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Abstract
What is the maximum number of intersections of the boundaries of a simple m-gon and a simple1

n-gon, assuming general position? This is a basic question in combinatorial geometry, and the2

answer is easy if at least one of m and n is even: If both m and n are even, then every pair of sides3

may cross and so the answer is mn. If exactly one polygon, say the n-gon, has an odd number of4

sides, it can intersect each side of the m-gon at most n− 1 times; hence there are at most mn−m5

intersections. It is not hard to construct examples that meet these bounds. If both m and n are6

odd, the best known construction has mn− (m + n) + 3 intersections, and it is conjectured that this7

is the maximum. However, the best known upper bound is only mn− (m + dn
6 e), for m ≥ n. We8

prove a new upper bound of mn− (m + n) + C for some constant C, which is optimal apart from9

the value of C.10

2012 ACM Subject Classification Theory of computation→ Computational geometry; Mathematics11

of computing → Combinatorial problems12

Keywords and phrases Simple polygon, Ramsey theory, combinatorial geometry13

Funding Eyal Ackerman: The main part of this work was performed during a visit to Freie Universität14

Berlin which was supported by the Freie Universität Alumni Program.15

Balázs Keszegh: Research supported by the Lendület program of the Hungarian Academy of Sciences16

(MTA), under the grant LP2017-19/2017 and by the National Research, Development and Innovation17

Office – NKFIH under the grant K 116769.18

1 Introduction19

To determine the union of two or more geometric objects in the plane is one of the basic20

computational geometric problems. In strong relation to that, determining the maximum21

complexity of the union of two or more geometric objects is a basic extremal geometric22

problem. We study this problem when the two objects are simple polygons.23

Let P and Q be two simple polygons with m and n sides, respectively, where m, n ≥ 3.24

For simplicity we always assume general position in the sense that no three vertices (of P25

and Q combined) lie on a line and no two sides (of P and Q combined) are parallel. We are26

interested in the maximum number of intersections of the boundaries of P and Q.27

This naturally gives an upper bound for the complexity of the union of the polygon areas28

as well. (In the worst case all the m + n vertices of the two polygons contribute to the29

complexity of the boundary in addition to the intersection points.)30
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Figure 1 (a) Optimal construction for m = n = 8, with 8× 8 = 64 intersections. (b) Optimal
construction for m = 8, n = 7, with 8 × 6 = 48 intersections. (c) Lower-bound construction for
m = 9, n = 7. There are 8× 6 + 2 = 50 intersections.

This problem was first studied in 1993 by Dillencourt, Mount, and Saalfeld [2]. The cases31

when m or n is even are solved there. If m and n are both even, then every pair of sides may32

cross and so the answer is mn. Figure 1a shows one of many ways to achieve this number.33

If one polygon, say Q, has an odd number n of sides, no line segment s can be intersected34

n times by Q, because otherwise each side of Q would have to flip from one side of s to the35

other side. Thus, each side of the m-gon P is intersected at most n− 1 times, for a total of36

at most mn−m intersections. It is easy to see that this bound is tight when P has an even37

number of sides, see Figure 1b.38

When both m and n are odd, the situation is more difficult; the bound that is obtained39

by the above argument remains at mn−max{m, n}, because the set of m intersections that40

are necessarily “missing” due to the odd parity of n might conceivably overlap with the41

n intersections that are “missing” due to the odd parity of m. However, the best known42

family of examples gives only mn− (m + n) + 3 = (m− 1)(n− 1) + 2 intersection points, see43

Figure 1c. Note that in Figure 1, all vertices of the polygons contribute to the boundary of44

the union of the polygon areas.45

I Conjecture 1. Let P and Q be simple polygons with m and n sides, respectively, such that46

m, n ≥ 3 are odd numbers. Then there are at most mn − (m + n) + 3 intersection points47

between sides of P and sides of Q.48

In [2] an unrecoverable error appears in a claimed proof of Conjecture 1. Another49

attempted proof [5] also turned out to have a fault. The only correct improvement over the50

trivial upper bound is an upper bound of mn− (m + dn
6 e) for m ≥ n, due to Černý, Kára,51

Král’, Podbrdský, Sotáková, and Šámal [1]. We will briefly discuss their proof in Section 2.52

We improve the upper bound to mn− (m + n) + O(1), which is optimal apart from an53

additional constant:54

I Theorem 1. There is an absolute constant C such that the following holds. Suppose that55

P and Q are simple polygons with m and n sides, respectively, such that m and n are odd56

numbers. Then there are at least m + n−C pairs of a side of P and a side of Q that do not57

intersect. Hence, there are at most mn− (m + n) + C intersections.58

The value of the constant C that we obtain in our proof is around 2267. We did not make59

a large effort to optimize this value, and obviously, there is ample space for improvement.60
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Figure 2 The edge-labeled multi-
graph G0 in Proposition 2.

Ib

II

Ia

IV

L(e2) = a

L(e1) = ∗

L(e5) = b L(e4) = a

L(e3) = b

IIIaIIIb

Figure 3 The unfolded graph G′0

2 Overview of the Proof61

First we establish the crucial statement that the odd parity of m and n allows us to associate62

to any two consecutive sides of one polygon a pair of consecutive sides of the other polygon63

with a restricted intersection pattern among the four involved sides (Lemma 5 and Figure 5).64

This is the only place where we use the odd parity of the polygons.65

A simple observation (Observation 3) relates the bound on C in Theorem 1 to the number66

of connected components of the bipartite “disjointness graph” between the polygon sides of67

P and Q. Our goal is therefore to show that there are few connected components.68

