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Abstract. Monsky’s theorem from 1970 states that a square cannot be dissected into an odd
number n of triangles of the same area, but it does not give a lower bound for the area differences
that must occur.

We extend Monsky’s theorem to “constrained framed maps”; based on this we can apply a
gap theorem from semi-algebraic geometry to a polynomial area difference measure and thus
get a lower bound for the area differences that decreases doubly-exponentially with n. On the
other hand, we obtain the first superpolynomial upper bounds for this problem, derived from an
explicit construction that uses the Thue–Morse sequence.
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1. Introduction

Around fifty years ago, in 1967, the following unsolved geometric problem appeared in the
American Mathematical Monthly [RT67]:

Let N be an odd integer. Can a rectangle be dissected into N nonoverlapping
triangles, all having the same area?

The answer is now known to be negative, there is no such dissection: This was first established by
Thomas [Tho68] for dissections for which all vertex coordinates are rational with odd denominator;
Monsky [Mon70] subsequently extended the proof to general dissections. Monsky’s theorem inspired
studies of generalizations and related problems for trapezoids, centrally symmetric polygons, as
well as higher-dimensional versions: A nice 1994 book by Stein and Szabó [SS94, Chap. 5]
surveyed this, but also after that there was continued interest and a lot of additional work, see
[Ste99, Ste00, Pra02, Ste04, Rud13, Rud14].

Monsky’s theorem says that a dissection of a square into an odd number of triangles cannot be
done if we require the triangles to have the same area exactly, but it does not say how close one can
get. Indeed, neither Monsky’s proof, nor the only known alternative Ansatz by Rudenko [Rud14],
seems to yield an estimate for this. The quantitative study of dissections, i.e., the necessary
differences in areas of triangles, was formalized as an optimization problem around 15 years ago,
see [Man03, Zie06].

To measure the area differences, we use the range of the areas a1, a2, . . . , an of the triangles in a
dissection D:

R(D) := max
i,j∈[n]

|ai − aj |. (1)

Thus we are interested in the behavior of the function

∆(n) := min{R(D) | D is a dissection of the square into n triangles },
which measures the minimal range of a dissection into n triangles, for odd n ≥ 3. For example,
∆(3) = 1/4, because the best dissections with 3 triangles have areas 1/4, 1/4, 1/2.

The main results of this paper are the bounds
1

22O(n)
≤ ∆(n) ≤ 1

2Ω(log2 n)
, (∗)

or alternatively, on a logarithmic scale,

2O(n) ≥ log
1

∆(n)
≥ Ω(log2 n).

Although in our main results we quantify the area differences in a dissection D in terms of the
range, other measures are possible, and turn out to be useful. Alternatives include the root mean
square error of the areas (the standard deviation). This differs from the range at most by a factor
of
√
n, and thus has the same asymptotics on the logarithmic scale, but we will demonstrate that

for specific values of n we get different optimal solutions.
The left inequality in (∗) provides a doubly-exponential lower bound for the range of areas in

any odd dissection. To prove it, we introduce in Section 4 the sum of squared residuals, without
taking square roots, as this is a polynomial function that can be directly treated with real algebraic
techniques. This is then used in Section 5 to derive the lower bound for the range from a general
“gap theorem” in real algebraic geometry (Theorem 5.3). We emphasize that we do not obtain a
new independent proof of Monsky’s theorem, as we use Monsky’s result in the proof.

The first improvement over the trivial upper bound of ∆(n) = O(1/n2) was due to Schulze
[Sch11], who in 2011 provided a family of triangulations with ∆(n) = O(1/n3). This is still the best
known bound for triangulations, and so far, there were also no better bounds for the more general
class of dissections. Our upper bound in (∗) goes far beyond this bound. We prove it in Section 7.3
by constructing a family of dissections with the help of the Thue–Morse sequence (Theorem 7.6). On
a logarithmic scale, Schulze’s upper bound on ∆(n) can be written as log 1

∆(n) ≥ 3 log n (1 + o(1)).
Our bound log 1

∆(n) ≥ Ω(log2 n) provides the first superpolynomial upper bound for the range of
areas in a family of dissections.
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The lower bounds we construct on the area differences of dissections are, in particular, valid
for the special case of triangulations. On the other hand, we do not have a construction of
triangulations that would improve on Schulze’s upper bounds, but we hope that this could be
achieved by an extension of our techniques.

The present text is structured as follows. Section 2 provides definitions, background and a
review of the proof of Monsky’s theorem (Theorem 2.7). In Section 3 we construct a setting of
“framed maps” and “constrained framed maps” that generalizes dissections, and extend Monsky’s
theorem to framed maps (Theorem 3.15). Section 4 introduces the area difference polynomials.
They allow us to apply estimates from semi-algebraic geometry in order to obtain the lower bounds
of (∗) in Section 5 (Theorem 5.3). In Section 6 we report results of computational enumerations of
combinatorial types and optimal dissections for small odd n for various area difference measures. In
Section 7 (Theorem 7.6) we prove the superpolynomial upper bounds in (∗). Finally, in Section 8,
we briefly discuss dissections into an even number of triangles. There are combinatorial types of
dissections or triangulations for which even areas cannot be achieved, for various reasons. We show
that our lower bounds carry over to such cases.

2. Background

In this section we define dissections of simple polygons and review the coloring used in Monsky’s
proof.

2.1. Dissection of simple polygons.

Definition 2.1 (Simple polygon, sides, corners). A simple polygon is a compact subset P ⊂ R2

whose boundary is a simple (i.e., nonintersecting) closed curve formed by finitely many line segments.
The sides of P are the maximal line segments on the boundary of P . The corners of P are the
endpoints of the sides of P .

A simple polygon with k sides is a simple k-gon, and a simple polygon with three sides is a
triangle. Hence, we may refer to corners and sides of a triangle on the plane.

Definition 2.2 (Dissections and triangulations of a simple polygon). A dissection of a simple
polygon P is a finite set of triangles with disjoint interiors that cover P . If every pairwise intersection
is either empty, a corner, or a common side of both triangles, the dissection is a triangulation.

To distinguish between dissections and triangulations, we say that a simple polygon is dissected,
or triangulated. Figure 1 illustrates the distinction. The main tool used to encode the combinatorial
structure of a dissection is the following labeled graph [Mon70, AP14].

Definition 2.3 (Skeleton graph of a dissection, nodes, edges). Let D = {t1, t2, . . . , tn} be a
dissection. The nodes V (ΓD) of the skeleton graph ΓD of D are the corners of the triangles in D.
There is an edge between two nodes if they are on the same side of a triangle of D and the line
segment joining them does not contain other nodes.

Since the skeleton graph of a dissection comes with a specific embedding on the plane, i.e. as a
plane graph, it is possible to define a face of the skeleton graph Γ as the cycle obtained on the
boundary of a triangle of the dissection. We abuse language and refer to a triangular face for either
the triangle (as a subset of the plane) or to its boundary cycle with distinguished corners. We also
consider the outside face as a face of Γ: It is the cycle B formed by the edges on the sides of the
simple polygon.

The face structure is actually uniquely defined just by the graph Γ together with the boundary
cycle B. It is easy to show that the skeleton Γ must be internally 3-connected : It must become
3-connected if we add an outside vertex and connect it to all vertices of B. Otherwise, Γ cannot even
be drawn with convex faces. (If the graph has no degree-2 vertices except on B, this condition is
also sufficient; see Tutte [Tut60] or Thomassen [Tho80, Theorem 5.1] for more precise statements.)
It is well-known that 3-connected graphs have a unique combinatorial embedding in the plane, i.e.,
the set of face cycles is fixed.
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Definition 2.4 (Boundary nodes, internal nodes, corner nodes, side nodes, boundary edges,
internal edges). Boundary nodes of ΓD are corners of triangles lying on the boundary of P (i.e.,
the outside face of ΓD). Nodes of ΓD that are not boundary nodes are internal nodes. Corner
nodes of ΓD are boundary nodes that are corners of P (i.e., corners of the outside face). Boundary
nodes of ΓD that are not corners nodes are side nodes. Boundary edges of ΓD lie on the sides of P
(i.e., on the sides of the outside face). Other edges are called internal.

We define similarly the boundary, corner and side nodes with respect to each triangular face
of ΓD. They all have three corner nodes and possibly side nodes that are corners of other triangles
of D that lie in the interior of their sides.

corner internal

sideboundary

Figure 1. A dissection and a triangulation of a simple polygon; some boundary/
corner/side/internal nodes are marked.

Example 2.5. The skeleton graphs of the triangulation and of the dissection in Figure 1 both
have 11 nodes, namely 9 boundary nodes (8 corner nodes and 1 side node) and 2 internal nodes.
They have 9 boundary edges and all other edges are internal edges.

In the following we will omit the subscript from ΓD and simply write Γ whenever the context is
clear. We let n be the number of triangles in a dissection, unless otherwise stated, and denote the
triangles as t1, t2, . . . , tn.

2.2. Monsky’s theorem. We define a 3-coloring of the nodes of the skeleton graph Γ, using a
2-adic valuation | · |2. To define this on Q, we set |0|2 := 0 and

|2nr/s|2 := 2−n.

for any nonzero rational number 2nr/s with n ∈ Z and odd integers r, s. This function on Q
satisfies the axioms of a valuation:

1) |x| ≥ 0, and |x| = 0⇐⇒ x = 0, 2) |xy| = |x| · |y|, 3) |x+ y| ≤ max{|x|, |y|}.
Condition 3) is stronger than the usual triangle inequality satisfied by a norm. All valuations also
satisfy |+1| = |−1| = 1. In 3), equality holds unless |x| = |y|. This valuation can be extended (in a
non-canonical way) from Q to R. For a complete account on how to produce such an extension, we
refer the reader to [SS94, Chap. 5] or [AZ14, Chap. 22].

Any 2-adic valuation on R determines a coloring of the points (x, y) ∈ R2 of the plane, as follows.
Let m(x, y) := max{|x|2, |y|2, 1}. The first entry of (|x|2, |y|2, 1) that equals m(x, y) determines
which of the three colors the point (x, y) receives:

red if |x|2 = m(x, y),
green if |x|2 < |y|2 = m(x, y), and
blue if |x|2, |y|2 < 1 = m(x, y).

These cases cover all possibilities and are mutually exclusive. A triangle is colorful if it has corners
of all three colors. We classify line segments according to the colors of their endpoints.

The 3-coloring of the plane has the following crucial properties.
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Lemma 2.6 (see e.g. [AZ14, Chapter 22, Lemma 1]). The 2-adic valuation of the area of a colorful
triangle is at least 2. In particular, the area of a colorful triangle cannot be 0 or of the form r/s
with integer r and odd s, since |r/s|2 ≤ 1 in this case. Consequently, every line contains points of
at most (indeed, exactly) two different colors.

From these properties, we derive the following version of Monsky’s theorem, which can readily
be obtained from the original proof. In Section 3.5, we prove an extension of this theorem to
a larger class of objects (Theorem 3.15), namely constrained framed maps of skeleton graphs of
dissections.

Theorem 2.7 (Monsky [Mon70]). Let E be a positive integer and P be a simple polygon of area E.
If P has an odd number of red-blue sides, then P cannot be dissected into an odd number of triangles
of equal area.

Note that the assumptions depend on properties that have, per se, nothing to do with the
problem: Dissectability into equal-area triangles is invariant under affine transformations, whereas
the assumptions (integral area and the coloring of the corners) are obviously not. The coloring is
not even invariant under translations. Moreover, if P has irrational corners, the coloring is not
canonical, since the extension of the valuation from Q to R depends on arbitrary choices. Once
such a valuation on R is fixed, the coloring of the corners is determined, and the assumptions of
the theorem can be checked.

