫ b

a

h(x)g(x)dx = h(ξ)

∫ b

a

g(x)dx.
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(a)

ybb1

A1 A2
A

g(y)

(b)

ybb1

A1

f1(y)

b′

(c)

ybb1

A2

f2(y)

∆2

∆2

b′′

h1

h2

∆1

∆1

Figure 10. Construction of the lower bound on d2(CH(P ), lb1).

Theorem 6 Let f(x) and g(x) be positive continuous functions on the interval [a, b]

with
∫ b

a
f(x)dx =

∫ b

a
g(x)dx, and assume that there is some c ∈ [a, b] such that f(x) ≤

g(x), for all x ≤ c and f(x) ≥ g(x), for all x ≥ c. Then

∫ b

a

(x − b)2f(x)dx ≤
∫ b

a

(x − b)2g(x)dx and

∫ b

a

(x − a)2f(x)dx ≥
∫ b

a

(x − a)2g(x)dx.

Proof. We start from the assumptions
∫ b

a
f(x)dx =

∫ b

a
g(x)dx and f(x) ≤ g(x) for all

x ≤ c and f(x) ≥ g(x) for all x ≥ c. Thus,

∫ c

a

(g(x) − f(x))dx =

∫ b

c

(f(x) − g(x))dx = ∆ (19)

and the integrands on both sides are nonnegative. Applying Theorem 5 to the following
integrals we obtain

∫ c

a

(x − b)2(g(x) − f(x))dx = (ξ1 − b)2

∫ c

a

(g(x) − f(x))dx = (ξ1 − b)2∆,

and

∫ b

c

(x − b)2(f(x) − g(x))dx = (ξ2 − b)2

∫ b

c

(f(x) − g(x))dx = (ξ2 − b)2∆,

for some ξ1 ∈ [a, c] and ξ2 ∈ [c, b]. Therefore,

∫ c

a

(x − b)2(g(x) − f(x))dx = (ξ1 − b)2∆ ≥ (ξ2 − b)2∆ =

∫ b

c

(x − b)2(f(x) − g(x))dx.
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It follows that

∫ b

a

(x− b)2(g(x)−f(x))dx =

∫ c

a

(x− b)2(g(x)−f(x))dx−
∫ b

c

(x− b)2(f(x)−g(x))dx ≥ 0,

which proves the first claim

∫ b

a

(x − b)2f(x)dx ≤
∫ b

a

(x − b)2g(x)dx.

The proof of the second claim follows by symmetry. �

The following theorem was discovered independently by Grünbaum [7] and Hammer
(unpublished manuscript), and later rediscovered by Mityagin [11]. We use it to prove a
lower and an upper bound of the variance d2(CH(P ), lb1).

Theorem 7 (Grünbaum-Hammer-Mityagin) Let K be a compact convex set in R
d

with non-empty interior and centroid µ. Assume that the d-dimensional volume of K is
one, that is, Vold(K) = 1. Let H be any (d-1)-dimensional hyperplane passing through µ
with corresponding half-spaces H+ and H−. Then,

min{Vold(K ∩ H+),Vold(K ∩ H−)} ≥
(

d

d + 1

)d

Moreover, the bound ( d
d+1

)d is best possible.

Lemma 7 The variance d2(CH(P ), lb1) is bounded from below by 10
243

Ab2.

Proof. We split the integral
∫ b

0
(y − b1)

2g(y)dy at b1 (recall that b1 is the y-coordinate of
the center of gravity of CH(P )), and prove lower bounds on both parts in the following

way: For the left part consider the linear function f1(y) = h1

b1
y such that

∫ b1
0

f1(y)dy =
∫ b1

0
g(y)dy = A1 (see Fig. 10 (b) for an illustration). From

∫ b1
0

f1(y)dy = A1, it follows

that f1(y) = 2A1y
b21

. Since g(y) is convex, g(y) and f1(y) intersect only once, at a point

b′ ∈ (0, b1). By Theorem 6, we have

∫ b1

0

(y − b1)
2g(y)dy ≥

∫ b1

0

(y − b1)
2f1(y)dy =

∫ b1

0

(y − b)2 2A1

b1
2 dy =

A1b
2
1

6
. (20)

Analogously, for the right part consider the linear function f2(y) = h2

b1−b
(y − b) = h2

−b2
(y −

b) such that
∫ b

b1
f2(y)dy =

∫ b

b1
g(y)dy = A2 (see Fig. 10 (c) for an illustration). From

∫ b

b1
f2(y)dy = A2, it follows that f2(y) = 2A2

b22
(y − b). Since g(y) is convex, g(y) and f2(y)

intersect only once, at a point b′′ ∈ (b1, b). By Theorem 6, we have that

∫ b

b1
(y − b1)

2g(y)dy ≥
∫ b

b1
(y − b1)

2f2(y)dy =
∫ b

b1
(y − b1)

2 2A2

(b−b1)2
(y − b1)dy

=
A2b22

6
.

