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Abstract

We study the discrete Voronoi game, where two players alternately
claim vertices of a graph for t rounds. In the end, the remaining vertices
are divided such that each player receives the vertices that are closer to
his or her claimed vertices. We prove that there are graphs for which the
second player gets almost all vertices in this game, but this is not possible
for bounded-degree graphs. For trees, the first player can get at least
one quarter of the vertices, and we give examples where she can get only
little more than one third of them. We make some general observations,
relating the result with many rounds to the result for the one-round game
on the same graph.
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1 Introduction

The classic facility location problem deals with finding the optimal location
for a facility (such as a supermarket, hospital, fire station) with respect to a
given set of customers. Typically, we want to place the facility to minimize the
distance customers need to travel to get to it. Competitive facility location is a
variant of the problem when several service providers compete for the interests
of the same set of customers. An example would be two supermarket chains
building shops in a city – with each chain trying to attract the largest number
of customers.

We study a simple model of competitive facility location called the Voronoi
game. This game is a game played on a measurable metric space by two players.
The players alternate in placing a facility on a single point in the space The game
lasts for a fixed number of rounds. At the end of the game, the space is divided
between the two players: each player receives the area which is closer to his
or her facilities, or in other words, the sum of the areas of the corresponding
regions in the Voronoi diagram. The winner is the player who controls the
greater portion of the space.

The Voronoi game was first defined by Ahn, Cheng, Cheong, Golin, and van
Oostrum [1], who studied it on lines and circles. Subsequently a discrete version
of the game emerged, on which we shall focus in this paper; for results on the
continuous game see e.g., [6, 7]. The discrete Voronoi game is played on the
vertices of a graph G by two players called A and B for a fixed number t of
rounds. Player A starts, and they alternatingly claim vertices of G during each
round 1, . . . , t (we also say they put pebbles on those points). No vertex may
be claimed more than once. At the end of the game, the remaining vertices are
divided between the players – with each player receiving the vertices that are
closer to his or her claimed vertices. If a vertex is equidistant to each players’
claimed vertices then it is split evenly between A and B (each player receives
half a vertex.)

This natural variant was first studied by Demaine, Teramoto and Ue-
hara [11], who showed that it is NP-complete to determine the winner in the
Voronoi game on a general graph G, even if the game lasts for only one round,
(but player B can place more than one pebble). They also studied the game
on a large k-ary tree and showed that under optimal play, the first player wins
if k is odd, and that the game ends in a tie when k is even. The game on trees
was studied further by Kiyomi, Saitoh, and Uehara [8] who completely solved
the game on a path – they showed that the game on a path with n vertices
played for t < n/2 rounds always ends in a draw, unless n is odd and t = 1, in
which case A wins (by having one vertex more). There are many results that
deal with various algorithmic questions about variations and special cases of
the Voronoi game, for example for weighted graphs [3], in a planar geometric
setting [5, 4], or for a “continuous” graph model [2].

The above results suggest that in general it is hard to determine the winner
of the Voronoi game on a graph. Therefore, in this paper, we will not be
concerned with deciding the winner of the game – rather we are interested in
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knowing when either player can control a large proportion of the vertices by
the end of the game. One question we are interested in is: “for ε > 0, for
which graphs G does A have a strategy to control at least ε|G| in the t-round
Voronoi game on G?” We are also interested in situations when a player can
win the Voronoi game by a large margin i.e. “for which graphs G does A have a
strategy to control at least (1/2 + ε)|G| vertices by the end of the game?” The
same questions are asked for Player B as well. These questions motivate us to
make the following definition.

Definition 1 For a given graph G define its Voronoi ratio, VR(G, t), as the
number of vertices that belong to A, plus half of the number of tied vertices (if
there are any) divided by the total number of vertices in G after an optimal play
of t rounds.