We proceed to consider two pairs of associated pairs of sides (4 consecutive pairs with 869

sides in total). Unless they form a special structure, they cannot belong to four different70

connected components (Lemma 7). (Four is the maximum number of components that they71

could conceivably have.) The proof involves a case distinction with a moderate amount of72

cases. This structural statement allows us to reduce the bound on the number of components73

by a constant factor, and thereby, we can already improve the best previous result on the74

number of intersections (Proposition 9 in Section 6).75

Finally, to get a constant bound on the number of components, our strategy is to76

use Ramsey-theoretic arguments like the Erdős–Szekeres Theorem on caps and cups or77

the pigeonhole principle (see Section 7) in order to impose additional structure on the78

configurations that we have to analyze. This is the place in the argument where we give79

up control over the constant C in exchange for useful properties that allow us to derive a80

contradiction. This eventually boils down again to a moderate number of cases (Section 8.2).81

By contrast, the proof of the bound mn− (m + dn
6 e) for m ≥ n by Černý et al. proceeds82

in a more local manner. The core of their argument [1, Lemma 3], which is proved by case83

distinction, is that it is impossible to have 6 consecutive sides of one polygon together with 684

distinct sides of the other polygon forming a perfect matching in the disjointness graph. This85

statement is used to bound the number of components of the disjointness graph. (Lemma 886

below uses a similar argument.)87

3 An Auxiliary Lemma on Closed Odd Walks88

We begin with the following seemingly unrelated claim concerning a specific small edge-labeled89

multigraph. Let G0 = (V0, E0) be the undirected multigraph shown in Figure 2. It has four90

nodes V0 = {I, II, III, IV} and five edges E0 = {e1 = {II, IV}, e2 = {I, IV}, e3 = {I, II}, e4 =91

{I, III}, e5 = {I, III}}. Every edge ei ∈ E0 has a label L(ei) ∈ {a, b, ∗} as follows: L(e1) = ∗,92

L(e2) = L(e4) = a, L(e3) = L(e5) = b.93

I Proposition 2. If W is a closed walk in G0 of odd length, then W contains two cyclically94

consecutive edges of labels a and b.95
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Proof. Suppose for contradiction that W does not contain two consecutive edges of labels a96

and b. Since W cannot switch between the a-edges and the b-edges in I or III, we can split I97

(resp., III) into two nodes Ia and IIIb (resp., IIIa and IIIb) such that every a-labeled edge that98

is incident to I (resp., III) in G0 becomes incident to Ia (resp., IIIa) and every b-labeled edge99

that is incident to I (resp., III) in G0 becomes incident to Ib (resp., IIIb). In the resulting100

graph G′0, which is shown in Figure 3, we can find a closed walk W ′ that corresponds to W101

and that uses the edges with the same name as W . Since G′0 is a path, every closed walk102

has even length. Thus, W cannot have odd length. J103

4 General Assumptions and Notations104

Let P and Q be two simple polygons with sides p0, p1, . . . , pm−1 and q0, q1, . . . , qn−1. We105

assume that m ≥ 3 and n ≥ 3 are odd numbers. Addition and subtraction of indices is106

modulo m or n, respectively. We consider the sides pi and qj as closed line segments. The107

condition that the polygon P is simple means that its edges are pairwise disjoint except for108

the unavoidable common endpoints between consecutive sides pi and pi+1. Throughout this109

paper, unless stated otherwise, we regard a polygon as a piecewise linear closed curve, and110

we disregard the region that it encloses. Thus, by intersections between P and Q, we mean111

intersection points between the polygon boundaries.112

As mentioned, we assume that the vertices of P and Q are in general position (no three113

of them on a line), and so every intersection point between P and Q is an interior point of114

two polygon sides.115

The Disjointness Graph. As in [1], our basic tool of analysis is the disjointness graph of116

P and Q, which we denote by GD = (V D, ED). (Its original name in [1] is non-intersection117

graph.) It is a bipartite graph with node set V D = {p0, p1, . . . , pm−1}∪{q0, q1, . . . , qn−1} and118

edge set ED = { (pi, qj) | pi ∩ qj = ∅ }. (Since we are interested in the situation where almost119

all pairs of edges intersect, the disjointness graph is more useful than its more commonly120

used complement, the intersection graph.)121

Our goal is to bound from above the number of connected components of GD.122

I Observation 3. If GD has at most C connected components, then GD has at least m+n−C123

edges. Thus, there are at least m + n− C pairs of a side of P and a side of Q that do not124

intersect, and there are at most mn− (m + n) + C crossings between P and Q. J125

Geometric Notions. Let s and s′ be two line segments. We denote by `(s) the line through126

s and by I(s, s′) the intersection of `(s) and `(s′) see Figure 4. We say that s and s′127

are avoiding if neither of them contains I(s, s′). (This requirement is stronger than just128

disjointness.) If s and s′ are avoiding or share an endpoint, we denote by ~rs′(s) the ray129

from I(s, s′) to infinity that contains s, and by ~rs(s′) the ray from I(s, s′) to infinity that130

contains s′. Moreover, we denote by Cone(s, s′) the convex cone with apex I(s, s′) between131

these two rays.132

I Observation 4. If a segment s′′ that does not go through I(s, s′) has one of its endpoints133

in the interior of Cone(s, s′), then s′′ cannot intersect both ~rs′(s) and ~rs(s′). In particular,134

it cannot intersect both s and s′. J135

For a polygon side s of P or Q, CC(s) denotes the connected component of the disjointness136

graph GD to which s belongs.137
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4.1 Associated Pairs of Consecutive Sides138

I Lemma 5. Let pa and pb be two sides of P that are either consecutive or avoiding139

such that CC(pa) 6= CC(pb). Then there are two consecutive sides qi, qi±1 of Q such that140

(pa, qi), (pb, qi±1) ∈ ED and (pa, qi±1), (pb, qi) /∈ ED. Furthermore, I(pa, pb) ∈ Cone(qi, qi±1)141

or I(qi, qi±1) ∈ Cone(pa, pb).142

The sign ‘±’ is needed since we do not know which of the consecutive sides intersects pi143

and is disjoint from pi+1.144

Proof. We may assume without loss of generality that I(pa, pb) is the origin, pa lies on the145

positive x-axis and the interior of pb is above the x-axis. The lines `(pa) and `(pb) partition146

the plane into four convex cones (“quadrants”). Denote them in counterclockwise order by147

I, II, III, IV, starting with I = Cone(pa, pb), see Figure 4. Every side of Q must intersect pa

pa

pb
I = Cone(pa, pb)

II

III
IV

Q

I(pa, pb)

~rpa(pb)

s
s′

I(s, s′)~rpb
(pa)

`(s)
`(s′)

Figure 4 How an odd polygon Q can intersect two segments. The segments pa and pb are
avoiding, whereas s and s′ are disjoint but non-avoiding.