2.3. Error measures. In the introduction we summarized our main results in terms of the range
R(D) of the triangle areas of an odd dissection (1). Alternative measures for the deviation of the
areas from the average value will be important in the following. In particular, given a dissection D
of a simple polygon P of area E into triangles of areas a1, a2, . . . , an, the root mean square (RMS)
error is defined as

RMS(D) :=

√√√√ 1

n

n∑
i=1

(
ai −

E

n

)2

.

If we restrict ourselves to the set of framed maps coming from dissections, the following
proposition shows that obtaining a lower bound for the RMS error implies directly a lower bound
on the range, and an upper bound on the range gives an upper bound on the RMS error.

Proposition 2.8. For a dissection D into n triangles, the range R(D) and the root mean square
error RMS(D) are related as follows:

R(D)

2
√
n
≤ RMS(D) ≤ R(D)

The upper bound can actually be strengthened to RMS(D) ≤ R(D)/2, which is tight for all
even n. For simplicity, we only prove the weaker bound.

Proof. Let E be the area of P , and write λi = ai − E
n . Then

√
n · RMS(D) =

√∑n
i=1 λ

2
i is the

2-norm of the vector (λi)
n
i=1, whereas the range is related to the maximum norm as follows:

max
i∈[n]
|λi| ≤ R(D) ≤ 2 max

i∈[n]
|λi|. (2)

The standard bound between the maximum norm and the 2-norm gives maxi |λi| ≤
√
n ·RMS(D) ≤√

nmaxi |λi|. Together with (2), this gives the claimed result. �

3. Monsky’s theorem for constrained framed maps of dissection skeleton graphs

The goal of this section is to extend Monsky’s theorem to a more general version for which lower
bounds on the range can be obtained more easily. We define combinatorial types of dissections in
Section 3.1. Section 3.2 describes how we deal with collinearity constraints. In Section 3.3, we
define framed maps and constrained framed maps of skeleton graphs of dissections. In Section 3.4,
we define signed areas with respect to framed maps. Finally, in Section 3.5, we extend Monsky’s
theorem to constrained framed maps of skeleton graphs of dissections of a simple polygon.
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3.1. Combinatorial types of dissections.

Definition 3.1 (Combinatorial data of a dissection). The combinatorial data of a dissection D of
a simple k-gon P into triangles t1, . . . , tn are given by the quadruple (Γ, B,C, T ): Γ is the skeleton
graph of D; B ⊆ V (Γ) is the vertex set of the boundary cycle of Γ; C = (c1, . . . , ck) is the sequence
of corner nodes of P in cyclic order; and finally,

T =
{
{vi1, vi2, vi3} | 1 ≤ i ≤ n

}
,

where {vi1, vi2, vi3} are the corners of ti.

Definition 3.2 (Abstract dissection). An abstract dissection of a k-gon is a quadruple D =
(Γ, B, C, T ) with the following conditions:

(1) Γ is a planar graph, with a plane drawing bounded by a simple cycle with vertex set B.
(2) Γ is internally 3-connected with respect this drawing.
(3) C = (c1, . . . , ck) is a sequence of k vertices in B, which occur in this order on the boundary

cycle.
(4) T consists of, for each interior face of Γ, a triplet of vertices from the boundary of this

face.

As was mentioned before, the face structure of an internally 3-connected graph is unique, given
the outer face B; thus, condition (4) is well-defined even if Γ is just given as an abstract graph.
Alternatively, we might consider an abstract dissection as a plane graph together with the additional
data C and T .

An isomorphism between abstract dissections is a graph isomorphism that preserves B, C and T .
Abstract dissections capture the notion of a combinatorial type of a dissection. We say that two
dissections D and D′ of a simple polygon P have the same combinatorial type if their combinatorial
data are isomorphic when considered as abstract dissections. A combinatorial type is thus an
isomorphism class of abstract dissections.

Example 3.3. Figure 2 shows two dissections of the square that have isomorphic skeleton graphs.
The isomorphism fixes the corner nodes, but it does not induce a bijection between the corners of
the triangles: the internal node x is a corner of 4 triangles in the first dissection, while no node is
a corner of 4 triangles in the second. Hence they do not have the same combinatorial type.

x x

Figure 2. Two different combinatorial types of dissections of the square with
isomorphic skeleton graphs

3.2. Collinearity constraints of dissections. Let D be a dissection of a simple polygon P . Any
set of three distinct nodes of Γ that lie on a side of a face of Γ (which might be the outside face)
form a collinearity constraint of D. We now describe the selection of a certain set of collinearity
constraints that will play an important role later on.

Definition 3.4 (Reduced system of collinearity constraints of a dissection, simplicial graph of a
dissection). Let D be a dissection of a simple polygon P . Let t ∈ D and let c, c′ be two corners of t.
Assume that the line segment between c and c′ contains in its interior the side nodes v1, . . . , vj
ordered from c to c′, with j ≥ 1. Add to Γ the edges cvi for 1 < i ≤ j, as well as cc′: The resulting
graph is again plane, and it gets the triangles cvivi+1 for 1 ≤ i < j, as well as cvjc′. Repeat this
procedure for each side of a triangle t ∈ D, and for all sides of the outside face of Γ. All the sets of
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P

Figure 3. The addition of edges to the skeleton graph Γ yields new triangular
faces representing collinearity constraints.

three corners of a triangle added in this process are put together in order to get a reduced system
of collinearity constraints. See Figure 3 for an illustration.
This procedure yields a supergraph Γ of Γ that contains no new nodes but may contain some new
edges between side nodes of triangles and P . We refer to the graph Γ as a simplicial graph of D.

A similar procedure is described implicitly in [Rud14, Sect. 3] and [AP14, Sect. 2]. By con-
struction, Γ is a plane graph, and we take it with the specified embedding, so its bounded faces
(which are triangles) inherit the orientation from the plane. In other words, the graph Γ is the
1-skeleton of a simplicial complex that is homeomorphic to a 2-dimensional ball, whose triangles
correspond to triangles of the original dissection and possibly triangles given by a reduced system
of collinearity constraints. The edges of the outer face corresponds to the sides of the polygon P .

Example 3.5. Consider the dissection D of the square shown in Figure 4. This dissection has two
simplicial graphs with reduced systems of collinearity constraints {{b1, c1, c2}, {i1, b1, i2}, {i2, b1, c3}}
and {{b1, c1, c2}, {i1, b1, c3}, {i2, i1, c3}}.

c1 c2

c3c4

b1

i1

i2

c1 c2

c3c4

c1 c2

c3c4

Figure 4. A dissection D of a square with 5 collinearity constraints (left) and two
sketches of the graph Γ with new dashed edges showing two different reduced
systems of collinearity constraints (center and right)

Example 3.6. Figure 5a–b shows a more elaborate example of the construction of Γ. Figure 5c–d
demonstrates that a set of reduced collinearity constraints is per se not a substitute for the full set
of collinearity constraints: Although each triple in the reduced set {{1, 2, 5}, {2, 4, 5}, {2, 3, 4}} of
collinearity constraints is collinear, the line 15243, which is supposed to be straight, has a kink.

Nevertheless, our adaptation of Monsky’s proof will exclude even such “illegal” solutions from
having equal-area triangles.

The procedure to get a reduced system of collinearity constraints is not unique. Nevertheless, as
the next lemma shows, the collinearity constraints of a dissection are given by its combinatorial
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5

3
4

1

2

(a) (b) (c) (d)

1

2

3

4

5

Figure 5. (a) A dissection with collinearity constraints highlighted in blue; (b) the
graph Γ with new dashed edges showing a reduced systems of collinearity con-
straints; (c) a set of reduced collinearity constraints coming from a single straight
segment; (d) a drawing where all reduced collinearity constraints are satisfied,
shown symbolically: The three points 2, 4, 5 in the dotted circle should actually
coincide.

type. Furthermore, the size of a reduced system of collinearity constraints is an invariant of the
combinatorial type of the dissection: it is equal to the total number of side nodes in Γ.

Lemma 3.7. Let D and D′ be two dissections of a simple polygon P . If D and D′ have the same
combinatorial type, then they have the same sets of collinearity constraints.

Next, we give bounds on the number of nodes and the cardinality of a reduced system of
collinearity constraints in relation to the number of triangles of a dissection.

Lemma 3.8. Let P be a simple polygon with K corners and D a dissection of P into n triangles,
with a reduced system of collinearity constraints L of cardinality `.

(i) The number of nodes of Γ is (n+K + `+ 2)/2.
(ii) The number of collinearity constraints satisfies ` ≤ n−K + 2.

Therefore the number of nodes of Γ is at least (n+K + 2)/2 and at most n+ 2.

Proof. (i) Let N be the number of nodes of Γ (and Γ). Consider the simplicial graph Γ and denote
by e its number of edges. The graph Γ has n+ ` triangular faces (excluding the outside face) given
by the n triangular faces of Γ and the ` triangles corresponding to collinearity constraints in L.
We count the number of occurrences “an edge of a triangular face of Γ” in two ways. First, each
triangular face of Γ contributes 3 such occurrences, getting 3(n+ `). Doing the previous counting,
all internal edges are counted twice, while the boundary edges are counted once, getting 2e−K
(observe that Γ does not have side nodes in any triangular face). Therefore, we have

3n = 2e−K − 3`. (3)

Euler’s equation on Γ gives e = N+(n+`)−1. Substituting this into (3), we get 2N = n+K+`+2.
(ii) The number of linear dependencies ` is bounded above by N −K. Therefore, using the last

equation for 2N ,
2` ≤ 2(N −K) = n−K + `+ 2. �

3.3. Framed maps and constrained framed maps. A dissection with a given combinatorial
type is characterized by the following requirements:

(i) All vertices that lie on an edge of some triangle or of P are collinear.
(ii) The corner nodes coincide with the corners of P .
(iii) The triangles are properly oriented and nonoverlapping.

We now define framed maps and constrained framed maps, in which conditions (i) and (iii) or
just condition (iii) is relaxed. The key property we get from this generalization is that the spaces
of framed maps and of constrained framed maps have a simple structure. In Section 4, this will
allow us to treat the minimization of the “sum of squared residuals” for a combinatorial type of
dissection as a polynomial minimization problem on a Euclidean space.
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Definition 3.9 (Framed map and constrained framed map of the skeleton graph of a dissection).
Let Γ be the skeleton graph of a dissection D of a simple polygon P , and V (Γ) its set of nodes.

(1) A framed map is a map φ : V (Γ)→ R2 that sends the corner nodes of Γ to the corresponding
corners of P .

(2) A framed map φ is a constrained framed map of Γ if for every side of every face of Γ
(including the outside face), φ sends the side nodes and the two corners of that side to a
line.

Constrained framed maps for the special case of triangulations were already considered in [AP14,
Sect. 3, p. 137] under the name drawings.

Clearly, for any dissection D of a simple polygon P , there is a corresponding constrained framed
map φD of ΓD. The converse is false in general; not all constrained framed maps of the skeleton
graph ΓD are obtained from a dissection, as described in the next example.

Example 3.10. Consider the triangulation T of the square shown on left in Figure 6. The side
node e can be moved towards the right or the left to obtain different framed maps of the skeleton
graph of the triangulation which are not constrained framed maps. To have a constrained framed
map the node e should be sent on the vertical line spanned by the corners b and c; if it is not
between them, the constrained framed map does not represent a dissection.

b

e

cd

a b

e

cd

a b

e

cd

a b

e

c
d

a

Figure 6. A triangulation T of the square (left), two illustrations of framed maps of
the graph ΓT that are not constrained framed maps with a dashed edge belonging
to Γ (middle), and a constrained framed map that does not describe a dissection
(right).