It is not immediately clear what range VR(G, t) can take. By considering a
star Sk with k leaves, it is easy to show that

VR(Sk, t) = 1− t

k + 1
. (1)

This shows that VR(G, t) can be arbitrarily close to 1, and hence A can control
almost all the vertices by the end of the game. By considering a path it is possi-
ble to show that VR(G, t) = 1/2 is possible as well [8]. However, constructing a
graph which satisfies VR(G, 1) < 1/2 is already non-trivial. The smallest such
graph that we know of has 9 vertices. It consist of a cycle of length six, with an
additional leaf attached to every other vertex of the cycle. It is easy to check
that in the 1-round Voronoi game on this graph B can always win 5 of the 9
vertices. In Section 3 we show that, in fact, VR(G, t) can be arbitrarily close to
zero.

Theorem 2 For every ε > 0 and t ∈ N, there is a graph G with VR(G, t) < ε.

This theorem, together with (1) shows that in general the discrete Voronoi
game does not favor either player.∗ However there may be natural classes of
graphs on which one of the players has a significant advantage.

In Section 4, we study the Voronoi game on a tree and show that every
tree T satisfies VR(T, t) ≥ 1/4 for all t. When the number of rounds is small,
the first player may obtain an even larger advantage. It was noted in [11] that
VR(T, 1) ≥ 1/2 for every tree T . We show that VR(T, 2) ≥ 1/3, for any tree
T and construct trees whose Voronoi ratio is arbitrarily close to 1/3 for t = 2
moves.

In Section 5, we study the Voronoi game on a graph with bounded max-
imum degree. We show that every graph G with maximum degree d has
VR(G, t) ≤ 1 − 1/2d. We show that the bound in this result cannot be de-
creased substantially by constructing graphs G with maximum degree d whose
Voronoi ratio is arbitrarily close to 1− 1/d.

∗In fact the construction easily generalizes to the continuous Voronoi game as well, but
here we focus only on the discrete version.
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In order to prove some of the above results, we first establish bounds on the
Voronoi ratio which hold for all graphs. In Section 2 we show that for any t,
VR(G, t) can be bounded in terms of the quantity VR(G, 1):

Theorem 3 For every graph G and t ≥ 1 we have

1

2
VR(G, 1) ≤ VR(G, t) ≤ 1

2
(VR(G, 1) + 1).

Thus, to a limited extent, the outcome of the Voronoi game is determined just
by the outcome of the one-round game. In particular, if the Voronoi ratio for
one round it close to 1, then it cannot be close to 0 for more rounds, and vice
versa. This theorem is useful for finding good bounds on the Voronoi ratio of
various classes of graphs beyond those considered in this paper.

2 General bounds on VR(G, t)

In this section we give bounds for VR(G, t) for a graph G in terms of
VR(G, 1). We prove Theorem 3.

Proof: Both inequalities are proved by strategy stealing arguments. Let n =
|V (G)|.

First we prove the left-hand inequality, VR(G, 1)/2 ≤ VR(G, t). Suppose
that B has a strategy in the t-round game that gives him more than 1 −
VR(G, 1)/2 of vertices in G.

Let v be the optimal vertex to pick for A in the one-round game. Player
A’s strategy for the t-round game is as follows. First she picks v. Then she
pretends that she has not picked it and follows B’s strategy (in case she has to
pick a vertex that she has taken already, e.g. v, she can pick arbitrarily), which
would give her a fraction 1− VR(G, 1)/2, except that she cannot play the last
move. The vertices that A could have controlled by playing the last move u,
but does not control having played v are contained in S = {x ∈ G : dist(x, u) ≤
dist(x, v)}. By the definition of VR(G, 1), we have |S| ≤ (1−VR(G, 1))n. So at
the end of the game A controls at least (1−VR(G, 1)/2)n−|S| ≥ VR(G, 1)n/2
vertices, proving the lower bound.

Now we prove the right-hand inequality, VR(G, t) ≤ 1
2 (VR(G, 1) + 1). Sup-

pose A plays vA in her first move, and let vB be the best response of B if he
were playing the one-round game. Let H = {h ∈ G : dist(h, vB) < dist(h, vA) }
and K = { k ∈ G : dist(k, vB) = dist(k, vA) }. By definition of VR(G, 1), we
have that |H|+ |K|/2 ≥ (1−VR(G, 1))n.

For the remainder of the game B is only interested in controlling as much
of H ∪K as possible. In order to do this, we consider an auxiliary game called
the new game played on the graph G − vA. The following are the rules of the
new game.