(21)
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From (20) and (21) we obtain that

d2(CH(P ), lb1) =
∫ b1
0

(y − b1)
2g(y)dy +

∫ b

b1
(y − b1)

2g(y)dy ≥ A1b21
6

+
A2b22

6
.

From the Grünbaum-Hammer-Mityagin theorem, we know that A1, A2 ∈ [4
9
A, 5

9
A]. Also,

we know that b1, b2 ∈ [1
3
b, 2

3
b]. It is not hard to show that, under these constrains,

the expression
A1b21

6
+

A2b21
6

achieves its minimum of 10
243

Ab2 for A1 = 4
9
A, b1 = 5

9
b or

A1 = 5
9
A, b1 = 4

9
b. �

Lemma 8 The variance d2(CH(P ), lb1) is bounded from above by 29
243

Ab2.

(a)

ybb1

f3(y)
∆3

∆3

h3

b′

(b)

b′′ ybb1

f4(y)

∆4 ∆4

h4

Figure 11. Construction of the upper bound on d2(CH(P ), lb1).

The proof of Lemma 8 is similar to the proof of Lemma 7. Here, the functions we use to
derive the upper bound on d2(CH(P ), lb1) are given in Fig 11 (functions f3(y) and f4(y)).

Now, we are ready to derive an alternative parametrized upper bound on λ2,2(P ) which
is better than the bound from Lemma 3 for big values of η.

Lemma 9 λ2,2(P ) ≤
√

2.9
(

1 + 1
η2

)

for any point set P with aspect ratio η(P ) = η.

Proof. Applying Lemma 7 and Lemma 8 in (18) we obtain

10

243
Ab2

pca ≤ d2(P, lpca) ≤ d2(P, lopt) ≤
29

243
Ab2

opt. (22)

From (22) it follows that β = bpca

bopt
≤

√
2.9. We have for apca the upper bound diam(P ) ≤

√

a2
opt + b2

opt = aopt

√

1 + 1
η2 . From this, it follows that α ≤

√

1 + 1
η2 . Putting this

together, we obtain αβ ≤
√

2.9
(

1 + 1
η2

)

. �
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Theorem 8 The PCA bounding box of a point set P in R
2 computed over CH(P ) has a

guaranteed approximation factor λ2,2 ≤ 2.104.

Proof. The theorem follows from the combination of the two parametrized bounds from
Lemma 3 and Lemma 9:

λ2,2 ≤ sup
η≥1

{

min

(

η +
1

η
,

√

2.9

(

1 +
1

η2

)

)}

.

It is easy to check that the supremum s ≈ 2.1038 is obtained for η ≈ 1.3784. �

4.3. An upper bound on λ3,3

Some of the techniques used here are similar to those used in Subsection 4.2 where we
derive an upper bound on λ2,2. One essential difference is that for the upper bound on
λ3,3, we additionally need a bound for the ratio of the middle sides of BBpca(3,3)(P ) and
BBopt(P ), which we derive from the relation in Lemma 13.

Given a point set P ⊆ R
3 and an arbitrary bounding box BB(P ), we will denote the

three side lengths of BB(P ) by a,b and c, where a ≥ b ≥ c. We are interested in the
side lengths aopt ≥ bopt ≥ copt and apca ≥ bpca ≥ cpca of BBopt(P ) and BBpca(3,3)(P ). The
parameters α = α(P ) = apca/aopt, β = β(P ) = bpca/bopt and γ = γ(P ) = cpca/copt denote
the ratios between the corresponding side lengths. Hence, we have λ3,3(P ) = α · β · γ.

Since the side lengths of any bounding box are bounded by the diameter of P , we
can observe that in general cpca ≤ bpca ≤ apca ≤ diam(P ) ≤

√
3aopt, and in the special

case when the optimal bounding box is a cube λ3,3(P ) ≤ 3
√

3. This observation can be
generalized, introducing two additional parameters η(P ) = aopt/bopt and θ(P ) = aopt/copt.

Lemma 10 λ3,3(P ) ≤ η θ
(

1 + 1
η2 + 1

θ2

)
3
2

for any point set P with aspect ratios η(P ) = η

and θ(P ) = θ.