148

or pb (maybe both), since CC(pa) 6= CC(pb). One can now check that traversing the sides149

of Q in order generates a closed walk W in the graph G0 of Figure 2. For example, a side150

of Q that we traverse from its endpoint in I to its endpoint in III and that intersects pa151

corresponds to traversing the edge e4 = {I, III} from I to III, whose label is L(e4) = a. We152

do not care which of pa and pb are crossed when we move between II and IV.153

It follows from Proposition 2 that Q has two consecutive sides qi, qi±1 such that qi154

intersects pb and does not intersect pa, while qi±1 intersects pa and does not intersect pb.155

Hence, (pa, qi), (pb, qi±1) ∈ ED and (pa, qi±1), (pb, qi) /∈ ED. Furthermore, I(qi, qi±1) must156

be either in I or III as these are the only nodes in G0 that are incident both to an edge157

labeled a and an edge labeled b. In the latter case I(pa, pb) ∈ Cone(qi, qi±1), and in the158

former case I(qi, qi±1) ∈ Cone(pa, pb). J159

Let pi, pi+1 be two sides of P such that CC(pi) 6= CC(pi+1). Then by Lemma 5 there160

are sides qj , qj±1 of Q such that (pi, qj), (pi+1, qj±1) ∈ ED. We say that the pair qj , qj±1161

is associated to pi, pi+1. By Lemma 5 we have I(qj , qj±1) ∈ Cone(pi, pi+1) or I(pi, pi+1) ∈162

Cone(qj , qj±1). If the first condition holds we say that pi, pi+1 is hooking and qj , qj±1 is163

hooked, see Figure 5. In the second case we say that pi, pi+1 is hooked and qj , qj±1 is hooking.164

Note that it is possible that a pair of consecutive sides is both hooking and hooked (with165

respect to two different pairs from the other polygon or even with respect to a single pair, as166

in Figure 5c).167

I Observation 6 (The Axis Property). If the pair pi, pi+1 and the pair qj , qj±1 are associated168

such that (pi, qj), (pi+1, qj±1) ∈ ED, then the line through I(pi, pi+1) and I(qj , qj±1) separates169

pi and qj±1 on the one side from pi+1 and qj on the other side. J170
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pi

pi+1
qj

qj±1 pi

pi+1
qj

qj±1
pi

pi+1

qj

qj±1

(a) (b) (c)

Figure 5 Hooking and hooked pairs of consecutive sides. (a) The pair pi, pi+1 is hooking and the
associated pair qj , qj±1 is hooked. (b) vice versa. (c) Both pairs are both hooking and hooked.

We call this line the axis of the associated pairs. In our figures it appears as a dotted line171

when it is shown.172

5 The Principal Structure Lemma about Pairs of Associated Pairs173

I Lemma 7. Let pi, pi+1, pj , pj+1 be two pairs of consecutive sides of P that belong to four174

different connected components of GD. Then it is impossible that both pi, pi+1 and pj , pj+1175

are hooked or that both pairs are hooking.176

Proof. Suppose first that both pairs pi, pi+1 and pj , pj+1, are hooking and let qi′ , qi′±1177

and qj′ , qj′±1 be their associated (hooked) pairs such that: (pi, qi′), (pi+1, qi′±1) ∈ ED,178

(pj , qj′), (pj+1, qj′±1) ∈ ED, I(qi′ , qi′±1) ∈ Cone(pi, pi+1) and I(qj′ , qj′±1) ∈ Cone(pj , pj+1).179

For better readability, we rename pi, pi+1 and qi′ , qi′±1 as a, b and A, B, and we rename180

pj , pj+1 and qj′ , qj′±1 as a′, b′ and A′, B′. The small letters denote sides of P and the capital181

letters denote sides of Q. In the new notation, a, b are consecutive sides of P with an182

associated pair A, B of consecutive sides of Q, and a′, b′ are two other consecutive sides183

of P with an associated pair A′, B′ of consecutive sides of Q. The disjointness graph GD
184

contains the edges (a, A), (b, B), (a′, A′), (b′, B′). Since a, b, a′, b′ belong to different connected185

components of GD, it follows that the nodes A, B, A′, B′, to which they are connected, belong186

to the same four different connected components. There can be no more edges among these187

eight nodes, and they induce a matching in GD. One can remember as a rule that every188

side of P intersects every side of Q among the eight involved sides, except when their names189

differ only in their capitalization. In particular, each of A′ and B′ intersects each of a and b.190

and hence they must lie as in Figure 6a. To facilitate the future discussion, we will now191

normalize the positions of these four sides.192

We first ensure that the intersection I(A′, b) is directly adjacent to the two polygon193

vertices I(a, b) and I(A′, B′) in the arrangement of the four sides, as shown in Figure 6b.194

This can be achieved by swapping the labels a, A with the labels b, B if necessary, and195

by independently swapping the labels a′, A′ with b′, B′ if necessary. Our assumptions are196

invariant under these swaps.197

By an affine transformation we may finally assume that I(A′, b) is the origin; b lies on the198

x-axis and is directed to the right; and A′ lies on the y-axis and is directed upwards. Then a199

has a positive slope and its interior is in the upper half-plane, and B′ has a positive slope200

and its interior is to the right of the y-axis, see Figure 6c.201

The arrangement of the lines through a, b, A′, B′ has 11 faces, some of which are marked202

as F1, . . . , F6 in Figure 6. Our current assumption is that both a, b and a′, b′ are hooking:203
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F1
F2