• Two players, named X and Y, alternate. Player X goes first.

• The game lasts for t− 1 rounds.
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• Before the start of play, the vertex vB is occupied by player Y.

• At the end of the game, the players score a point for each vertex of H
that they control and half a point for each vertex of K that they control.
Accordingly, tied vertices in H give half a point to each player and tied
vertices in K give a quarter point to each player. The winner is the player
with the most points.

The winner of the new game scores at least |H|/2 + |K|/4 points. We will show
that B can always end up controlling at least |H|/2 + |K|/4 vertices at the
end of the original game. This proves the upper bound of the theorem since
|H|/2 + |K|/4 ≥ (1−VR(G, 1))n/2.

Player B’s strategy in the original game depends on which player wins under
optimal play in the new game.

Case 1: Suppose that player Y wins the new game. In this case, in the
original game, player B occupies vB on his first move, and then follows player
Y’s strategy for the new game. At the end of the game, the situation is as
in the new game except that A has an extra pebble on vA. The inequality
dist(vB , h) < dist(vA, h) for all h ∈ H ensures that this extra pebble makes no
difference for the outcome in H: player B controls everything in H which was
controlled by player Y at the end of the new game, and ties are preserved in the
same way. Since dist(vB , k) = dist(vA, k) for all k ∈ K, B gets at least half a
vertex for every vertex in K which was controlled (scoring 1

2 ) or tied (scoring 1
4 )

by Y at the end of the new game. Therefore, B’s score of vertices within H ∪K
is at least the number of points obtained by Y at the end of the new game.
Since player Y won the new game, player B must control at least |H|/2 + |K|/4
vertices in the original game.

Case 2: Suppose that player X wins the new game, or the new game ends
in a draw. In this case, player B plays player X’s strategy for the new game.
If player A ever occupies vB (such a move was not possible for Y in the new
game), then B wastes his following move by playing arbitrarily. If B ever needs
to play on a vertex that he already occupies (from a previous wasted move),
then he plays arbitrarily again, as in the usual strategy stealing argument. B
also wastes his last move, which was not part of the new game. At the end of
the game, the difference from the situation in the new game is that (i) A has
a pebble on vA, (ii) A has possibly no pebble on vB , whereas Y had a pebble
there, and (iii) B has some extra pebbles (in fact, one or two) from wasted
moves. The changes (ii) and (iii) are obviously in B’s favor, hence it suffices to
discuss the effect of (i). We can also assume that A has a pebble on vB , like
player Y .

Since dist(vA, h) ≥ dist(vB , h) for all h ∈ H ∪K, the additional pebble on
vA has no effect on the outcome for the vertices from H ∪K. Ties remain ties,
and vertices under B’s control remain so. Player X had at least |H|/2 + |K|/4
points at the end of the new game. It follows that B gets at least this many
vertices under the scoring rules of the original game, since the score can only
increase when going back to the original game: for vertices in K is doubled; for
vertices in H it is unchanged. �
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3 There is no lower bound on the Voronoi ratio

The goal of this section is to prove Theorem 2. In fact we prove the following
stronger version.

Theorem 4 For every t0 ≥ 1 and ε > 0, there is a graph G for which player B
has a strategy for the Voronoi game ensuring him control over at least a fraction
1− ε of the vertices after each of the rounds 1, . . . , t0.

This is slightly stronger than Theorem 2, which requires for each fixed number
of rounds t ≤ t0, that a winning strategy exists (possibly a different strategy
for each t). We will need this stronger statement when we consider graphs of
bounded degree in Section 5.

Proof: We first illustrate the idea for the one-round game (t = 1). The con-
struction is based on a continuous Voronoi game played on a d-dimensional
regular simplex with the Euclidean metric and 1

d+1 weight on each vertex.∗ In
this game, no matter where A places her pebble, B can take a facet of the sim-
plex that does not contain this pebble and place his pebble on the projection of
A’s pebble to the facet. In this way, A gets 1

d+1 and B gets d
d+1 .