Proof. We have for apca, bpca and cpca the upper bound diam(P ) ≤
√

a2
opt + b2

opt + c2
opt

= aopt

√

1 + 1
η2 + 1

θ2 . Thus, α β γ ≤ apca bpca cpca

aopt bopt copt
≤

a3
opt

(

1+ 1
η2

) 3
2

aoptboptcopt
. Replacing aopt in the

nominator once by η bopt and once by θ copt we obtain λ3,3(P ) ≤ η θ
(

1 + 1
η2 + 1

θ2

)
3
2
. �

Unfortunately, this parametrized upper bound tends to infinity for η → ∞ or θ → ∞.
Therefore, we are going to derive another upper bound that is better for large values of η
and θ. We derive such a bound by finding constants that bound β and γ from above. In
this process we will make essential use of the properties of BBpca(3,3)(P ). We denote by
d2(CH(P ), H) the integral of the squared distances of the points on CH(P ) to a plane
H , i.e., d2(CH(P ), H) =

∫

s∈CH(P )
d2(s, H)ds. Let Hpca be the plane going through the

center of gravity, parallel to the side apca × bpca of BBpca(3,3)(P ), and Hopt be the bisector
of BBopt(P ) parallel to the side aopt × bopt. By Lemma 1, part ii) Hpca is the best fitting
plane of P and therefore,

d2(CH(P ), Hpca) ≤ d2(CH(P ), Hopt). (23)
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We obtain an estimation for γ by determining a lower bound on d2(CH(P ), Hpca) that
depends on cpca, and an upper bound on d2(CH(P ), Hopt) that depends on copt. Having
an arbitrary bounding box of CH(P ) (with side lengths a, b, and c, a ≥ b ≥ c), we denote
by Hab the plane going through the center of gravity, parallel to the side a×b. The volume
of CH(P ) can be expressed as

V = V (CH(P )) =
∫ c

0

∫ b

0

∫ a

0
χCH(P )(x, y, z)dxdydz =

∫ c

0
g(z)dz,

where χCH(P )(x, y, z) is the characteristic function of CH(P ) defined as

χCH(P )(x, y, z) =







1 (x, y, z) ∈ CH(P )

0 (x, y, z) /∈ CH(P ),

and g(z) =
∫ b

0

∫ a

0
χCH(P )(x, y, z)dxdy is the area of the intersection of CH(P ) with the

horizontal plane at height z. As before we call g(z) the density function of CH(P ). Let
c1 denote the z-coordinate of the center of gravity of CH(P ). The line lc1 (y = c1) divides
the volume of CH(P ) into V1 and V2 (see Fig. 13 (a) for an illustration).

Note that g(z) is continuous, but in general not convex in the interval [0, b]. Therefore,
we cannot use linear functions to derive a lower and an upper bound on the function
d2(CH(P ), Hab), as we did in Subsection 4.2, because a linear function can intersect g(z)
more than once, and we cannot apply Theorem 6. We will show that instead of linear
functions, quadratic functions can be used.

Proposition 3 Let g(z) be the density function of CH(P ) defined as above, and let
f(z) = kz2 be the parabola such that

∫ c1
0

f(z)dz =
∫ c1

0
g(z)dz. Then, ∃c0 ∈ [0, c1] such

that f(z) ≤ g(x) for all z ≤ c0 and f(z) ≥ g(z) for all z ≥ c0.

Proof. We give a constructive proof. Let c0 := inf { d |∀z ∈ [d, c1] g(z) ≤ f(z)}. If
c0 = 0, then f(z) = g(z), and the proposition holds. If c0 > 0, then consider the polygon
which is the intersection of CH(P ) with the plane z = c0. We fix a point p0 in CH(P )
with z-coordinate 0 and construct a pyramid Q by extending all rays from p0 through the
polygon up to the plane z = c1 (see Fig. 12 for an illustration). Since, f(c0) = g(c0) the
quadratic function f(z) is the density function of Q. Therefore, since the part of Q below
c0 is completely included in CH(P ), we can conclude that f(z) ≤ g(z) for all z ≤ c0. On
the other hand, f(z) ≥ g(x) for all z ≥ c0 by the definition of c0. �

Now, we present a lower and an upper bound on the variance d2(CH(P ), Hab), from
which we can derive a bound on γ = cpca

copt
.

Lemma 11 The variance d2(CH(P ), Hab) is bounded from below by 7
256

V c2.

Proof. We split the integral
∫ c

0
(z − c1)

2g(z)dz at c1, and prove upper bounds on both

parts in the following way: For the left part consider the parabola f1(z) = h1

c21
z2 such that

∫ c1
0

f1(z)dz =
∫ c1
0

g(z)dz = V1 (see Fig. 13 (b) for an illustration). From
∫ c1
0

f1(z)dz = V1

we have that f1(z) = 3V1

c31
z2. Since f1(z) and g(z) define the same volume on the interval
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y

z

c0

xf (c0) = g(c0)

Q
CH(P )

p0

Figure 12. Construction of the intersection of f(z) and g(z).