F3

F4

F5

F6
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b

B′

A′b
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A′

B′

I(A′, B′)

I(a, b)

I(A′, b)

b

a

A′

B′

(a) (b) (c)

Figure 6 Normalizing the position of a, b, A′, B′

ra

F1

F2

F3

F4

F5

F6

a

b

B′

A′

B

a′

A

rb

Figure 7 Case 1: I(A, B) ∈ F1, I(a′, b′) ∈ F2

F1
F2

F3

F4

F5

F6

a

b

B′

A′

B

a′
b′A

rb

Figure 8 Case 2: I(A, B) ∈ F1, I(a′, b′) ∈ F4

The hooking of a, b means that I(A, B) ∈ Cone(a, b) = F1 ∪ F2 ∪ F3. By the Axis Property204

(Observation 6), the line through I(A′, B′) and I(a′, b′) must separate A′ from B′. Therefore,205

the vertex I(a′, b′) can lie only in F2 ∪ F4 ∪ F5 ∪ F6. Thus, based on the faces that contain206

I(A, B) and I(a′, b′), there are 12 cases to consider. Some of these cases are symmetric, and207

all can be easily dismissed, as follows.208

In the figures, the four sides a′, b′, A′, B′, which are associated to the second associated209

pair are dashed. All dashed sides of one polygon must intersect all solid sides of the other210

polygon.211

1. I(A, B) ∈ F1 and I(a′, b′) ∈ F2, see Figure 7 (symmetric to I(A, B) ∈ F2 and I(a′, b′) ∈212

F4). Let ra (resp., rb) be the ray on `(a) (resp., `(b)) that goes from the right endpoint of213

a (resp., b) to the right. Since a′ is not allowed to cross b, the only way for a′ to intersect214

A is by crossing rb. Similarly, in order to intersect B, a′ has to cross ra. However, it215

cannot intersect both ra and rb, by Observation 4.216

Since we did not use the assumption that A, B are hooked, the analysis holds for the217

symmetric Case 6, I(A, B) ∈ F2 and I(a′, b′) ∈ F4, as well.218

2. I(A, B) ∈ F1 and I(a′, b′) ∈ F4, see Figure 8. Since a′ is not allowed to cross b, the only219

way for a′ to intersect B is by crossing rb. However, in this case a′ cannot intersect A.220

3. I(A, B) ∈ F1 and I(a′, b′) ∈ F5, see Figure 9 (symmetric to I(A, B) ∈ F3 and I(a′, b′) ∈221

F4). Both a′ and b′ must intersect A, and they have to go below the line `(b) to do so.222

However, a′ can only cross `(b) to the right of b, and b′ can only cross `(b) to the left of b,223
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F1

F2

F3

F4

F5

F6

a

b

B′

A′

B

a′

A

b′

Figure 9 Case 3: I(A, B) ∈ F1 and I(a′, b′) ∈ F5

F1
F2

F3

F4

F5

F6

a

b

B′

A′

B

a′
A

b′

(a) At least one of the sides a′ and b′ has an
endpoint in F4.

F1

F2

F3

F4

F5

F6

a

b

B′

A′

B

a′

A

b′

(b) None of the sides a′ and b′ has an endpoint
in F4.

Figure 10 Case 4: I(A, B) ∈ F1 (or I(A, B) ∈ F2, which is similar) and I(a′, b′) ∈ F6.

and therefore they cross A from different sides. This is impossible, because a′ and b′ start224

from the same point.225

4. I(A, B) ∈ F1 and I(a′, b′) ∈ F6. If one of the polygon sides a′ and b′ has an endpoint in F4226

(see Figure 10a), then this side cannot intersect B. So assume otherwise, see Figure 10b.227

The side a′ intersects B′ and is disjoint from A′, while b′ is disjoint from B′ and intersects228

A′. (Due to space limitation some line segments are drawn schematically as curves.)229

Thus, each of a′ and b′ has an endpoint in F2 ∪ F5. But then I(A, B) ∈ Cone(a′, b′) and230

it follows from Observation 4 that neither A nor B can intersect both a′ and b′.231

5. I(A, B) ∈ F2 and I(a′, b′) ∈ F2, see Figure 11. Since a′, b′ is hooking, I(A′, B′) ∈232

Cone(a′, b′), and the line segments a′, b′, A′, b, B′ enclose a convex pentagon. The polygon233

side A must intersect b, a′ and b′, but it is restricted to F2 ∪ F4. It follows that A must234

intersect three sides of the pentagon, which is impossible. (This is in fact the only place235

where we need the assumption that a′, b′ is hooking.)236

6. I(A, B) ∈ F2 and I(a′, b′) ∈ F4. This is symmetric to Case 1.237

7. I(A, B) ∈ F2 and I(a′, b′) ∈ F5, see Figure 12 (symmetric to I(A, B) ∈ F3 and I(a′, b′) ∈238

F2). Then A is restricted to F2∪F4, while a′ and b′ do not intersect F2 and F4. Therefore239
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F1

F2

F3

F4

F5

F6

a

b

B′

A′

Ab′ a′

Figure 11 Case 5: I(A, B) ∈ F2, I(a′, b′) ∈ F2

F1

F2 F3

F4

F5

F6

a

b

B′A′

B

A

b′ a′

Figure 12 Case 7: I(A, B) ∈ F2, I(a′, b′) ∈ F5

A can intersect neither a′ nor b′.240

8. I(A, B) ∈ F2 and I(a′, b′) ∈ F6. This case is very similar to Case 4, where I(A, B) ∈ F1241

and I(a′, b′) ∈ F6, see Figure 10. If one of the polygon sides a′ and b′ has an endpoint in242

F4, then it cannot intersect B. Otherwise, I(A, B) ∈ Cone(a′, b′) and therefore, neither243