Consider the point set

{ (x1, x2, . . . , xd) ∈ Zd | xi ≥ 0, x1 + x2 + · · ·+ xd = d2 }

and connect two points by an edge if their Manhattan distance is 2, see Figure 1.
This graph models a regular (d − 1)-dimensional simplex in d dimensions, and
the distances in the graph are 1

2 times the L1-distance on Zd. The corners C
are the points (d2, 0, . . . , 0), (0, d2, 0, . . . , 0), . . . , (0, 0, . . . , d2). Attach N leaves
to each corner. The distance from x = (x1, . . . , xd) to the i-th corner is d2− xi.
Let πi(x) denote the point obtained by subtracting d− 1 from xi and adding 1
to all remaining coordinates. This operation corresponds to projecting x to the
simplex facet opposite the i-th corner, except that x is moved only by a fixed
step size. As long as all coordinates of πi(x) are nonnegative, moving from x
to πi(x) brings us closer to all corners except the i-th corner. Suppose A takes
vertex (x1, . . . , xd), and let its largest coordinate be xi. Then xi ≥ d, and B
can take πi(x). This vertex is closer to all corners except the i-th. This ensures
that B controls at least Nd vertices, which for sufficiently large N is within ε

of |G|d+1 .
We now prove the theorem for the general case of t0 moves. We start with

the following set of points.

S := { (x1, x2, . . . , xd) ∈ Zd | xi ≥ 0, x1 + x2 + · · ·+ xd = d2t0 }

As before, we attach N leaves to each vertex.
Now we try to play against A as in the case of a single move. If A takes

vertex (x1, . . . , xd), we find the largest coordinate xi, and try to move to πi(x).

∗We could get rid of the weights by starting a long, narrow path from each vertex of the
simplex, giving a construction with uniform weight distribution, but not convex.
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(0, 9, 0)

(0, 0, 9)

x

π3(x)

π1(x)π2(x)

N

NN

(9, 0, 0)

(8, 1, 0)

(8, 0, 1) (7, 1, 1)

Figure 1: For d = 3, the graph becomes a triangular grid with edge length 9.
For d = 4, the graph becomes a grid of degree 12 filling a tetrahedron of side
length 16 in the manner of a densest sphere packing.

However, this point may already be occupied by a previous pebble of A. Thus
we try the points πi(x), πi(πi(x)), πi(πi(πi(x))), . . . in succession. Since A has
played at most t0−1 previous pebbles, one of the first t0 points of this sequence
is free, and since xi ≥ dt0, it is an element of S.

Thus, after each round, A can own at most one additional corner. If A
plays one of the N leaves incident to a corner, we can treat this case as if A had
played the corresponding corner. Thus, by making N large enough so that the
vertices of S become negligible, A will never get more than a fraction t0

d + ε′ of
the vertices, where ε′ > 0 can be made as small as we want. The statement of
the theorem follows by setting d := 1 + dt0/εe. �
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4 Trees

In this section we investigate the quantity VR(T, t) when T is a tree. We
provide tight lower bounds on VR(T, t) for t = 1 and t = 2 moves. For one
round, it is well-known that A can always claim half the vertices of any tree,
see for example [11, Section 6]:

Proposition 5 For all trees T , we have VR(T, 1) ≥ 1
2 . This bound is tight,

because for the path Pn with n vertices, we have VR(Pn, 1) ≤ 1
2 + 1

2n .

Proof: The optimal strategy is to put a pebble on a central vertex. Since our
proof for two moves will extend the proof of this fact and of the existence of
central vertices, we include this easy proof here.

An edge of the tree splits it into two parts of size x ≤ n/2 and n − x. We
assign the smaller size x as the weight of this edge and direct it from the smaller
side to the larger side. A tree may have a single undirected edge (of weight n/2),
which is called the central edge c1c2. It is easy to show that every vertex has at
most one out-going arc. There can only be one or two vertices without outgoing
arcs (roots). If there is a single root, it is called the central vertex c of the tree;
otherwise the two roots are the two vertices of the central edge. We can view
the tree as a directed tree oriented towards a single root c or two adjacent roots
c1, c2.

In any tree T , the optimal strategy for A is to play the central vertex or one
of the two vertices incident to the central edge. Removal of this vertex v splits
the graph into components of size at most n/2. In one move, B can get at most
one component, and thus, A keeps at least half of the vertices.