3.4. Signed area of a triangular face. Given a dissection D, we define the signed areas of
triangular faces of Γ with respect to framed maps of Γ.

Definition 3.11 (Signed area of triangular faces with respect to a framed map). Let D be a
dissection, let f be a triangular face of Γ with corner nodes c1, c2, and c3 labeled counterclockwise,
and let φ be a framed map of Γ. The signed area aφ(f) of f with respect to φ is

aφ(f) :=
1

2

∣∣∣∣∣∣
1 1 1

xφ(c1) xφ(c2) xφ(c3)

yφ(c1) yφ(c2) yφ(c3)

∣∣∣∣∣∣ ,
where (xφ(ci), yφ(ci)), with 1 ≤ i ≤ 3, are the coordinates of the corners nodes of f given by φ.

The signed area of a triangular face with respect to a framed map is a well-defined quantity
even if the framed map does not come from a dissection.

Example 3.12 (Example 3.10 continued). When moving the node e to the right in the triangula-
tion T shown in Figure 6, the sum of the signed areas of the triangles becomes greater than the
area of the square. When moving e to the left, it becomes smaller than the area of the square: the
shaded area determined by the triangle bce does not get added. In the framed map shown on the
right of Figure 6, the sum of the signed areas of triangles is equal to the area of the square.

The following lemma shows the invariance of the sum of the signed areas of triangular faces of Γ.
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Proposition 3.13. Let P be a simple polygon of area E, let D = {t1, t2, . . . , tn} be a dissection
of P , let L be a reduced system of collinearity constraints of D, and let φ be a framed map of the
skeleton graph of D. The sum of the signed areas of triangular faces of Γ equals E:

E =

n∑
i=1

aφ(ti) +
∑
`∈L

aφ(`).

Proof. Let s be a node of Γ which is not a corner of P with φ(s) = (xs, ys). In the simplicial
graph Γ, the node s is contained in at least three triangular faces which piece up together around s.
Denote by τ1 = (s, w0, w1), τ2 = (s, w1, w2), . . . , τk = (s, wk−1, w0) the triangles of Γ with s as a
corner in counterclockwise order. Changing the entries of φ(s) affects only the signed area of these
triangles τ1, τ2, . . . , τk. Now compute the sum of the signed areas

k∑
i=1

aφ(τi) =

k∑
i=1

1

2

∣∣∣∣∣∣
1 1 1
xs xwi−1 xwi

ys ywi−1
ywi

∣∣∣∣∣∣ ,
where φ(wi) = (xwi

, ywi
). The ordering (s, i−1, i) is the same as the one obtained in Definition 3.11

of signed area. Developing the determinants, and factoring the terms xs and ys, we deduce that xs
and ys get multiplied by 0. Therefore the position of the node s does not influence the sum of
signed areas. Since this sum is equal to E when φ = φD, the result follows. �

Corollary 3.14. If φ is a constrained framed map of the skeleton graph of D, then

E =

n∑
i=1

aφ(ti).

3.5. Monsky’s theorem for constrained framed maps of skeleton graphs. Monsky’s orig-
inal result provides more than the result for the square. As Monsky already noted in [Mon70], his
result holds for all simple polygons of integral area with an odd number of sides of type red-blue.

The following result plays a key role in Section 5 to prove the positivity of a polynomial measure
of area differences for which we provide a lower bound. It extends Monsky’s result (Theorem 2.7) to
constrained framed maps, which—as we have seen—are considerably more general than dissections.
We get Monsky’s original result when the simple polygon is the square with corners (0, 0) (colored
blue), (1, 0) (colored red), (1, 1) (colored red), and (0, 1) (colored green) and take constrained
framed maps coming from dissections.

Theorem 3.15. Let P be a simple polygon of integer area E and let φ be a constrained framed
map of the skeleton graph Γ of a dissection D of P into an odd number n of triangles. If P has an
odd number of red-blue sides, then there exists a triangular face of Γ whose signed area with respect
to φ is different from E/n.

Proof. The proof uses a parity argument analogous to the proof of Sperner’s lemma. We count
the number of pairs (e, t), where e is a red-blue edge of Γ on the boundary of a triangular face t
of Γ. Internal edges of Γ appear in two pairs, while boundary edges of Γ appear in only one. By
Lemma 2.6 and since φ is a constrained framed map, side nodes of Γ lying on a side of P of type
red-blue have to be red or blue with respect to φ. Because P has an odd number of red-blue sides,
we deduce that there is an odd number of red-blue boundary edges with respect to φ in the skeleton
graph Γ. Hence the number of above pairs is odd.

Again using the fact that φ is a constrained framed map, each colorful triangular face contributes
an odd number of red-blue edges while any other triangular face contributes an even number of
red-blue edges. This shows that the number of colorful triangular faces is congruent modulo 2 to
the number of red-blue sides of P . Since we assumed this number to be odd, Γ has to contain
a colorful triangular face with respect to φ. By Lemma 2.6, the corners of the colorful triangle
cannot be collinear and as E is an integer the signed area cannot be ±E/n with respect to φ. �

Remark 3.16. The theorem falls back on a proof of Monsky’s theorem. However, it applies to
the more general family of framed maps, which turns out to be essential to study how small the
range of areas of dissections of the square can be.
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If in a dissection all triangles have the same area, then the unsigned area is E/n. However,
constrained framed maps might contain triangles of negative orientation, and therefore all triangles
could have the same unsigned area, different from E/n. An example of this with an even number
of triangles is given in Example 3.18 and shown in Figure 9 below. The following corollary rules
out this possibility when n is odd.

Corollary 3.17. If P has an odd number of red-blue sides, then the triangular faces of Γ cannot
all have the same unsigned area with respect to φ.

Proof. We prove it by contradiction. Let α := |aφ(t)| > 0 be the common area of the triangular
faces t of Γ. Suppose there are b triangular faces with negative signed area. By Corollary 3.14,

E =

n∑
i=1

aφ(ti) = α+ · · ·+ α︸ ︷︷ ︸
n−b times

− (α+ · · ·+ α)︸ ︷︷ ︸
b times

= (n− 2b) · α.

We get α = E
n−2b , with integral E and odd n − 2b. By Lemma 2.6, a colorful triangular face

cannot have area ±α. On the other hand, there exists a colorful triangular face, and we have a
contradiction. �

Figure 7 shows a simple polygon satisfying the condition of the theorem.

(0, 0) (2, 0)

(3, 3)

(3/2, 5/2)

(2, 5)

(−2, 4)

(0, 3)

(−2, 2)

Figure 7. A simple polygon P where Monsky’s coloring approach applies. It has
area 13 and one side of P is of type red-blue, dashed and fattened with a red
square and a blue diamond as corners.

The following example emphasizes that the previous theorem concerns constrained framed maps
of skeleton graphs of dissections and not the more general framed maps.

Example 3.18. It is possible to find a framed map of the skeleton graph of a dissection where all
signed areas are equal to the average E/n, emphasizing that this is possible for framed maps that
are not constrained framed maps. Consider the two framed maps shown in Figure 8. In the framed
map shown on the right, the coordinates of the three internal nodes are a = ( 2

5 ,
√

14
25 ), b = ( 3

5 ,
3
5 ),

and c = (
√

14
25 ,

2
5 ). With these coordinates, the signed area of the five bounded faces are all equal

to 1/5, but the regions determined by the bounded faces are not triangles anymore. It is also
possible to find constrained framed maps where all unsigned areas are equal as shown in Figure 9.

4. Area differences of dissections and framed maps

In this section we set the stage to use a gap theorem to give a lower bound the range of areas of
dissections of the square. Before introducing the area difference polynomial that we will use for this
purpose, we want to point out that there is an alternative approach: Abrams and Pommersheim
[AP14] have recently shown that the areas a1, . . . , an of a triangulation with a given combinatorial
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a

b
c

a

b
c

Figure 8. On the left, a dissection of the square into 5 triangles. On the right, a
framed map of the skeleton graph of the same dissection which is not a constrained
framed map.

a b

cd

e f
a

b

cd

e
f

Figure 9. On the left, a dissection of the square into 4 triangles. On the right, a
constrained framed map of the skeleton graph of the same dissection where all
unsigned areas are equal to 1/2.

type satisfy a non-trivial polynomial equation. This opens up, in principle, another way of obtaining
a lower bound on the range of areas. However, this polynomial typically has high degree and seems
hard to describe explicitly.

We consider the abstract dissection D = (Γ, B,C, T ) arising from a dissectionD = {t1, t2, . . . , tn}
of a dissection of a simple polygon P of area E. Let XD := ((xv, yv))v∈V (Γ) be the plane coordinates
for the nodes of Γ. We consider xv and yv as variables describing a framed map. If Γ has M nodes,
XD contains 2M variables.

The area difference polynomial is a sum of three quadratic penalty terms: The first term is the
sum of squared residuals of the signed areas of the triangular faces. It is related to the RMS-error,
but it avoids the square root and the division by n:

SSR(XD) :=
∑
i∈[n]

(
a(ti)−

E

n

)2

= RMS(XD)2 · n, (4)

with

a(f) =
1

2

∣∣∣∣∣∣
1 1 1
xv1 xv2 xv3
yv1 yv2 yv3

∣∣∣∣∣∣ ,
where v1, v2, and v3 are the corner nodes of the triangular face f of Γ ordered counterclockwise.

The second term takes care of collinearities (condition (i) from the beginning of Section 3.3).
If L is a reduced system of collinearity constraints of the dissection D, we denote by SSL(XD) the
sum of squares of signed areas of these constraints:

SSL(XD) :=
∑
`∈L

a(`)2.

Finally, we want the corners to lie on their assigned positions (condition (ii) from the beginning
of Section 3.3). Let C be the set of corner nodes of the skeleton graph of D, and let (pv, qv) for
v ∈ C denote the coordinates of the corners of P . We denote by SSC(XD) the sum of squared
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distances of the corner nodes from their target positions:

SSC(XD) :=
∑
v∈C

(
(xv − pv)2 + (yv − qv)2

)
.

Definition 4.1 (Area difference polynomial of an abstract dissection). Let P be a simple polygon
of area E and D = (Γ, B, C, T ) be an abstract dissection of P . The area difference polynomial
πD ∈ R [XD] of D is the polynomial

πD(XD) = SSR(XD) + SSL(XD) + SSC(XD)

=
∑
i∈[n]

(
a(ti)−

E

n

)2

+
∑
`∈L

a(`)2 +
∑
v∈C

(
(xv − pv)2 + (yv − qv)2

)
,

where {ti | i ∈ [n]} are the internal faces of Γ, L is a reduced system of collinearity constraints,
and {(pv, qv) | v ∈ C} are the coordinates of the corners of P .

The following lemma is an immediate consequence of this definition.

Lemma 4.2. Let D be an abstract dissection of a simple polygon P of area E with n internal
faces. The area difference polynomial πD(XD) is always nonnegative, and it is zero if and only if
XD describes a constrained framed map and all signed areas of triangles of D are equal to E/n. �

5. Lower bound for the range of areas of dissections

In this section, we use a gap theorem from real algebraic geometry as a black box to obtain
a lower bound on the range of areas of dissections. First we obtain the necessary conditions in
Section 5.1 and then apply the theorem in Section 5.2.

5.1. Properties of the area difference polynomial.

Proposition 5.1. Let P be a simple polygon of area E and D a dissection of P into n triangles.
The area difference polynomial πD has the following properties.