A nor B can intersect both a′ and b′.244

9. I(A, B) ∈ F3 and I(a′, b′) ∈ F2. This is symmetric to Case 7.245

10. I(A, B) ∈ F3 and I(a′, b′) ∈ F4. This is symmetric to Case 3.246

F1

F2
F3

F4

F5

F6

a

b

B′

A′

A

a′

B

b′

Figure 13 Case 11: I(A, B) ∈ F3 and I(a′, b′) ∈ F5

11. I(A, B) ∈ F3 and I(a′, b′) ∈ F5, see Figure 13. Then the intersection of b′ and A can lie247

only in the lower left quadrant. It follows that the triangle whose vertices are I(a′, b′),248

I(a′, A) and I(A, b′) contains a and does not contain I(A, B). This in turn implies that249

B cannot intersect both b′ and a, without intersecting B′.250

12. I(A, B) ∈ F3 and I(a′, b′) ∈ F6, see Figure 14. As in Case 4, we may assume that neither251

a′ nor b′ has an endpoint in F4, since then this side could not intersect B. We may also252

assume that I(A, B) /∈ Cone(a′, b′) for otherwise neither A nor B intersects both of a′253
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and b′, according to Observation 4. If a′ has an endpoint in F2, then it cannot intersect254

B (see Figure 14a). Otherwise, if a′ has an endpoint in F5, then B cannot intersect b′255

(see Figure 14b).256

F1
F2

F3

F4

F5

F6

a

b

B′

A′

b′

a′

B

(a) If a′ has an endpoint in F2, then it cannot
intersect B.

F1
F2

F3

F4

F5

F6

a

b

B′A′

b′

a′

B

(b) If a′ has an endpoint in F5, then B cannot
intersect b′.

Figure 14 Case 12: I(A, B) ∈ F3 and I(a′, b′) ∈ F6.

We have finished the case that a, b and a′, b′ are hooking. Suppose now that a, b and a′, b′257

are hooked, with respect to some pairs A, B and A′, B′. Then A, B is hooking with respect258

to a, b and A′, B′ is hooking with respect to a′, b′. Recall that A, B, A′ and B′ belong to four259

different connected components. Hence, this case can be handled as above, after exchanging260

the capital letters with the small letters (i.e., exchanging P and Q). J261

6 A Weaker Bound262

The principal structure lemma is already powerful enough to get an improvement over the263

previous best bound:264

I Lemma 8. GD has at most (n + 5)/2 connected components.265

Proof. Partition the sides q0, q1, . . . , qn−1 of Q into (n−1)/2 disjoint pairs q2i, q2i+1, discard-266

ing the last side qn−1. Let H+ denote the subset of these pairs that are hooked. Suppose first267

that this set contains some pair q2i0 , q2i0+1 of sides that are in two different connected com-268

ponents. Combining q2i0 , q2i0+1 with any of the remaining pairs q2i, q2i+1 of H+, Lemma 7269

tells us that the sides q2i and q2i+1 must either belong to the same connected component, or270

one of them must belong to CC(q2i0) or CC(q2i0+1). In other words, each remaining pair271

contributes at most one “new” connected component, and it follows that the sides in H+272

belong to at most |H+|+ 1 connected components. This conclusion holds also in the case273

that H+ contains no pair q2i0 , q2i0+1 of sides that are in different connected components.274

The same argument works for the complementary subset H− of pairs that are not275

hooked, but hooking. Along with CC(qn−1) there are at most (|H+|+ 1) + (|H−|+ 1) + 1 =276

(n− 1)/2 + 3 = (n + 5)/2 components. J277

Together with Observation 3, this already improves the previous bound mn− (m + dn
6 e)278

for a large range of parameters, namely when m ≥ n ≥ 11:279
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I Proposition 9. Let P and Q be simple polygons with m and n sides, respectively, such280

that m and n are odd and m ≥ n ≥ 3. Then there are at most mn− (m + n−5
2 ) intersection281

points between P and Q. J282

7 Ramsey-Theoretic Tools283

We recall some classic results.284

A tournament is a directed graph that contains between every pair of nodes x, y either285

the arc (x, y) or the arc (y, x) but not both. A tournament is transitive if for every three286

nodes x, y, z the existence of the arcs (x, y) and (y, z) implies the existence of the arc (x, z).287

Equivalently, the nodes can be ordered on a line such that all arcs are in the same direction.288

The following is easy to prove by induction.289

I Lemma 10 (Erdős and Moser [3]). Every tournament on a node set V contains a transitive290

sub-tournament on 1 + blog2 |V |c nodes.291

Proof. Choose v ∈ V arbitrarily, and let N ⊆ V − {v} with |N | ≥ (|V | − 1)/2 be the set of292

in-neighbors of v or the set of out-neighbors of v, whichever is larger. Then v together with293

a transitive sub-tournament of N gives a transitive sub-tournament of size one larger. J294

A set of points p1, p2, . . . , pr in the plane sorted by x-coordinates (and with distinct295

x-coordinates) forms an r-cup (resp., r-cap) if pi is below (resp., above) the line through296

pi−1 and pi+1 for every 1 < i < r.297

I Theorem 11 (Erdős–Szekeres Theorem for caps and cups in point sets [4]). For any two298

integers r ≥ 2 and s ≥ 2, the value ES(r, s) :=
(

r+s−4
r−2

)
fulfills the following statement:299

Suppose that P is a set of ES(r, s) + 1 points in the plane with distinct x-coordinates300

such that no three points of P lie on a line. Then P contains an r-cup or an s-cap.301

Moreover, ES(r, s) is the smallest value that fulfills the statement. J302

A similar statement holds for lines by the standard point-line duality. A set of lines303

`1, `2, . . . , `r sorted by slope forms an r-cup (resp., r-cap) if `i−1 and `i+1 intersect below304