[0, c1], they must intersect, and by Proposition 3 we know that if f1(z) 6= g(z), then they
can intersect only once, at a point c′ ∈ (0, c1). Under these conditions, we can apply
Theorem 6, and obtain

∫ c1
0

(z − c1)
2g(z)dz ≥

∫ c1
0

(z − c1)
2f1(z)dz =

∫ c1
0

(z − c1)
2 3V1

c31
z2dz =

V1c21
10

. (24)

Analogously, for the right part consider the parabola f2(z) = h2

(c1−c)2
(z − c)2 = h2

c22
(z −

c)2 such that
∫ c

c1
f2(y)dy =

∫ c

c1
g(z)dz = V2 (see Fig. 13 (b) for an illustration). From

∫ c

c1
f2(y)dy = V2 we have that f1(z) = 3V2

c32
(z − c)2. By similar arguments as above in the

(c)

f3(z)

f4(z)

zcc1

∆4 ∆4h3

h4

c′ c′′

(b)

f1(z)

f2(z)

zcc1

∆2

∆2

h2

h1

c′ c′′

g(z)

zcc1

V1 V2
V

(a)

∆1

∆1

∆3

∆3

Figure 13. Construction of the lower and upper bounds on d2(CH(P ), Hab)

case of f1(z), we can show that g(z) and f2(z) intersect only once, at a point c′′ ∈ (c1, c).
Applying Theorem 6 we have that

∫ c

c1
(z − c1)

2g(z)dz ≥
∫ c

c1
(z − c1)

2f2(z)dz =
∫ c

c1
(z − c1)

2 3V2

c32
(z − c)2dz

=
V2c22
10

.
(25)
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From (24) and (25) we obtain that

d2(CH(P ), Hab) =
∫ c1
0

(z − c1)
2g(z)dz +

∫ c

c1
(z − c1)

2g(z)dz ≥ V1c21
10

+
V2c22
10

.

From the Grünbaum-Hammer-Mityagin theorem, we know that V1, V2 ∈ [27
64

V, 37
64

V ]. Also,
we know that c1, c2 ∈ [1

4
c, 3

4
c]. It is not hard to show that, under these constrains,

the expression
V1c21
10

+
V2c22
10

achieves its minimum of 7
256

V c2 for V1 = 27
64

V, c1 = 3
4
c or

V1 = 37
64

V, c1 = 1
4
c. �

Lemma 12 The variance d2(CH(P ), Hab) is bounded from above by 12729
71680

V c2.

The proof of Lemma 12 is similar to the proof of Lemma 11. Here, the functions we
use to derive the upper bound on d2(CH(P ), Hab) are given in Fig 13 (c) (functions f3(z)
and f4(z)).

As a consequence of Lemma 11 and Lemma 12, we have the following upper bound on
γ.

Proposition 4 γ < 2.5484.

Proof. By Lemma 11, we have

7

256
V cpca

2 ≤ d2(CH(P ), Hpca). (26)

On the other hand, by Lemma 12, it follows that

d2(CH(P ), Hopt) ≤
12729

71680
V copt

2, (27)

From (26), (27) and (23), we obtain

γ =
cpca

copt
≤
√

12729

1960
< 2.5484.

�

We are now ready to present a new parametrized bound on λ3,3(P ), which is good for a
large values of η and θ. The additional crucial relation we exploit in its derivation is the
fact given in the following lemma.

Lemma 13 Let (x1, x2, . . . , xd) and (y1, y2, . . . , yd) be two sets of orthogonal base vectors
in R

d. For any point set P ∈ R
d it holds that

d
∑

i=1

var(P, xi) =

d
∑

i=1

var(P, yi).
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Proof. We have that

d
∑

i=1

var(P, xi) =
d
∑

i=1

1

n

∑

p∈P

d2(p, Hxi
),

where Hxi
is a hyperplane orthogonal to the vector xi, passing through the origin of the

coordinate system, d2(p, Hxi
) denotes the Euclidean distance of p to Hxi

, and n = |P |.
Since

∑d
i=1 d2(p, Hxi

) is the squared distance of p to the origin of the coordinate system, it
can be expressed as the sum of squared distances to the (d− 1)-dimensional hyperplanes
spanned by any set of orthogonal base vectors. Therefore,

d
∑

i=1

d2(p, Hxi
) =

d
∑

i=1

d2(p, Hyi
), and

∑d
i=1 var(P, xi) = 1

n

∑

p∈P

∑d
i=1 d2(p, Hxi

) = 1
n

∑

p∈P

∑d
i=1 d2(p, Hyi

)

=
∑d

i=1 var(P, yi).