(i) It has degree 4.
(ii) The number of variables is at most 2n+ 4.
(iii) If all corner coordinates are between 0 and b, then the constant term of πD is bounded in

absolute value by E2/n+ (2n+ 4)b2, and the remaining coefficients are bounded in absolute
value by max {1, E/n, 2b}.

(iv) If the area E and all corner coordinates (pv, qv) of P are multiples of 1/s for some integer s,
then the polynomial 4ns2πD is an integer polynomial.

Proof. (i) This is straightforward from the definition.
(ii) There are two variables per node, and by Lemma 3.8, the number of nodes is at most n+ 2.
(iii) We first analyze the first two components SSR + SSL of πD. Expanding, grouping the terms

by degree, and denoting the faces of the simplicial graph Γ by F (Γ), we get

SSR(XD) + SSL(XD) =
∑

f∈F (Γ)

a(f)2

︸ ︷︷ ︸
S4

− 2E

n

∑
i∈[n]

a(ti)︸ ︷︷ ︸
S2

+
E2

n︸︷︷︸
S0

We proceed to compute the coefficients in S4 and S2. The monomials in the area formula

a(f) = 1
2

(
(xv1yv2 − xv2yv1) + (xv2yv3 − xv3yv2) + (xv3yv1 − xv1yv3)

)
are grouped into three pairs, each corresponding to an edge of f . The term a(f)2 has coefficients
1
4 ,± 1

2 . If an edge belongs to two triangles, the square of the corresponding term, which has
coefficients 1

4 and − 1
2 , will be taken twice, contributing terms with coefficients 1

2 and −1. All other
terms appear only once. Thus the coefficients in S4 are in

{
1
4 ,± 1

2 ,−1
}
.

In S2, the monomials for an edge which is a side of two triangles of D cancel because they
appear in opposite orientations. The remaining terms appear once, and hence the coefficients in
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S2 are ±En . Since the terms of S4 are of degree 4 and the terms of S2 are of degree 2, there is no
interference between the parts. Thus the coefficients of SSR + SSL are in

{
1
4 ,± 1

2 ,−1,±En
}
.

We still have to add the terms in SSC for the corner coordinates. They are of the form
x2
v − 2xvpv + p2

v + y2
v − 2yvqv + q2

v, with 0 ≤ pv, qv ≤ b. There is at most one constant term (p2
v

or q2
v) per corner variable, of absolute value at most b2, and since there are at most 2n+ 4 variables

in total, this establishes the bound E2/n+ (2n+ 4)b2 on the overall constant term, including the
constant term S0 = E2/n from the first two parts.

The coefficients of the quadratic terms are 1, and the coefficients of the linear terms are bounded
by 2b in absolute value. Since the degree-2 terms in SSC are purely quadratic and the degree-2
terms in S2 are mixed, there is no interference between the different subexpressions. Overall, we
get the claimed bound on the size of the coefficients.

(iv) From the above calculations we see that all coefficients are multiples of 1/4 or of 1/(ns2).
Thus multiplication by 4ns2 makes every coefficient integral. �

5.2. Lower bound using a gap theorem. To derive the lower bound on πD, we use the following
gap theorem. The domain over which the polynomial is minimized is the k-dimensional simplex
Σk := {x ∈ Rk≥0 :

∑k
i=i xi ≤ 1}.

Theorem 5.2 (Emiris–Mourrain–Tsigaridas [EMT10, Section 4]). Let f ∈ Z[X1, . . . , Xk] be a
multivariate polynomial of total degree d which is positive on the k-simplex Σk and has coefficients
bounded by 2τ . The minimal value m := min{f(x) : x ∈ Σk} of f on Σk is bounded from below by

m ≥ mDMM,

where
1

mDMM
= 2d(d−1)(k−1)((k2+3k+1) log2 d+(k+1)(d log2 k+τ)+3k+d+2) × 2(k2+k) log2

√
d. (5)

The subscript DMM stands for Davenport–Mahler–Mignotte. In the published version of [EMT10,
formula (22)], a term d(d− 1)k−1 in the exponent of (5) was lost by splitting the expression over
two lines. This was confirmed by the authors (personal communication); the above theorem corrects
the omission.

We are now ready to deduce our main lower bound.

Theorem 5.3 (Doubly exponential lower bound on range). Let P be a simple polygon of integer
area E with integer corner coordinates and an odd number of red-blue sides. The range of any
dissection of P into an odd number n of triangles is bounded from below by

1

2O(9nn2)
,

where the constant implied by the O-notation depends on P .

Proof. We apply a translation so that the coordinates of the corners of P are nonnegative integers
and bounded above by Y , for some constant Y ≥ 1 that depends on P .

Consider a dissection D, and let k denote the number of variables of πD. By Proposition 5.1,
k ≤ X := 2n+ 4. To ensure that the minimum we are looking for lies in the simplex Σk, we apply
a second linear transformation, multiplying the coordinates by 1/XY . We obtain a polygon P ′ of
area E′ = E/(XY )2 where the sum of the node coordinates in any dissection of P ′ is at most 1.

By Theorem 3.15, there is no dissection D of the original polygon P (before the translation)
with all areas equal to E/n. It follows that the translated and scaled polygon P ′ also cannot have
a dissection D′ with all areas equal to E′/n. By Lemma 4.2, the area difference polynomial πD′ is
therefore positive.

To apply Theorem 5.2, we need to make the coefficients of the polynomial integral, and we need
to know a bound on the size of the coefficients. With the help of Proposition 5.1(iii), it is easy
to establish that the largest coefficient of πD′ is 1: The corners of the polygon P ′ lie in a square
of side length b = 1/X, and hence its area E′ is bounded by 1/X2. Thus the constant term is at
most E′2/n+ (2n+ 4)b2 ≤ 1/(X2n) +X/X2 < 1/X + 1/X < 1. As for the other coefficients, the
largest term in our bound max{1, E′n , 2b} on these coefficients is 1.
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The area of P ′ is E/(XY )2, and its corner coordinates are multiples of 1/(XY ). We can thus
apply Proposition 5.1(iv) with s = (XY )2 and conclude that 4ns2πD′ = 4nX4Y 4πD′ is an integer
polynomial. Its coefficients are bounded by

Q := 4nX4Y 4 = O(nX4) = O(n5).

We now apply Theorem 5.2 to the polynomial 4nX4Y 4πD′ , with k ≤ X = 2n+ 4 variables, degree
d = 4, and coefficient bitsize τ = dlog2Qe = O(log n). Substituting these data into (5), we obtain
that the minimum value m of 4nX4Y 4πD′ on the k-simplex satisfies

1

m
≤ 24·32n+4O(n2) × 2O(n2) ≤ 2O(9nn2). (6)

The constant in the O-notation depends only on P and not on the dissection D. To bound
the minimum of πD′ , we have to divide m by the factor 4nX4Y 4, which was used to make the
polynomial integral.

m

4nX4Y 4
= min{πD′(XD′) } = min { SSRD′(XD′) + SSLD′(XD′) + SSCD′(XD′) }

≤ min { SSRD′(XD′) | SSLD′(XD′) = SSCD′(XD′) = 0 }
From the last expression and (6) we conclude that, for any dissection of P ′, the sum of squared
residuals SSRD′ is at least 1/2O(9nn2). (The polynomial factor 4nX4Y 4 = O(n5) is swallowed by
the O-notation in the exponent.)

The range R is related to the sum of squared residuals SSR by taking the square root and
a multiplicative factor which is at least 1/

√
n (see equation (4) and Proposition 2.8). These

operations do not change the doubly-exponential character of the lower bound 1/2O(9nn2).
Finally, we have to translate the result back to the original polygon P . The area range is

multiplied by (XY )2 to compensate the scaling of P . Again, this polynomial factor does not
influence the bound. This concludes the proof of the theorem. �

Since the unit square satisfies the assumptions of the theorem (cf. the beginning of Section 3.5)
we have established the lower-bound part of our main result (∗) as presented in the introduction.

6. Enumeration and optimization results

We have computed the best dissections of a square with respect to the RMS error, for small
numbers of triangles. For this purpose, we enumerated all combinatorial types of dissections of the
unit square with a given number of nodes, and we minimized the RMS area deviation for each type.

Below we describe our computational approach and report the results. Due to the combinatorial
explosion of the number of cases and the algebraic difficulty of solving each case, we could only treat
dissections with up to 8 nodes before we reached the limit of computing power. Our calculations
complement earlier attempts of Mansow [Man03], who had considered only triangulations, and
optimized the range R of the areas.

In Section 7, we will report further computational experiments on dissections and triangulations
with special structure, which allowed us to treat larger numbers of triangles.

6.1. Enumeration of combinatorial types. To generate the combinatorial types of dissections
of the unit square, we used a combination of plantri [BM11] and Sage [S+14]. The software
plantri efficiently enumerates planar graphs with prescribed properties. We used it to generate all
3-connected planar graphs on N + 1 nodes. For each graph, we choose one vertex to be “at infinity”,
and after discarding it, we use its neighbors as boundary nodes. Among the boundary nodes, we
select four to be the corner nodes; the remaining boundary nodes get assigned to the sides of
the square. For each interior face of the graph, we choose three nodes to be the corners of that
triangular face. There are many combinations of choices that do not lead to a valid combinatorial
type of a dissection of a square, and these are discarded. Here are a few easy-to-state necessary
conditions that we used (some others are more intricate):

• A boundary node in B cannot be a side node of a triangular face of Γ.



16 J.-P. LABBÉ, G. ROTE, AND G.M. ZIEGLER

• An internal node cannot be in a collinearity constraint with two boundary nodes which lie
on the same side of P .

• An internal node can be a side node of at most one triangular face of Γ.
• A series of collinearity constraints forces successive edges on a line segment (thus fulfilling

their role; see for example nodes 1, 2, 3, 4, 5 in Figure 5c). It can happen that (parts of) two
such line segments are connected in such a way that they enclose some triangles between
them. Such a combinatorial type can be discarded.

Furthermore, since P is a square, we reduce number of abstract dissections considered by using the
symmetries of P .

6.2. Finding the optimal dissection for each combinatorial type. Once the combinatorial
type is fixed, we can write down the area difference polynomial. We are interested in the minimum
of the sum of squared residuals SSR(XD) under the side constraints SSL(XD) = SSC(XD) = 0.
We take care of the framing constraint SSC(XD) = 0 by directly substituting the desired corner
coordinates into the polynomial SSR(XD), resulting in a polynomial π̂D(X ′D) with a reduced set of
variables X ′D. We then incorporate the constraint SSL(X ′D) = 0 with a Lagrange multiplier γ and
get the integer polynomial

π̂D(X ′D, γ) := π̂D(X ′D) + 4γSSL(X ′D).

Then we set up a system of polynomial equations by setting the gradient of π̂D(X ′D, γ) to 0. This
gives all critical points of π̂D(X ′D, γ), including the configurations that represent legal dissections
and minimize SSR.

To find all real solutions to the system, we use Bertini [BHSW13], a program that uses
homotopy continuation to find numerical solutions of systems of polynomial equations. According
to Bertini’s user manual [BHSW13], Bertini finds all isolated solutions; nevertheless, this highly
depends on the tolerance parameters and the dimension of the solution set. On the one hand, if
the solution set to the system of polynomial equations is zero-dimensional, then one could opt to
use Groebner bases to solve the system of polynomial equations. However already for 7 nodes,
computing the Groebner bases in the zero-dimensional cases to get all solutions was hopeless on a
large scale. On the other hand, many combinatorial types had a solution sets of positive dimension.
Hence we do not claim that the solutions we found are optimal.