(resp., above) `i for every 1 < i < r.305

I Theorem 12 (Erdős–Szekeres Theorem for lines). For the numbers ES(r, s) from Theorem 11,306

the following statement holds for any two integers r ≥ 2 and s ≥ 2:307

Suppose that L is a set of ES(r, s) + 1 non-vertical lines in the plane no two of which are308

parallel and no three of which intersect at a common point. Then L contains an r-cup or an309

s-cap. J310

I Theorem 13 (Erdős–Szekeres Theorem for monotone subsequences [4]). For any integer311

r ≥ 0, a sequence of r2 + 1 distinct numbers contains either an increasing subsequence of312

length r + 1 or a decreasing subsequence of length r + 1. J313

8 Proof of Theorem 1314

8.1 Imposing More Structure on the Examples315

Going back to the proof of Theorem 1, recall that in light of Observation 3 it is enough to316

prove that GD, the disjointness graph of P and Q, has at most constantly many connected317

components.318



The Number of Intersections Between Two Simple Polygons 12

We will use the following constants: C6 := 6; C5 := (C6)2+1 = 37; C4 := ES(C5, C5)+1 =319 (70
35

)
+ 1 = 112,186,277,816,662,845,433 < 270; C3 := 2C4−1; C2 := C3 + 5; C1 := 8C2;320

C := C1 − 1 < 2270 .321

We claim that GD has at most C connected components. Suppose that GD has at322

least C1 = C + 1 connected components, numbered as 1, 2, . . . , C1. For each connected323

component j, we find two consecutive sides qij
, qij+1 of Q such that CC(qij

) = j and324

CC(qij+1) 6= j. We call qij
the primary side and qij+1 the companion side of the pair. We325

take these C1 consecutive pairs in their cyclic order along Q and remove every second pair.326

This ensures that the remaining C1/2 pairs are disjoint, in the sense that no side of Q belongs327

to two different pairs.328

We apply Lemma 5 to each of the remaining C1/2 pairs qij
, qij+1 and find an associated329

pair pkj
, pkj±1 such that (qij

, pkj
), (qij+1, pkj±1) ∈ ED. Therefore, CC(qij

) = CC(pkj
) and330

CC(qij+1) = CC(pkj±1) 6= CC(qij
). Again, we call pkj

the primary side and pkj±1 the331

companion side. As before, we delete half of the pairs pkj
, pkj±1 in cyclic order along P ,332

along with their associated pairs from Q, and thus we ensure that the remaining C1/4 pairs333

are disjoint also on P .334

At least C1/8 of the remaining pairs qij
, qij+1 are hooking or at least C1/8 of them are335

hooked. We may assume that at least C2 = C1/8 of the pairs qij
, qij+1 are hooking with336

respect to their associated pair, pkj
, pkj±1, for otherwise, pkj

, pkj±1 is hooking with respect337

to qij , qij+1 and we may switch the roles of P and Q. Let us denote by Q2 the set of C2338

hooking consecutive pairs (qij
, qij±1) at which we have arrived. (Because of the potential339

switch, we have to denote the companion side by qij±1 instead of qij+1 from now on.)340

By construction, all C2 primary sides qij
of these pairs belong to distinct components.341

We now argue that all C2 adjacent companion sides qij±1 with at most one exception lie in342

the same connected component, provided that C2 ≥ 4.343

We model the problem by a graph whose nodes are the connected components of GD.344

For each of the C2 pairs qij
, qij±1, we insert an edge between CC(qij

) and CC(qij±1). The345

result is a multigraph with C2 edges and without loops. Two disjoint edges would represent346

two consecutive pairs of the form (qij
, qij±1) whose four sides are in four distinct connected347

components, but this is a contradiction to Lemma 7. Thus, the graph has no two disjoint348

edges, and such graphs are easily classified: they are the triangle (cycle on three vertices)349

and the star graphs K1t, possibly with multiple edges. Overall, the graph involves at least350

C2 ≥ 4 distinct connected components CC(qij
), and therefore the triangle graph is excluded.351

Let v be the central vertex of the star. There can be at most one j with CC(qij
) = v, and we352

discard it. All other sides qij have CC(qij ) 6= v, and therefore CC(qij±1) must be the other353

endpoint of the edge, that is, v.354

In summary, we have found C2 − 1 adjacent pairs qij , qij±1 with the following properties.355

The primary sides qij belong to C2 − 1 distinct components.356

All companion sides qij±1 belong to the same component, distinct from the other C2 − 1357

components.358

All 2C2 − 2 sides of the pairs qij
, qij±1 are distinct.359

Each qij
, qij±1 is hooking with respect to an associated pair pkj

, pkj±1.360

All 2C2 − 2 sides of the pairs pkj
, pkj±1 are distinct.361

Let us denote by Q′2 the set of C2 − 1 sides qij
.362

I Proposition 14. There are no six distinct sides qa, qb, qc, qd, qe, qf among the C2 − 1 sides363

qij ∈ Q′2 such that qa, qb are avoiding or consecutive, qc, qd are avoiding or consecutive, and364

qe, qf are avoiding or consecutive.365
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Proof. Suppose for contradiction that there are six such sides. It follows from Lemma 5366

that there are two consecutive sides pa′ and pb′ of P such that CC(pa′) = CC(qa) and367

CC(pb′) = CC(qb).368

Similarly, we find a pair of consecutive sides pc′ and pd′ of P such that CC(pc′) = CC(qc)369

and CC(pd′) = CC(qd), and the same story for e and f . By the pigeonhole principle, two370

of the three consecutive pairs (pa′ , pb′), (pc′ , pd′), (pe′ , pf ′) are hooking or two of them are371

hooked. This contradicts Lemma 7. J372

Define a complete graph whose nodes are the C2 − 1 sides qij
∈ Q′2, and color an edge373

(qij
, qik

) red if qij
and qik

are avoiding or consecutive and blue otherwise. Proposition 14374

says that this graph contains no red matching of size three. This means that we can get rid375

of all red edges by removing at most 4 nodes. To see this, pick any red edge and remove376

its two nodes from the graph. If any red edge remains, remove its two nodes. Then all red377

edges are gone, because otherwise we would find a matching with three red edges.378