A path on an even number of vertices, or more generally, any tree which has
a central edge, shows that the bound cannot be improved. �

Combining Proposition 5 with Theorem 3 implies the following.

Corollary 6 For every tree T and every t, VR(T, t) ≥ 1
4 .

For the case of two moves, we will improve this lower bound to VR(T, 2) ≥ 1
3 ,

which cannot be improved. We need the following lemma:

Lemma 7 Let T be a tree with n vertices. Either, the central vertex c has the
following property:

C1: All components of the graph T − {c} have at most n/3 vertices,

or there are two distinct vertices u, v with the following properties:

C2: All components of the graph T − {u, v} have at most n/3 vertices.

C ′2: After removing the edges on the path from u to v, the component Tu con-
taining u and the component Tv containing v contain more than n/3 ver-
tices each.
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Proof: We use the orientation and weight labeling from the proof of Proposi-
tion 5. We will try to find our vertices u and v as the vertices which have the
following threshold property :

(i) All incoming edges have weight ≤ n/3.

(ii) No outgoing edge has weight ≤ n/3.

Part (ii) of the condition means generally that the outgoing edge has weight
> n/3, but it includes the case that there is no outgoing edge at all (the vertex
is the central vertex c or it is incident to the central edge (of weight n/2)). We
call a vertex with properties (i) and (ii) a threshold vertex.

Claim 8 There is at least one threshold vertex, and there can be at most two
threshold vertices.

Proof: To see that a threshold vertex exists, start from a root (c or c1 or c2).
If it has an incoming edge of weight > n/3 proceed along this edge, and repeat.
Eventually, a threshold vertex must be reached.

Since weights are strictly increasing towards the root, no threshold vertex
can be an ancestor of another threshold vertex. Thus, the subtrees of different
threshold vertices must be disjoint. On the other hand, the subtree rooted at a
threshold vertex u must contain more than n/3 vertices: if u has an outgoing
arc, this follows from property (ii). If u is the central vertex c or one of the
endpoints c1, c2 of the central edge, the subtrees have size n and n/2 respectively.
It follows that there cannot be more than 2 threshold vertices. �

We note that a tree with a central vertex and two incoming arcs of weight
> n/3 must have two threshold vertices, by the argument in the first part of
the proof. We will need this fact later.

Now we can complete the proof of the lemma. If there is a single threshold
vertex u which coincides with the central vertex c, all components of G− c have
size ≤ n/3, and we have established condition C1.

Otherwise, there are either (a) two threshold vertices u, v, or (b) a single
threshold vertex u 6= c.

Case (a): There are two threshold vertices u 6= v. Since no threshold vertex is
the ancestor of another threshold vertex, the path from u to v uses the outgoing
arc from u (or if u is incident to the central edge, it uses that central edge.) The
weight of this arc is the size of Tu, and by the definition of threshold vertices,
it is > n/3. The same argument holds for v, and thus we have established
property C ′2.

There are two types of components of T − {u, v}. There can be an “inner
component” that contains the path from u to v (unless u and v are adjacent).
The remaining components are the outer components: they are connected by
edges that are directed into u and v. Again, by the definition of threshold
vertices, their size is ≤ n/3. The inner component contains everything except
Tu and Tv, and hence its size is at most |T |− |Tu|− |Tv| < n−n/3−n/3 = n/3,
thus giving property C2.
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Case (b): There is a single threshold vertex u 6= c. In this case, we set v := c.
The path from u to v = c is directed from u to v. As in case (a), the first edge
has weight > n/3, and thus |Tu| > n/3. The last edge is directed towards v;
therefore |Tv| > n/2, and property C ′2 is established. As above, this implies the
bound of n/3 on the size of the inner component.

The outer components that are incident to u are treated as in case (a).
Let us consider the outer components incident to v = c. If there were such a
component with > n/3 vertices, it would mean that another threshold vertex
could be found by following this edge down the tree, as we remarked after the
proof of Claim 8. This is excluded in case (b), and thus we have established
property C2. �

Theorem 9 1. For every tree T , VR(T, 2) > 1
3 .