6.3. Minimal area deviation for dissections with at most 8 nodes. The process of generat-
ing combinatorial types of dissections with up to 8 nodes and computing coordinates with smallest
SSR-deviation for each of them was parallelized on 36 processors (i5 CPU@2.80GHz) and took
3 days.

In Table 1, we present the results for triangulations and dissections (that are not triangulations)
of the square with 3, 5, 7, and 9 triangles. We used the sum of squared residuals SSR in the
computations, because it is a polynomial, but the tables report the RMS numbers, because they
are on the same scale with the area range R.

The RMS-optimal dissections with 3, 5, 7, and 9 triangles and with at most 8 nodes are shown
in Figures 10–13. By Lemma 3.8, the number of nodes for a given number n of triangles can be as
large as n+ 2. Thus the results for 7 and 9 triangles are not complete.

Figure 10. The RMS-optimal dissections of the square with 3 triangles (RMS =
0.117851).

We compare these results to some results from the diploma thesis of Mansow [Man03]. Mansow
generated all combinatorial types of triangulations of the square with up to 11 triangles, using
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RMS-optimal dissections [Man03]
triangulations dissections† triang.

RMS R RMS R R
3 triangles, 5 nodes ∗0.117 851 0.25 ∗0.117 851 0.25 0.25
5 triangles, 6 nodes ∗0.010 281 9 0.026 446 6 0.040 824 8 0.083 333 3 0.0225
5 triangles, 7 nodes 0.040 824 8 0.083 333 3 ∗0.010 281 9 0.026 446 6 0.0833
7 triangles, 7 nodes 0.001 301 4 0.004 008 1 0.005 134 9 0.012 787 9 0.0031
7 triangles, 8 nodes 0.003 284 9 0.010 214 9 ∗0.000 805 1 0.002 320 7 0.0077
7 triangles, 9 nodes – – – – 0.0417
9 triangles, 8 nodes 0.000 395 6 40.001 147 9 ∗0.000 279 1 40.000 961 6 0.0011
9 triangles, 9 nodes – – – – 0.0001408
9 triangles, 10 nodes – – – – 0.0016
9 triangles, 11 nodes – – – – 0.025
11 triangles, 9 nodes – – – – 0.000 322 2
11 triangles, 10 nodes – – – – 0.000 004 2
11 triangles, 11 nodes – – – – 0.000 056 9
11 triangles, 12 nodes – – – – 0.000 297 6
11 triangles, 13 nodes – – – – 0.016 7

Table 1. Triangulations and dissections of the square with at most 8 nodes with
the optimal RMS values. The last column shows the results obtained by Man-
sow [Man03] for optimizing the range R among triangulations, and for comparison,
we include in the two center columns the best ranges R that we found during our
computations. ∗The best solutions that we found for a given number of triangles
are marked with a star.
†The column for dissections includes only those dissections that are not triangula-
tions.
4For 9 triangles and 8 nodes, the combinatorial type that gave the smallest range
was different from the combinatorial type that gave the smallest RMS error. In
the other rows, the adjacent columns RMS and R refer to the same dissection.

the program plantri [BM11]. For each type, she set up the “minimax” problem for the difference
between the largest and smallest triangle area when the nodes are restricted to the square. She
used Matlab’s Optimization Tool to search for the optimum from some starting value.

For comparison with Mansow’s results, our table reports also the smallest ranges that we found
during our computations. Note that these are the ranges of the RMS-optimal dissections (for
each combinatorial type) and not the range-optimal dissections, and obviously, different objective
functions can lead to different results. For example, Mansow found a triangulation with 6 nodes
with a smaller range of 0.0225425, compared to the range R = 0.0264466 that we found.

Starting with 7 triangles and up to 8 nodes, dissections achieve smaller area deviation than
triangulations, both in terms of RMS error (0.0023207 versus 0.0040081) and in terms of the range:
The best range of a dissection that we found (0.0023207, which is not even optimized) beats the
best triangulation (with R = 0.0031), which was found by Mansow. (The comparisons regarding the
RMS error are not conclusive, since triangulations and dissections with 9 nodes are not included.)

7. Upper bounds for the area range of dissections of the square

We extended our search for good dissections to larger numbers of triangles, without trying to be
exhaustive. The dissections that we found suggested a pattern, which we describe and analyze
in Section 7.2. A more careful analysis leads to a family of dissections with a superpolynomial
decrease of the area range presented in Section 7.3. In Section 7.4, we compare, using experimental
data, the area range of this family to a class of similar dissections. In Section 7.5, we provide a class
of triangulations that we suspect to have an exponential decrease of the area range. In Section 7.6
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Figure 11. The RMS-optimal dissections of the square with 5 triangles (RMS =
0.0102819). They all have the same multiset of areas. We see that the optimum
is achieved both by a triangulation (upper left) and by dissections which are not
triangulations. The dissections in the same column are related by keeping the
bottom triangle, reflecting the remaining trapezoid horizontally and shearing it.
The three dissections in the bottom row are obtained by halving a triangle in three
possible ways, and the same is true for the corresponding dissections in the top
row. (In addition, the second and third dissection in the top row are mirror images,
and only one of the two dissections was actually produced by the program.)
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Figure 12. The RMS-optimal dissections of the square with 7 triangles and at
most 8 vertices (RMS = 0.0008051). The two dissections are related by keeping
the bottom triangle, reflecting the remaining trapezoid horizontally, and then
shearing it.
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Figure 13. The RMS-optimal dissection of the square with 9 triangles and at most
8 vertices (RMS = 0.0002791).

we provide a heuristic argument in favor of an exponential decrease of the area range. Finally, in
Section 7.7, we discuss the relation between minimizing the range of areas and the Tarry–Escott
Problem.



AREA DIFFERENCE BOUNDS FOR ODD DISSECTIONS OF A SQUARE 19

7.1. Monotonicity of the area deviation. Before we look at special constructions, we mention
an observation due to Thomas [Tho68, Thm. 1], which shows how we can easily go from a dissection
into n triangles to n+ 2 triangles. As n increases, we can trivially achieve at least an inverse linear
improvement in the area deviation:

Lemma 7.1. Let D be a dissection of the unit square into n triangles. Then there exists a dissection
D′ of the unit square into n+2 triangles with R(D′) = n

n+2R(D) and RMS(D′) =
(

n
n+2

)3/2
RMS(D).

Proof. We can add two triangles of area 1
n on one side of the square to get a rectangle of area n+2

n ,
as in Figure 14. Scaling the rectangle to a square to get the dissection D′, the areas get multiplied
by n

n+2 . Hence the range of areas in D′ gets multiplied by n
n+2 . The RMS formula is affected in

a similar way: The two new triangles add 0 to the sum of squared differences, and the rescaling
multiplies the RMS error by

(
n
n+2

)3/2
RMS(D). �

Figure 14. Adding two triangles with the desired area

7.2. A family of dissections with area range O(1/n5). As a warm-up for the next section,
we present a result of independent interest giving a polynomial upper bound on the area range.

Theorem 7.2. Let n ≡ 1 (mod 4), and let Dn be the dissection of the unit square into n triangles
shown in Figure 15, consisting of a right triangle on top with area 1

n and n−1
4 trapezoidal slices

divided into 4 triangles each. The nodes of Dn can be placed such that the range of areas satisfies
R(Dn) ≤ O(1/n5).

. . .

slice 1 slice 2 slice n−1
4

(
1, 1− 2

n

)

(0, 0)

(0, 1) (1, 1)

(1, 0)

} 2a
n = εh

a

b

h

T1

T2 T3

T4

Figure 15. On the left, a dissection of the unit square with n−1
4 rectangle trape-

zoidal slices and a top triangle of area 1
n . On the right, the dimensions describing

a slice.
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Proof. We restrict the area of each slice to be exactly 4
n . This determines for each slice the height h

of the longer vertical side and the length a of the horizontal base, see Figure 15. Both the longer
vertical height h and the shorter vertical height h′ lie between 1 and 1 − 2/n. From the area
formula a(h+ h′)/2 = 4/n we derive a = 4/n · (1 +O( 1

n )) = O( 1
n ).

In each slice, we position the node on the horizontal base such a way that the triangle T1 has
area 1/n. (This is not the best choice, but it simplifies the computations. The optimal choice
would improve the error only by a factor of about 2.) This determines the area of T4. The triangles
T2 and T3 can then share the remaining area equally by adjusting the edge between them. The
base b of the triangle T1 is computed as follows. Since the upper edge of the slice has slope −2/n,
the shorter vertical side of the slice has height h′ = h(1− ε), with ε := 2a

nh = O(1/n2). Thus the
area of the slice is ah(1− ε/2) = 4/n. Comparing this with the area of the triangle, bh/2 = 1/n,
we deduce that b = a

2 (1− ε
2 ). The areas Ai of the triangles Ti are now

A1 = hb
2 = 1

n ,

A4 = 1
2h(1− ε)(a− b)

= 1
2h(1− ε)a2 (1 + ε/2)

= 1
2h(1− ε) b

1− ε/2(1 + ε/2)

= hb
2 (1− ε)(1− ε/2)−1(1 + ε/2)

= 1
n (1− ε)

(
1 + ε/2 +O(ε2)

)
(1 + ε/2)

= 1
n (1 +O(ε2)) = 1

n (1 +O(1/n4)) = 1
n +O( 1

n5 ),

A2 = A3 = 1
2

(
4
n −A1 −A4

)
= 1

n +O( 1
n5 ). �

Remark 7.3. The sum of squared residuals SSR for this family of dissections is n×O(1/n5)2 =
O(1/n9). We optimized SSR via the function minimize of the python library scipy with a
tolerance of 1 × 10−19 and the method “L-BFGS-B” for n up to 57. The optimal values were
approximately equal to (0.53n− 0.25)−9 using a least-square approximation, which suggests that
the above construction is very close to the optimal representative of the combinatorial type.

7.3. A family of dissections with superpolynomially small area range. The previous
construction can be improved using the Thue–Morse sequence.

Definition 7.4. The Thue–Morse sequence

s1s2s3 . . . = +.−.−+.−++−.−++−+−−+.−++−+−−++−−+−++−.· · ·
is defined recursively by s1 = +1 and

s2j−1 := +sj , (7)
s2j := −sj , (8)

for all j ≥ 1.

Classically, the Thue–Morse sequence is defined as a sequence of 0’s and 1’s [Lot97, Sect. 2.2],
but for our purposes the values ±1 (recorded as + and −) are more convenient. We have inserted
punctuation at the powers of 2 to highlight the recursive structure. A direct characterization of si
can be obtained from the binary representation of i− 1: si = +1 if and only if i− 1 has an even
number of 1’s in its binary representation.

The Thue–Morse sequence annihilates powers in the following sense:

Lemma 7.5. Let k ≥ 0, b 6= 0, and let f(x) be a polynomial of degree d. If d ≥ k, then there is a
polynomial F (x) of degree d− k such that the following identity holds for all x0:

2k∑
i=1

sif(x0 + ib) = F (x0).