We conclude that there is a blue clique of size C3 = C2 − 5, i.e., there is a set Q3 ⊂ Q′2379

of C3 polygon sides among the C2 − 1 sides qij ∈ Q′2 that are pairwise non-avoiding and380

disjoint, i.e., they do not share a common endpoint.381

Our next goal is to find a subset of 7 segments in Q3 that are arranged as in Figure 15. To382

define this precisely, we say for two segments q and q′ that q stabs q′ if I(q, q′) ∈ q′. Among383

any two non-avoiding and non-consecutive sides q and q′, either q stabs q′ or q′ stabs q, but384

not both. Define a tournament T whose nodes are the C3 sides qij
∈ Q3, and the arc between385

each pair of nodes is oriented towards the stabbed side. It follows from Lemma 10 that T386

has a transitive sub-tournament of size 1 + blog2 C3c = C4.387

Furthermore, since C4 = ES(C5, C5) + 1, it follows from Theorem 12 that there is a388

subset of C5 sides such that the lines through them form a C5-cup or a C5-cap. By a vertical389

reflection if needed, we may assume that they form a C5-cup.390

We now reorder these C5 sides qij
of Q in stabbing order, according to the transitive sub-391

tournament mentioned above. By the Erdős–Szekeres Theorem on monotone subsequences392

(Theorem 13), there is a subsequence of size C6 + 1 =
√

C5 − 1 + 1 = 7 such that their slopes393

form a monotone sequence. By a horizontal reflection if needed, we may assume that they394

have decreasing slopes.395

We rename these 7 segments to a0, a1, . . . , a6, and we denote the line `(ai) by `i, see396

Figure 15. We have achieved the following properties:397

The lines `0, . . . , `6 form a 7-cup, with decreasing slopes in this order.398

The segments ai are pairwise disjoint and non-avoiding.399

ai stabs aj for every i < j.400

These properties allow a0 to lie between any two consecutive intersections on `0. There401

is no such flexibility for the other sides: Every side aj is stabbed by every preceding side ai.402

For 1 ≤ i < j, ai cannot stab aj from the right, because then a0 would not be able to stab ai.403

Hence, the arrangement of the sides a1, . . . , a6 must be exactly as shown in Figure 15, in the404

sense that the order of endpoints and intersection points along each line `i is fixed. We will405

ignore a0 from now on.406

8.2 Finalizing the Analysis407

Recall that every ai is the primary side of two consecutive sides ai, bi of Q that are hooking408

with respect to an associated pair Ai, Bi of consecutive sides of P . The sides ai and Ai are409

the primary sides and bi and Bi are the companion sides. All these 4× 6 sides are distinct,410
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`2

`3

`4

`5
`6

`1

`0

a3
a4

a1

a2

a5

a6

a0

Figure 15 The seven sides a0, a1, . . . , a6. The lines `0, . . . , `6 form a 7-cup.

and they intersect as follows: ai intersects Bi and is disjoint from Ai; bi intersects Ai and is411

disjoint from Bi; and I(Ai, Bi) ∈ Cone(ai, bi).412

Figure 16 summarizes the intersection pattern among these sides. A side Ai must413

intersect every side aj with j 6= i and every side bj since CC(Ai) = CC(ai) 6= CC(aj)414

and CC(Ai) = CC(ai) 6= CC(bi) = CC(bj). (Recall that all companion sides bi belong to415

the same component.) Similarly, every side Bi must intersect every side aj . We have no416

information about the intersection between Bi and bj , as these sides belong to the same417

connected component.418

ai

bi

Ai

Bi

aj

bj

Aj

Bj

PQ

Figure 16 The subgraph of GD induced on two pairs of consecutive sides ai, bi and aj , bj of P

and their associated partner pairs Ai, Bi and Aj , Bj of Q. Parts of P and Q are shown to indicate
consecutive sides. The dashed edges may or may not be present.

We will now derive a contradiction through a series of case distinctions.419

Case 1: There are three segments Ai with the property that Ai crosses `i to the left of ai.420

Without loss of generality, assume that these segments are A1, A2, A3, see Figure 17. The421

segments A1, A2, A3 must not cross because P is a simple polygon. Therefore A1 intersects422

a2 to the right of I(a1, a2) because otherwise A1 would cross A2 on the way between its423

intersections with `2 and with a1. A3 must cross `3, a2, a1 in this order, as shown. But then424

A1 and A3 (and a2) block A2 from intersecting a3.425
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?

?

a1

a2

a3

A1

A2

A3

`1

`3

`2

Figure 17 The assumed intersection points between Ai and `i are marked.

Case 2: There at most two segments Ai with the property that Ai crosses `i to the left of ai.426

In this case, we simply discard these segments. We select four of the remaining segments427

and renumber them from 1 to 4.428

From now on, we can make the following assumption:429

General Assumption: For every 1 ≤ i ≤ 4, the segment Ai does not cross `i at all,430

or it crosses `i to the right of ai.431

This implies that A3 must intersect the sides a2, a1, a4 in this order, and it is determined432

in which cell of the arrangement of the lines `1, `2, `3, `4 the left endpoint of A3 lies (see433

Figures 15 and 18). For the right endpoint, we have a choice of two cells, depending on434

whether A3 intersects `3 or not.435

We denote by left(s) and right(s) the left and right endpoints of a segment s. We436

distinguish four cases, based on whether the common endpoint of A3 and B3 lies at left(A3)437

or right(A3), and whether the common endpoint of a3 and b3 lies at left(a3) or right(a3).438