2. For every ε > 0 and every t ≥ 2, there is a tree T with VR(T, t) < 1
3 + ε.

Proof: Lower bound. If Lemma 7 produces a single vertex c, A’s strategy is
obvious: take c. All components of T − c have size ≤ n/3. With two moves, B
can take at most 2 components, and thus A keeps at least n/3 vertices, even
without placing her second pebble.

If Lemma 7 produces two points u, v, then A tries to put pebbles on them.
If this succeeds, we are done: as above, after placing two pebbles, B can own
at most two components of T − {u, v}, and thus have at most 2n/3 vertices in
total.

However, B might occupy u or v in his first move. Therefore, A has to use
a more refined strategy. Let Tu and Tv denote the components of u and v after
removing the edges on the path between u and v. By property C ′2, we know
that |Tu|, |Tv| > n/3. We call the neighbors of u and v that are not on the path
from u to v the children of u and v. Each child x corresponds to an (outer)
component Tx of T − {u, v}, and we pick the child for which this component is
largest. Suppose w.l.o.g. that this is a child u′ of u. Then A begins by placing
a pebble on v. If B does not take u as a response, A takes it, and we are done,
as we have seen above. So let us assume that B takes u. Then A takes u′ in
her second move.

Case 1. B does not take a vertex in Tv in his final move. Then A still owns
Tv, and we are done.

Case 2. B takes a vertex in a component Tv′ , for a child v′ of v. Then A
still owns the rest of Tv, excepting Tv′ , plus all of Tu′ , giving in total at least

|Tv| − |Tv′ |+ |Tu′ | ≥ |Tv| > n/3,

by the choice of u′. This concludes the proof of the lower bound.
Upper bound. We construct a tree so that B has a strategy to gain approx-

imately 2
3 of the vertices for any number of turns t ≥ 2. Observe the following

tree and strategy. First we need to introduce a couple of definitions.
A vertex together with x neighbors of degree 1 forms a broom of size x. Take

a path and attach a broom at successive distances 1, 2, 4, 8, . . . , 2m−1 from each
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other. We call such a path a leg if it contains k brooms of size N . Numbers k
and N will be specified later. If N is very large, the vertices of the path become
negligible, and the mass of the graph is concentrated in the brooms.

Construction: Take a center point c that will be of degree three. We attach
two legs to c and a vertex h forming a broom of size kN , which we call the
head, see Figure 2. If N is large, each component of G−{c} has about 1

3 of the
vertices.

x

=

NNNN

2 4 8
kN

c

NNNN

xlegs
head

h

Figure 2: Player B can ensure to get 2/3−1/k in t = 2 moves. A circular sector
represents a large number x of leaves incident to one vertex (a “broom”). In
the example, each leg has k = 4 brooms.

The longest path of a leg will be called the path of a leg. We define a natural
ordering on the path of a leg. Vertex c will be on the top and all other over
and below relations of the vertices on the path of a leg we correlate according
to that.

As a straightforward consequence of the exponentially increasing distances
of a leg, we obtain the following observation.

Observation 10 Suppose player B claims a vertex v on the path of a leg and
w is the closest vertex below v such that w or a leaf adjacent to w is claimed by
a player (either by A or B). Then B controls all the brooms lying below v up
to and including w, except at most one.

As a consequence, we get.

Observation 11 Suppose player B has claimed c or the highest vertex of a leg
l and player A has claimed i vertices of this leg. In addition, suppose for each
vertex w on the path for which w or a leaf adjacent to w is claimed by player
A, some player has claimed the vertex w′ immediately below it (unless w is the
lowest vertex, for which w′ does not exist). Then A owns at most i brooms, plus
possibly i individual leaves in brooms which are otherwise taken by B.