Otherwise, if d < k, the above sum is zero.
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The last claim was stated already by Prouhet in 1851 [Pro51]; see also Section 7.7. For
completeness, we give the easy proof by induction on k:

Proof. For k = 0, we can take F (x) = f(x). If k > 0, we group the sum into pairs and use (7–8)
from Definition 7.4:

2k∑
i=1

sif(x0 + ib) =

2k/2∑
j=1

[
s2j−1f(x0 + (2j − 1)b) + s2jf(x0 + 2jb)

]

=

2k/2∑
j=1

sj
[
f(x0 + (2j − 1)b)− f(x0 + 2jb)

]
=

2k−1∑
j=1

sj f̂(x0 + jb̂),

with b̂ := 2b and f̂(x) := f(x− b)− f(x). The polynomial f̂ is identically zero if d = 0. If d > 0,
f̂ has degree d− 1. The parameter k is also reduced by 1, and the induction goes through. �

We can now describe the main construction of our paper:

Theorem 7.6. Let n be odd, and let Dn be the dissection of the square with corners (0, 0), (1, 0),
(1, 1) and (0, 1) with n triangles shown in Figure 16. The nodes of Dn can be placed such that the
range of areas is bounded from above by

R(Dn) ≤ 8n4

nlog2 n log2 n
(1 +O( logn

n )) =
1

nlog2 n−O(1)
.

2blog2 nc triangles

n− 2blog2 nc − 1 triangles

. . .

++++

− − − −

Figure 16. A dissection of the square into n triangles. The (+,−)-sequence is
determined by the first 2blog2 nc terms in the Thue–Morse sign-sequence.

Proof. First consider the case n = 2k + 1. As in Figure 15, we start by cutting a flat triangle of
area 1

n from the top edge, see Figure 17. From the trapezoid PQRS that remains, we cut n− 1
triangles of areas a1, a2, . . . , an−1 from left to right. Of course, the areas must have the correct
sum:

a1 + a2 + · · ·+ an−1 =
n− 1

n
.

For each triangle, we choose an orientation τi: It either has a side on the bottom side PQ (τi = −1)
or on the top side RS (τi = +1). The family of dissections in Theorem 7.2 corresponds to the
periodic orientation sequence −1,+1,+1,−1, −1,+1,+1,−1, . . ..

We want to choose the areas and orientations in such a way that the last triangle with area an−1

ends flush with the right boundary QR. The calculations for this condition are illustrated
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1/n

a1 a2 a3

an−1

. . .

P Q

R

S

+
+

+ +
+

− − − −
−

Figure 17. A generalization of the construction from Section 7.2

1/n

a1 a2 a3

P
Q

R

S

O

ai+1
ai. . .

F

G

. . .

E

T

an−1

2/n

Figure 18. Cutting off the successive triangles a1, a2, . . .. Here, the right edge of
the last triangle an−1 misses to end up at the vertical edge QR. The area 1

n of the
triangle RST has been exaggerated in order to keep the proportions manageable.
The shaded area is Ai.

schematically in Figure 18. Let O be the intersection of the lines spanned by PQ and RS. Then
PO = n/2, and the triangle POS has area n/4.

Let Ai = a1 + a2 + · · · + ai. Suppose that the (i + 1)-th triangle has orientation τi+1 = +1,
as in Figure 18. The relation between its vertices F and G is best understood by looking at the
remaining part EFO and EGO of the big triangle, of area n/4−Ai and n/4−Ai+1, respectively.
The ratio of these areas equals the ratio of the lengths FO and GO:

GO

FO
=
n/4−Ai+1

n/4−Ai
.

If the (i+ 1)-th triangle had orientation τi+1 = −1, we would instead foreshorten the lower side EO
by this proportion. To have the right edge of an−1 vertical, the product of the foreshortening
factors for the top triangles must be equal to the product of the foreshortening factors for the
bottom triangles, namely RO/SO = QO/PO. We can write this in product form:

n−1∏
i=1

( n/4−Ai
n/4−Ai−1

)τi
= 1. (9)
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Now we proceed as follows. We fix the orientations according to the Thue–Morse sequence
τi = si. We initially set all areas to the “ideal” area a0

i := 1
n for all i ≥ 1. Then we transform

the product in (9) into a sum of logarithms and develop them into a power series in 1
n . The

Thue–Morse sequence will cancel all terms up to degree k in the power series, and thus fulfills (9)
to a high degree. Finally, we perturb the areas in order to satisfy (9) exactly.

If we bound the absolute deviation from the ideal area by ε, the greatest effect is achieved if we
perturb every bottom triangle in one direction, ai = 1

n + ε, and every top triangle in the opposite
direction ai = 1

n − ε. The value of ε may be negative, and it is obviously bounded by

|ε| < 1

n
.

By Definition 7.4, successive triangles a2j−1 and a2j have opposite orientations: s2j = −s2j−1.
Therefore, the perturbations cancel after an even number of triangles, and we obtain

Ai =

{
Ai−2 + ai−1 + ai = Ai−2 + ( 1

n ± ε) + ( 1
n ∓ ε) = i

n , for i even,
Ai−1 + ai = i

n + siε, for odd i.
(10)

Let us denote the product in (9) by Φ. We split it into two factors Φ = Φ0 × Φ∗. The factor Φ0 is
the value when we substitute the ideal values A0

i = i/n, and Φ∗ denotes the deviation caused by
perturbing A0

i to Ai.

Φ =

n−1∏
i=1

( n/4−Ai
n/4−Ai−1

)si
= Φ0 × Φ∗

=

n−1∏
i=1

( n/4−A0
i

n/4−A0
i−1

)si
×
n−1∏
i=1

(n/4−Ai
n/4−A0

i

)si
·
n−1∏
i=1

(n/4−Ai−1

n/4−A0
i−1

)−si
We change the iteration variable in the last product and get

Φ∗ =

n−1∏
i=1

(n/4−Ai
n/4−A0

i

)si
·
n−2∏
i=0

(n/4−Ai
n/4−A0

i

)−si+1

Since Ai differs from A0
i only for odd i, we can simplify this:

Φ∗ =
∏

1≤i≤n−1
i odd

(n/4−Ai
n/4−A0

i

)si
·

∏
0≤i≤n−2
i odd

(n/4−Ai
n/4−A0

i

)−si+1

=

 ∏
1≤i≤n−2
i odd

(n/4−Ai
n/4−A0

i

)si
2

The last equation holds because si = −si+1 for odd i. Now we substitute the values from (10) and
take logarithms.

ln Φ∗ = 2
∑

0≤i≤n−2
i odd

si ln
n/4− i/n− siε
n/4− i/n

= 2
∑

0≤i≤n−2
i odd

si ln

(
1− siε

n/4− i/n

)

= 2
∑

0≤i≤n−2
i odd

(
si

−siε
n/4− i/n +O( εn )2

)

= −2
∑

0≤i≤n−2
i odd

(
4s2
i ε

n
(1 +O( 1

n )) +O( εn )2

)

= −2
n− 1

2
· 4ε

n
(1 +O( 1

n )) +O( ε
2

n ) = −ε(1 +O( 1
n )) (11)
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Now we look at the term Φ0 and rewrite it in terms of a more convenient parameter

u := 4/n2

as follows:

Φ0 =

n−1∏
i=1

(n/4−A0
i

n/4−A0
i−1

)si
=

n−1∏
i=1

(n/4− i/n
n/4− (i− 1)/n

)si
=

n−1∏
i=1

(1− iu
1− (i− 1)u

)si
,

ln Φ0 =

n−1∑
i=1

si ln(1− iu)−
n−1∑
i=1

si ln(1− (i− 1)u). (12)

We use the Taylor formula

ln(1− x) = −x− x2

2
− x3

3
− · · · − xk

k
− xk+1

k + 1
/(1− θx)

k
= f(x) + ρ(x),

for some θ with 0 ≤ θ ≤ 1, with a polynomial f(x) of degree k and the remainder term ρ(x), which
is bounded by |ρ(x)| ≤ xk+1/[(k + 1)(1− x))k] for positive x. This gives

ln Φ0 =

n−1∑
i=1

sif(iu)−
n−1∑
i=1

sif((i− 1)u) +

n−1∑
i=1

si[ρ(iu)− ρ((i− 1)u)].

By Lemma 7.5, the first two terms can be rewritten in terms of a degree-0 (constant) polynomial F ,
and they cancel:

2k∑
i=1

sif(iu)−
2k∑
i=1

sif(−u+ iu) = F (0)− F (−u) = 0. (13)

The remainder terms are bounded as follows. We assume n ≥ 5 and use the bound iu ≤ nu = 4/n.

|ln Φ0| =
∣∣∣∣∣
n−1∑
i=1

si[ρ(iu)− ρ((i− 1)u)]

∣∣∣∣∣ ≤ 2n · 1

k + 1

( 4

n

)k+1( 1

1− 4/n

)k
=

8

k + 1

( 1

n/4− 1

)k
To satisfy (9) and get a dissection, we have to set ln Φ∗ + ln Φ0 = 0, or, using (11),

ln Φ∗ = −ε(1 +O( 1
n )) = − ln Φ0,

from which we get
|ε| ≤ |ln Φ0| · (1 +O( 1

n )). (14)
The expression |ln Φ0| has been bounded above. Substituting k = log2(n− 1) and assuming k ≥ 1,
we get

|ε| ≤ 8

(n/4− 1)log2(n−1)(log2(n− 1) + 1)
(1 +O( 1

n )). (15)

The “−1” terms in the denominator can be swallowed by increasing the error term.

|ε| ≤ 8

(n/4)log2 n(log2 n+ 1)
(1 +O( logn

n )) =
8n2

nlog2 n(log2 n+ 1)
(1 +O( logn

n )).

This is valid for values of n where n − 1 is a power of 2. In general, let n = 2k + `, where
k = blog2 nc and ` ≥ 1 is odd. By the scaling trick of Lemma 7.1, we can reduce this to the case
n′ = 2k + 1 ≥ n/2 and obtain the bound

|ε| ≤ 2k + 1

2k + `
|ε′| ≤ |ε′| ≤ 8n′2

n′ log2 n
′(log2 n

′ + 1)
(1 +O( logn′

n′ ))

≤ 8n2

(n/2)log2 n−1(log2 n− 1 + 1)
(1 +O( logn

n ))

=
8n2 · n/2

(n/2)log2 n log2 n
(1 +O( logn

n )) =
4n4

nlog2 n log2 n
(1 +O( logn

n )).

Since the range is 2|ε|, Theorem 7.6 follows. �
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n optimal sign sequence s ε RMS Λ(Ropt) Λ(RC) Λ(R∗)

3∗ −+ 0.16667 0.13608 0.7943 0.7943 −
5∗ +−−+ 0.01250 0.01118 0.9935 0.9935 −
7 −+−++− 0.00010248 0.00009488 1.2468 0.8584 −
9∗ −++−+−−+ 0.00016360 0.00015424 1.0734 1.0734 −
11 −+−+−++−+− 4.1201×10−6 3.9284×10−6 1.1879 0.9958 −
13 +−−++−−+−++− 5.9928×10−6 5.7577×10−6 1.0927 0.9403 −
15 −+−+−+−++−+−+− 5.2871×10−7 5.1079×10−7 1.1404 0.8982 −
17∗ −−+−++−++−+−++−− 3.4708×10−8 3.3672×10−8 1.1930 1.1076 0.5538
19 +−−+−−+−++++−−+−+− 4.2052×10−8 4.0931×10−8 1.1413 1.0699 0.5411
21 −+−++−+−−+++−−−−+++− 5.5778×10−9 5.4434×10−9 1.1702 1.0383 0.5305
23 ++−−+−−++−−+−++−−+−+−+ 3.5359×10−9 3.4581×10−9 1.1503 1.0114 0.5213
25 −−−+−+++++−−−++++−−−−++− 7.457×10−10 7.307×10−10 1.1660 0.9880 0.5132
27 1.266×10−10 1.242×10−10 1.1875 0.9675 0.5061
29 9.026×10−12 8.869×10−12 1.2297 0.9492 0.4998
31 2.446×10−12 2.406×10−12 1.2373 0.9329 0.4940
33∗ 1.423×10−12 1.401×10−12 1.2277 1.1237 0.7113
35 1.777×10−13 1.752×10−13 1.2537 1.1066 0.7018
37 1.100×10−14 1.086×10−14 1.2930 1.0909 0.6932
39 2.119×10−14 2.092×10−14 1.2610 1.0765 0.6852

Table 2. The optimal sign sequence in comparison to the systematic construction.
The values of the form n = 2k + 1 are marked with a star.