Case 2.1: I(A3, B3) = left(A3) and I(a3, b3) = right(a3), see Figure 18.439

As indicated in the figure, we leave it open whether and where A3 intersects `3. We know440

that b3 must lie below `3 because I(A3, B3) ∈ Cone(a3, b3).441

We claim that A2 cannot have the required intersections with a1, a3, and b3. Let us first442

consider a1: It is cut into three pieces by A3 and B3.443

If A2 intersects the middle piece of a1 in the wedge between A3 and B3, then A2 intersects444

exactly one of a3 and b3 inside the wedge, because these parts together with a1 are three445

sides of a convex pentagon. If A2 intersects a3, then it has crossed `3 and it cannot cross b3446

thereafter. If A2 intersects b3, it must cross `4 before leaving the wedge, and then it cannot447

cross a3 thereafter.448

Suppose now that A2 crosses the bottom piece of a1. Then it cannot go around A3, B3449

to the right in order to reach a3 because it would have to intersect `4 twice. A2 also cannot450

pass to the left of A3, B3 because it cannot cross `2 through a2 or, by the general assumption,451

to the left of a2.452

Suppose finally that A2 crosses the top piece of a1. Then it would have to cross `3 twice453

before reaching b3.454
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a4

b3

a3

A3

B3

`3
a1

`2
`1

a2

`4

A2

I(a3, a4)I(A3, B3)

Figure 18 Case 2.1, I(A3, B3) = left(A3) and I(a3, b3) = right(a3). A hypothetical segment A2

is shown as a dashed curve. The side a2 and the part of `2 to the left of a2 is blocked for A2.

Case 2.2: I(A3, B3) = left(A3) and I(a3, b3) = left(a3).455

If `(A3) does not intersect a3, we derive a contradiction as follows, see Figure 19. We know456

that the sides a2, a3, a4 must be arranged as shown. The segment A3 crosses a2 but not a3.457

Now, the parts of a3 and A3 to the left of `2 form two opposite sides of a quadrilateral, as458

shown in the figure. If this quadrilateral were not convex, then either `(A3) would intersect a3,459

which we have excluded by assumption, or `3 would intersect A3 left of a3, contradicting the460

General Assumption. Thus, the sides a3 and A3 violate the Axis Property (Observation 6),461

which requires a3 and A3 to lie on different sides of the line through I(A3, B3) and I(a3, b3).462

Looking back at this proof, we have seen that the configuration of the segments a1, a2, a3, a4463

according to Figure 15 in connection with the particular case assumptions make the situation464

sufficiently constrained that the case can be dismissed by looking at the drawing. The465

treatment of the other cases will be proofs by picture in a similar way, but we will not always466

spell out the arguments in such detail.467

a4

a3

A3

`3

a2

`2

`4

`(A3)

Figure 19 Case 2.2. I(A3, B3) = left(A3),
I(a3, b3) = left(a3), `(A3) does not intersect a3.

a4

a3

A3

`3

a2

`2

`4

Figure 20 Case 2.3. I(A3, B3) = right(A3),
and I(a3, b3) = right(a3), A3 lies below `3.

If `(A3) intersects a3, the situation must be as shown in Figure 21: the pair A3, B3 is468

hooked by a3 and b3. The analysis of Case 2.1 (Figure 18) applies verbatim, except that the469

word “pentagon” must be replaced by “hexagon”.470
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a4

b3

a3

A3

B3

`3

a1

`2
`1

a2

`4

A2

`(A3)

Figure 21 Case 2.2, I(A3, B3) = left(A3), I(a3, b3) = left(a3), and `(A3) intersects A3. A hypo-
thetical segment A2 is shown as a dashed curve.

Case 2.3: I(A3, B3) = right(A3), and I(a3, b3) = right(a3).471

If A3 lies entirely below `3, then A3 together with a3 violates the Axis Property (Obser-472

vation 6), see Figure 20.473

a2

A3

`1
`3

b3

a3

B3

`4

a1

I(a3, a4)

b3

a3

a4
A3

`3
B3

A3?

(b)(a)

A2

Figure 22 Case 2.3. A3 intersects `3.

Let us therefore assume that A3 intersects `3 (to the right of a3), and thus right(A3) =474

I(A3, B3) lies above `3, see Figure 22a. Then b3 must also lie above `3, because a3, b3 is475

supposed to be hooking, that is, I(A3, B3) ∈ Cone(a3, b3).476

It follows that A3 cannot intersect `3 to the right of I(a3, a4) (the option shown as a477

dashed curve), because otherwise it would miss b3: b3 is blocked by a4.478

Therefore, the situation looks as shown in Figure 22a. Figure 22b shows the position479

of the relevant pieces. The segments a4, B3, a3, b3, A3 enclose a convex pentagon. Now, the480

segment A2 should intersect a3, b3, and a4 without crossing A3 and B3, like the dashed curve481

in the figure. This is impossible.482
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Case 2.4: I(A3, B3) = right(A3) and I(a3, b3) = left(a3).483

If A3 intersects `3 (to the right of a3), then A3 together with a3 violates the Axis Property484

(Observation 6), see Figure 23. We thus assume that A3 lies entirely below `3.485

a4a3
A3

`3

Figure 23 Case 2.4. A3 intersects `3.

a2

a4

A3

A2

`1 `3

b3

a3

B3

`4

a1

I(a3, b3)

a2

a4

A3

`3

a3

`4

a1

I(a3, b3)

`(A3)

(a) (b)

Figure 24 Case 2.4. A3 lies below `3.

If `(A3) passes above I(a3, b3) = left(a3), the sides a3 and A3 violate the Axis Property486

see Figure 24a. On the other hand, if `(A3) passes below I(a3, b3) = left(a3), as shown in487

Figure 24b, then b3 must cross `1 to the right of a1 in order to reach A2. Again by the Axis488

Property, B3 must remain above the dotted axis line through I(A3, B3) = right(A3) and489

I(a3, b3) = left(a3). On `1, b3 separates a1 from the axis line, and hence a1 lies below the490

axis line. Therefore B3 and a1 cannot intersect.491

This concludes the proof of Theorem 1. J492
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