When P is a continuous point set,

var(P, xi) =
1

Vol(P )

∫

p∈P

d2(p, Hxi
)ds

and the claim can be shown as in the discrete case. �

Lemma 14 λ3,3(P ) ≤ 6.43
√

1 + 1
η2 + 1

θ2 for any point set P with aspect ratios η(P ) = η

and θ(P ) = θ.

Proof. Let xpca, ypca, zpca be a set of basis vectors that determine the direction of BBpca(3,3)(P ),
and let xopt, yopt, zopt be a set of basis vectors that determine the direction of BBopt(CH(P )).
By Lemma 13, we have that

var(CH(P ), xpca) + var(CH(P ), ypca) + var(CH(P ), zpca) =

var(CH(P ), xopt) + var(CH(P ), yopt) + var(CH(P ), zopt).
(28)

By Lemma 1, part i), the variance of CH(P ) in the direction xpca is the biggest possible,
and therefore,

var(CH(P ), xpca) ≥ var(CH(P ), xopt). (29)

Combining (28) and (29) we obtain

var(CH(P ), ypca) + var(CH(P ), zpca) ≤

var(CH(P ), yopt) + var(CH(P ), zopt).
(30)



Bounds on the Quality of the PCA Bounding Boxes 23

We denote by Hapbp
the plane orthogonal to zpca, going through the center of gravity, and

parallel with the side apcabpca of BBpca(3,3)(P ). Similarly, we define Hapcp
, Haobo

and Haoco
.

We can rewrite (30) as

d2(CH(P ), Hapbp
) + d2(CH(P ), Hapcp

) ≤

d2(CH(P ), Haobo
) + d2(CH(P ), Haoco

).
(31)

By Lemma 11, the lower bound on d2(CH(P ), Hapbp
) is 7

256
V c2

pca, and the lower bound on
d2(CH(P ), Hapcp

) is 7
256

V b2
pca. By Lemma 12, the upper bound on d2(CH(P ), Haobo

) is
12729
71680

V c2
opt, and the lower bound on d2(CH(P ), Haoco

) is 12729
71680

V b2
opt. Plugging these bounds

into (31) we obtain

7

256
V c2

pca +
7

256
V b2

pca ≤ 12729

71680
V c2

opt +
12729

71680
V b2

opt. (32)

Applying γ = cpca

copt
in (32), we obtain

7

256
b2
pca ≤

(

12729

71680
− 7

256
γ

)

c2
opt +

12729

71680
b2
opt. (33)

By Proposition 4, it follows that 12729
71680

− 7
256

γ ≥ 0, and since bopt ≥ copt, we get from (33)
that

β =
bpca

bopt
≤
√

12.99 − γ2. (34)

The expression
√

12.99 − γ2 γ (≥ β γ) has its maximum of 6.495 for γ ≈ 2.5484. This

together with the bound α ≤
√

1 + 1
η2 + 1

θ2 gives

λ3,3(P ) = α β γ ≤ 6.495

√

1 +
1

η2
+

1

θ2
.

�

Lemma 10 gives us a bound on λ3,3(P ) which is good for small values of η and θ. In
contrary, the bound from Lemma 14 behaves worse for small values of η and θ, but better
for big values of η and θ. Therefore, we combine both of them to obtain the final upper
bound.

Theorem 9 The PCA bounding box of a point set P in R
3 computed over CH(P ) has a

guaranteed approximation factor λ3,3 < 7.81.

Proof. The theorem follows from the combination of the two parametrized bounds from
Lemma 10 and Lemma 14:

λ3,3 ≤ supη≥1, θ≥1

{

min

(

η θ
(

1 + 1
η2 + 1

θ2

) 3
2
, 6.495

√

1 + 1
η2 + 1

θ2

)}

.

By numerical verification we obtained that the supremum occurs at ≈ 7.807. �
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5. Open Problems

Improving the upper bound on λ3,3, λ2,2 and λ2,1, as well as obtaining an upper bound
on λ3,2 is of interest. The approaches we exploit to obtain the upper bounds require
an estimation of the length ratios between all corresponding side pairs of the minimum-
volume bounding box and the PCA bounding box. However, even in R

4, we do not know
how to obtain the estimations of the length ratios for all corresponding side pairs. We
believe that obtaining upper bounds on the approximation factor on the quality of PCA
bounding boxes in arbitrary dimension requires different approaches than those presented
in this paper.
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