7.4. Experimental improvements. For small values of n, we have computed the optimal dis-
section within the above framework by trying all sign sequences with equally many + and − signs.
Table 2 reports the optimal sign sequence (for n ≤ 25) and the resulting value of ε. In these
calculations, we have always kept the upper right triangle that is cut off initially at its original
size 1/n. We miss some solutions with a smaller range in this way, but for larger n, the loss is

negligible. The range is R = 2ε and the RMS, which is also reported, is ε
√

n−1
n , since we have

n− 1 triangles with an error of ε and one triangle with error 0. The best sign sequence was always
unique up to flipping all signs, and by flipping signs if necessary, we have ensured a positive ε.

We can observe that the quality of these solutions is not monotone in n. The solution for n = 7
has smaller errors than the Thue–Morse solution for n = 9, which is optimal within its class. For
n = 9, it is therefore better to use the solution for n = 7 and extend it with the help of Lemma 7.1.
The next inversion occurs between n = 11 and n = 13. For n = 17 and n = 33, the Thue–Morse
sequence is also not the winner. For n = 17, it is only the third-best solution, with ε about ten
times larger than for the optimum. For n = 33, the best solution is about 75 times better than the
Thue–Morse sequence. The reason is that, when we look at the difference in the left-hand side
of (13) for the full power series of ln(1− x) instead of the truncated series f(x), the lower-order
terms can be very small for the particular value of u, despite the fact that they don’t cancel
systematically. In Section 7.6 we attempt to give another explanation for this phenomenon.

Theorem 7.6 predicts a decrease roughly of the order R ≈ const/2(log2 n)2 . Therefore we report
the value

Λ(R) =

√
logn

1

R
,

which should converge to a constant if the Thue–Morse sequence gives the optimal value. A larger
value Λ(R) indicates a smaller range and therefore a better solution. We also report the corre-
sponding values Λ(RC) for the general construction of Theorem 7.6, which uses the Thue–Morse
sequence for the closest power of 2 and tiles it with triangles of area 1/n. For comparison, the last
column gives Λ(R∗) for the “promised” value R∗ = 2|ε| in the proof of Theorem 7.6 that results
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n RC = 2|ε| R∗ Λ(RC) Λ(R∗)

3 0.33333333 − 0.7943 −
5 0.02500000 − 0.9935 −
9 0.00032719 2.0480 1.0734 −
17 6.7688×10−7 0.028682 1.1076 0.5538
33 2.1229×10−10 0.00013313 1.1237 0.7113
65 9.8506×10−15 1.8172×10−7 1.1326 0.7857
129 6.6218×10−20 6.8719×10−11 1.1385 0.8287
257 6.3377×10−26 6.9405×10−15 1.1428 0.8567
513 8.5151×10−33 1.8289×10−19 1.1465 0.8763
1025 1.5875×10−40 1.2390×10−24 1.1497 0.8910
2049 4.0679×10−49 2.1378×10−30 1.1525 0.9025
4097 1.4210×10−58 9.3410×10−37 1.1552 0.9117
8193 6.7214×10−69 1.0298×10−43 1.1576 0.9192
16385 4.2794×10−80 2.8583×10−51 1.1598 0.9255
32769 3.6489×10−92 1.9941×10−59 1.1619 0.9309
65537 4.1484×10−105 3.4936×10−68 1.1638 0.9356
131073 6.2638×10−119 1.5359×10−77 1.1656 0.9396
262145 1.2518×10−133 1.6936×10−87 1.1673 0.9432
524289 3.3006×10−149 4.6822×10−98 1.1689 0.9464
1048577 1.1451×10−165 3.2443×10−109 1.1704 0.9492

Table 3. The range RC of the systematic construction with the Thue–Morse
sequence, and in comparison, the upper bound R∗ from the proof of Theorem 7.6.

from ignoring the O(1/n) term in (15). This converges to 1 as n increases, with intermediate
deteriorations between the powers of 2.

Table 3 gives the results for the systematic construction for the powers of two, together with
the promised range R∗. Both are also expressed in terms of the function Λ as above, to exhibit
the converging behavior. The function Λ makes the differences appear small, while they are really
more spectacular. For example, for n = 65537, the “promised” range is 1.74× 10−68, but the true
range is only 4.15× 10−105.

7.5. Towards a family of triangulations of exponential decreasing range. So far, we have
constructed families of good dissections. We now describe a family of triangulations that is rich
enough so that we may hope to find triangulations with small area range among them. In contrast
to Section 7.3, we have no systematic construction that would yield good candidates. Our family is
characterized by containing a path P through all interior nodes, starting in the upper left corner
and terminating at the right edge, see Figure 19. The combinatorial type is characterized by a
sequence of 1’s and 2’s that sum up to n. At each step, we either add “2” triangles that connect an
edge of P with the upper right corner and the bottom side, or we add “1” triangle with an edge on
the bottom side. When all areas are set to 1/n, the path will not terminate at the right edge, and
thus the triangle areas must be adjusted in order to obtain a valid triangulation.

For small values of n, we have enumerated all combinatorial types of this family; Table 4 records
the triangulations that yield that smallest range. It is not obvious which areas should be increased
or which should be decreased when the areas are adjusted. Thus we don’t even ensure that the
reported ranges are optimal for the given combinatorial types. For example, we missed Mansow’s
best triangulation with n = 11 triangles, which is reported in Table 1 and has range 0.0001408,
even though it falls in our family: Its pattern is .

It may happen that the path reaches the bottom-right corner prematurely (Figure 20b). In
such cases, the remaining area becomes a triangle, which can be trivially partitioned into the right
number of equal-sized triangles. Such triangles are indicated by 0’s in the code of Table 4.
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Figure 19. A typical specimen of our family of triangulations with n = 23 triangles.
In the left picture, all triangles have area 1/n, and the path P does not end on the
right edge. In the right picture, the areas are adjusted. The signs in the triangles
indicate whether their areas are bigger or smaller than the ideal value 1/n. All
triangles with the same sign have exactly the same area, in this case 1/n+ 8

23R

and 1/n− 15
23R, respectively.

n code range ±R
3  −0.25
5  −0.0225425
7  0.00312387
9  −0.00337346
11  0.0000046733325
13  −0.000210277
15  5.41030×10−5

17  6.93952×10−6

19  4.10530×10−7

21  −1.70884×10−6

23  −1.25472×10−7

25  2.16265×10−8

27  7.89259×10−9

29  −2.69003×10−8

31  2.97133×10−9

33  9.03785×10−10

35  1.00009×10−12

37  1.88583×10−11

39  7.32381×10−14

41  4.53634×10−13

43  1.00055×10−16

Table 4. Best triangulations found. The sign of the range R indicates in which
direction the areas of the type-1 triangles that sit on the bottom edge were
perturbed.

The numbers in the table indicate an exponential decrease, but in contrast to the case of
dissections, we cannot even show a superpolynomial decrease.

7.6. A heuristic argument for an exponential decrease. The experiments indicate that, as n
gets large, there are much better solutions than the ones provided by the Thue–Morse sequence.
We attempt a non-rigorous argument, based on an analogy with a random experiment, why one
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Figure 20. The best triangulations for n = 19 triangles (code ) and
n = 31 triangles (code ) that we found

might even expect an exponentially small range. We use the setup of the proof of Theorem 7.6.
We view the quantity in (12),

T := ln Φ0 =

n−1∑
i=1

si ln
1− iu

1− (i− 1)u
=

n−1∑
i=1

si(u+O(u2)) (16)

as a random variable: Instead of the Thue–Morse sequence si, we choose a sign τi = ±1 inde-
pendently uniformly at random. T is a discrete random variable with N = 2n−1 equally likely
outcomes. By the Central Limit Theorem, T is approximately Gaussian with mean 0 and standard
deviation σ ≈

√
n− 1 · u ≈ 4/n3/2. We now make a leap of faith and assume that the error terms

O(u2) in (16) act like random fluctuations that eradicate all systematic dependencies and all traces
how the values were generated. In particular, we assume that, around the origin, T behaves like N
independent samples from the approximating Gaussian. This means that T is locally distributed
like a Poisson process with density λ = f(0) ·N , where f(0) = 1/

√
2πσ is the density function of

the approximating Gaussian at the point 0. In a Poisson process with density λ, the expected
smallest absolute value (i.e., the expected distance from the origin to the closest point) is 1/(2λ).
Putting all of this together, we obtain

E(min |T |) = E(min |ln Φ0|) =
1

2λ
=
√

2π · n
3/4

2n
.

This would give an exponentially small upper bound on the expectation of |ln Φ0| for the best
sequence τ1, . . . , τn−1. By (14), this translates directly into a bound on the expected range 2|ε|.
Thus, accepting the probabilistic model, this would give an exponential upper bound on the area
range that holds with high probability, for a given n. It does not rule out that, for a few exceptional
values of n, much smaller minima exist, and thus this argument can obviously not be used for a
lower bound.

We note that only the 2n/2 sequences τ1, . . . , τn that consist of pairs +− and −+ were considered
in this argument (and these were reduced to sequences τ1, . . . , τn−1 of length n− 1 in the analysis),
whereas the experiments reported in the table consider all

(
n
2

)
sequences in which the signs are

balanced.
If we extend the above arguments to an even wilder speculation, it would imply the “meta-

theorem” that an optimization problem with N combinatorially distinct configurations should be
expected to have a minimum of the order poly(n)/N . In our setup, we have considered a restricted
set of N = 2n/2 dissections of a special type. The total number of dissections is also just singly
exponential in n, so our restriction causes at most a deterioration in the base of the exponential
growth in this argument.

The number of triangulations grows also exponentially with n. (Already the family of com-
binatorial types considered in our experiments in Section 7.5 is exponential.) Thus, even for
triangulations, we can “expect” an exponentially small area deviation.
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(a) (b) (c)

Figure 21. (a) Four triangles where the most balanced area partition is 1
2 ,

1
6 ,

1
6 ,

1
6 .

(b) A triangulation into 16 triangles, 9 of which lie inside the thick triangle.
(c) A triangulation with 26 triangles.

7.7. The Tarry–Escott Problem. The question of assigning signs si = ±1 in order to cancel the
first k powers is related to the so-called Tarry–Escott Problem (or Prouhet–Tarry–Escott Problem,
or Tarry Problem) [Wri59]. This problem asks for two distinct sets of integers α1, . . . , αn and
β1, . . . , βn such that

αd1 + · · ·+ αdn = βd1 + · · ·+ βdn, for all d = 0, 1, 2, . . . , k

The solution that corresponds to the first 2k+1 elements of the Thue–Morse sequence (Lemma 7.5)
was proposed already in 1851 by Eugène Prouhet [Pro51], even in a generalized setting where bk+1

numbers in an arithmetic progression are partitioned into b sets with equal sums of powers.
The objective in the Tarry–Escott Problem is to find solutions of small size n, and to come close

to the lower bound of n = k + 1. In our application, we have the additional constraint that the
two sets form a partition of the successive integers {1, . . . , 2n} into two parts (see also [Cha09]).

Some computer runs for small exponents k have found no improvements over the Thue–Morse
sequence. For example, for k = 3, the only sequence lengths that allow a partition with equal sums
of powers are 16, 24, 32, 48, . . ., and the shortest one of length 2n = 16 is the Prouhet solution with
the Thue–Morse sequence.

8. Even dissections with unequal areas

Because of Monsky’s Theorem, we have concentrated on dissections with an odd number of
triangles. However, there are also combinatorial types of dissections with an even number of
triangles for which the areas cannot be equal. As pointed out by one of the referees, our bounds
also apply in these cases.

Example 8.1. Figure 21 shows a dissection of a square into 4 triangles, and two triangulations
with 16 and 26 triangles. In example (b), the areas cannot all be equal to 1/16 because the
highlighted triangle would then contain more than half of the area of the square. This is impossible,
as no triangle contained in the square can contain more than half of the area. Example (c) is a bit
more delicate; it requires a little calculation, which we leave as a challenge for the reader. (It is a
manifestation of the fact that the octahedron graph, the graph obtained from the lower left half of
Example (c) by removing the degree-3 vertices, is not area-universal, see [Rin90, Kle16].)

All these examples contain a separating triangle. We are not aware of any 4-connected even
triangulation for which one cannot achieve equal areas.

The approach that we have taken for dissections where the number of triangles is odd, does
not directly carry over to the even case, for the following reason: We have extended our concept
of dissections, and some of its rules, when taken in isolation, allow drawings that violate the
requirements of a dissection, see Examples 3.6 and 3.12, and Figure 9. Nevertheless, Monsky’s
approach was powerful enough to show that even these “generalized” equipartitions cannot exist.

However, the following lemma allows us to extend our approach at least to the case when there
are no “flipped-over” triangles, and the signed areas are positive.
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(a) (b)

K

v

W

(c)

Figure 22. (a) A drawing D0 and a curve W from point v to infinity, crossing a
segment at K; (b) the dual path in the drawing D that corresponds to the crossing
at K; (c) a hypothetical dual graph D∗, and the directed subgraph U that might
correspond to a crossing. (The subgraph induced by the shaded zero-area triangles
cannot actually contain a cycle, but we don’t need this in our argument.)

Lemma 8.2. Let φ be a framed map of a simplicial graph Γ of a dissection of a simple k-gon P
where all triangular faces of Γ have nonnegative signed area, (In particular, the triangular faces of
Γ have the correct orientation.) Then the triangular faces of Γ with positive area form a dissection
of P .

Proof. For a point x of the plane, let χ(x) be the number of triangles that contain x. Our goal
is to show that, for points x that don’t lie on an edge of Γ, χ(x) = 1 if x lies in P and χ(x) = 0
otherwise. The standard argument for this establishes that χ(x) remains unchanged when x crosses
a triangle edge, except when the edge forms the boundary of P , and in that case it changes in
the “correct” way, see for example [dLHSS96, Section 3] and [FZ99, Theorem 4.3]. In our case, the
presence of zero-area triangles makes the argument more complicated.

In addition to the given drawing D0 of Γ (potentially with overlapping edges and coincident
nodes, and conceivably even with crossing edges), let us consider a plane drawing D of Γ, see
Figure 22a–b. We look at an arbitrary point v of the plane that does not lie on any edge of D0,
and we ask in how many triangles of Γ it is contained. We find a curve W from v to infinity that
avoids all nodes and all intersections between edges, and crosses the edges in a finite number of
points. Let us focus on a point K where W crosses a line segment of the drawing D0. The curve
W may cross several edges of Γ simultaneously. We select in D the edges which are crossed by
W at this point K, and we orient the corresponding edges of the dual graph D∗ of D accordingly.
The following observations are immediate from this definition.

(i) IfW crosses an edge of a zero-area triangle T , it will cross another edge of T in the opposite
direction. This means that one of the edges enters T and the other one leaves T .

(ii) If W crosses an edge of a triangle T with nonzero area or of the outer polygon P , it crosses
no other edge of this face at this point.

Figure 22c shows a more elaborate example of a directed graph U that satisfies conditions (i)
and (ii). These conditions mean that the directed subgraph U of D∗ has indegree=outdegree
for every zero-area triangle, and degree ≤ 1 for every nondegenerate triangle. It follows that U
consists of node-disjoint directed cycles and directed paths. The endpoints of such a path can be a
nondegenerate triangle or the outer face.

Whenever a path starts in some nondegenerate triangle T , the curve W leaves this triangle T at
the crossing K, and whenever a path ends in some nondegenerate triangle T , W enters T at the
crossing K. Two such changes taken together have no net effect on χ.

The conclusion is that, if W does not cross a boundary edge, χ(x) does not change. If w crosses
a boundary edge, χ(x) changes by ±1 as appropriate for P . This follows from the assumption
that the boundary nodes, and hence also the boundary edges, are embedded at the correct corners
and sides of P . Since χ(x) has the correct value 0 when x is far away, it follows that χ(x) has
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the correct value everywhere, and therefore, the triangles cover P with disjoint interiors; in other
words, they form a dissection. �

With this lemma, the lower bound of our main theorem (Theorem 5.3) carries over to even
dissections with a given combinatorial type for which the minimum is nonzero (for whatever reason).
The proof can be used verbatim, except that Lemma 8.2 replaces the application of Lemma 4.2.

Since we were motivated by Monsky’s Theorem, our calculations in Sections 6 and 7 were
restricted to the odd case. The question how small area deviations one can actually achieve, in
terms of explicit constructions, would also be interesting for even dissections for which equal areas
cannot be achieved. We leave this for future work.

Acknowledgments. We are grateful to Moritz Firsching, Arnau Padrol, Francisco Santos, Raman
Sanyal, and Louis Theran for their input, advice, and many valuable discussions.

References

[AP14] Aaron Abrams and James Pommersheim, Spaces of polygonal triangulations and Monsky polynomials,
Discrete Comput. Geom. 51 (2014), no. 1, 132–160.

[AZ14] Martin Aigner and Günter M. Ziegler, Proofs from THE BOOK, 5th ed., Springer, Berlin, 2014.
[BHSW13] Daniel Bates, Jonathan Hauenstein, Andrew Sommese, and Charles Wampler, Bertini: Software for

numerical algebraic geometry, 2013, bertini.nd.edu and bertini.nd.edu/BertiniUsersManual.pdf.
[BM11] Gunnar Brinkmann and Brendan McKay, plantri: program for generation of certain types of planar

graph, 2011, cs.anu.edu.au/~bdm/plantri.
[Cha09] Robin Chapman, Solution of problem 11266: Partitioning values of a polynomial into sets of equal sum,

Amer. Math. Monthly 116 (2009), no. 2, 181–183.
[dLHSS96] Jesús A. de Loera, Serkan Hoşten, Francisco Santos, and Bernd Sturmfels, The polytope of all triangula-

tions of a point configuration, Documenta Math.—J. DMV 1 (1996), 103–119.
[EMT10] Ioannis Z. Emiris, Bernard Mourrain, and Elias P. Tsigaridas, The DMM bound: multivariate (aggregate)

separation bounds, ISSAC 2010—Proceedings of the 2010 International Symposium on Symbolic and
Algebraic Computation, ACM Press, 2010, pp. 243–250.

[FZ99] R. T. Firla and G. M. Ziegler, Hilbert bases, unimodular triangulations, and binary covers of rational
polyhedral cones, Discrete & Computational Geometry 21 (1999), no. 2, 205–216.

[Kle16] Linda Kleist, Drawing planar graphs with prescribed face areas, Graph-Theoretic Concepts in Computer
Science (Berlin, Heidelberg) (Pinar Heggernes, ed.), Lecture Notes in Computer Science, vol. 9941,
Springer-Verlag, 2016, pp. 158–170.

[Lot97] M. Lothaire, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press,
Cambridge, 1997, reprint with minor revisions; original edition: Addison Wesley 1983.

[Man03] Katja Mansow, Ungerade Triangulierungen eines Quadrats von kleiner Diskrepanz, Diploma thesis,
Technische Universität Berlin, December 2003, i+48 pp.

[Mon70] Paul Monsky, On dividing a square into triangles, Amer. Math. Monthly 77 (1970), no. 2, 161–164.
[Pra02] Iwan Praton, Cutting polyominos into equal-area triangles, Amer. Math. Monthly 109 (2002), no. 9,

818–826.
[Pro51] Eugène Prouhet, Mémoire sur quelques relations entre les puissances des nombres, Comptes Rendus

Acad. Sci. Sér. I 33 (1851), 225.
[Rin90] G. Ringel, Equiareal graphs, Contemporary Methods in Graph Theory — In honour of Prof. Dr. Klaus

Wagner (Rainer Bodendiek, ed.), BI Wissenschaftsverlag, 1990, pp. 503–505.
[RT67] Fred Richman and John Thomas, Problem 5479, Amer. Math. Monthly 74 (1967), no. 9, 329.
[Rud13] Daniil Rudenko, On equidissection of balanced polygons, J. Math. Sci., New York 190 (2013), no. 3,

486–495.
[Rud14] , Arithmetic of 3-valent graphs and equidissections of flat surfaces, preprint, arXiv:1411.0285

(2014), 19 pp.
[S+14] William A. Stein et al., Sage mathematics software (version 6.1.1), The Sage Development Team, 2014,

www.sagemath.org.
[Sch11] Bernd Schulze, On the area discrepancy of triangulations of squares and trapezoids, Electron. J. Combin.

18 (2011), no. 1, Paper 137, 16 pp.
[SS94] Sherman K. Stein and Sándor Szabó, Algebra and Tiling: Homomorphisms in the Service of Geometry,

Carus Mathematical Monographs, vol. 25, Mathematical Association of America, 1994.
[Ste99] Sherman K. Stein, Cutting a polyomino into triangles of equal areas, Amer. Math. Monthly 106 (1999),

no. 3, 255–257.
[Ste00] , A generalized conjecture about cutting a polygon into triangles of equal areas, Discrete Comput.

Geom. 24 (2000), no. 1, 141–145.
[Ste04] , Cutting a polygon into triangles of equal areas, Math. Intelligencer 26 (2004), no. 1, 17–21.
[Tho68] John Thomas, A dissection problem, Math. Mag. 41 (1968), no. 4, 187–191.

https://bertini.nd.edu
https://bertini.nd.edu/BertiniUsersManual.pdf
http://cs.anu.edu.au/~bdm/plantri
https://arxiv.org/abs/1411.0285
http://www.sagemath.org


32 J.-P. LABBÉ, G. ROTE, AND G.M. ZIEGLER

[Tho80] Carsten Thomassen, Planarity and duality of finite and infinite graphs, Journal of Combinatorial Theory,
Series B 29 (1980), 244–271.

[Tut60] W. T. Tutte, Convex representations of graphs, Proc. London Math. Soc. 10 (1960), 304–320.
[Wri59] Edward M. Wright, Prouhet’s 1851 solution of the Tarry-Escott problem of 1910, Amer. Math. Monthly

66 (1959), no. 3, 199–201.
[Zie06] Günter M. Ziegler, Problems in discrete differential geometry, open problem 10, Oberwolfach Reports

(2006), no. 1, 693–694.

(J.-P. Labbé) Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin,
Germany

E-mail address: labbe@math.fu-berlin.de
URL: http://page.mi.fu-berlin.de/labbe

(G. Rote) Institut für Informatik, Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
E-mail address: rote@inf.fu-berlin.de
URL: http://page.mi.fu-berlin.de/rote

(G.M. Ziegler) Institut für Mathematik, Freie Universität Berlin, Arnimallee 2, 14195 Berlin,
Germany

E-mail address: ziegler@math.fu-berlin.de
URL: http://page.mi.fu-berlin.de/gmziegler