If this condition is fulfilled, we say that B dominates the leg. When B has
claimed c or the highest vertex of a leg l, then he can ensure that he dominates
l if he can place as many pebbles into l as A, in addition to the pebble placed at
c or the highest vertex, by following the strategy suggested by Observation 11.
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Strategy:

• If A takes the center vertex c in the first turn, then B takes h. In the
second turn A can either take a leaf from the broom at h or a vertex
from one of the legs. In either case there is a leg l where A did not put
any pebble yet. In his second turn B takes the closest vertex to c on l.
Therefore at this point of the game B owns the whole leg l completely. In
his further moves, B will defend l, ensuring that he dominates l according
to the condition of Observation 11: If A claims a vertex v on the path of
l, then B claims the vertex below v if it is defined and available. If it is
not available, then v is either the lowest vertex or it is above an already
claimed vertex. In either case B can claim any available vertex. If A
claimed a leaf belonging to a broom on l, B claims the neighbor of v on
the path of l if it is available. Otherwise, B can claim any available vertex.
If A claims a vertex not belonging to l, then B claims any available vertex.

• If A does not take the center vertex c, then B takes it. From now on, B
will try to defend both legs, as in the strategy above. The problem is that
B may be one move short in his defensive strategy, if A has moved to a
leg in his first move. If A takes a vertex from the head in any of her turns
(including her first move), then B can catch up with A and dominate both
legs from then on. If A never takes a vertex from the head, then B can
successfully defend only one leg, but he owns the whole head.

Now we describe the strategy more precisely. There are two possibilities.
Suppose A takes a vertex from the broom formed by h in the first turn.
Then B claims c, and in all his forthcoming turns, B will defend both legs,
see the strategy above. More precisely, when A claims a vertex from the
leg l1, then B defends l1. When A claims a vertex from the leg l2, then
B defends l2.

Consider the other case, when A claims a vertex from a leg in her first
turn. Then B claims the center c, and in all remaining turns, if A claims
a vertex from a leg, B will defend that leg. If in a turn A claims a vertex
from the broom formed by h, then B will claim the vertex which is right
below the vertex taken by A in her first turn if it is defined and available.
If the taken vertex by A in her first turn was a leaf in a broom, B takes
the broom if available. In all other cases, B is free to choose any available
vertex.

Analysis of the strategy: In the first case B’s strategy was to gain h and
as much as possible from a leg. As a result of this strategy, by Observation 11,
B ensures himself the whole leg except of those brooms in which A claimed a
vertex. In the end of the game, B will control all vertices of the broom formed
by h except at most t leaves and the leg l without at most t brooms.

When B’s strategy was to defend both legs by Observation 11 he ensures
himself both legs except those brooms in which A claimed a vertex, which is at
most t.
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In the last case B’s strategy was to defend a leg, while he controls the large
broom of h, and if A claimed a vertex from the broom formed by h, then B
defended both legs. Thus either B obtained both legs except of those brooms
in which A claimed a vertex, or B gained the broom formed by h and a leg
possibly without at most t brooms.

Counting the gain: By our construction the tree contains kN vertices in the
brooms of each of the three subtrees connected to the center vertex c. Hence,
there are 3kN vertices in the brooms of the tree. In each of the three cases
B gains at least 2kN − tN vertices in brooms. There are more vertices in the
tree outside the brooms but we achieve that the number of those is negligible
by increasing N . Therefore, B gets 2

3 −
t

3k , and for big k this amount is close
to 2

3 . Hence, the statement of the theorem follows. �

5 Graphs with bounded degree

In this section, we investigate when player B is able to obtain some positive
proportion of the vertices, i.e., for a fixed ε > 0 we are interested in knowing
for which graphs G we have VR(G, t) ≤ 1− ε. For every ε > 0 and t, there are
certainly graphs for which VR(G, t) > 1 − ε. For example, we could take G to
be a star with more than t

ε leaves. However if G is not allowed to have vertices
of high degree, then the situation changes.

Lemma 12 In a connected graph G with n vertices and maximum degree ∆,
we have

VR(G, 1) ≤ 1− 1

∆
+

1

n∆
.

Proof: Let v be the vertex chosen by player A on her first move, and let
x1, . . . , xk be the neighbors of v, with k ≤ ∆. Let H(xi) be the set of vertices
which are closer to xi than to v. Obviously every vertex of G belongs to at least
one H(xi). B picks the neighbor x for which |H(x)| is largest and will control
at least |H(x)| ≥ (n − 1)/∆ = n/∆ − 1/∆ vertices. This implies VR(G, 1) ≤
1− 1

∆ + 1
n∆ . �

Combining Lemma 12 with Theorem 3 we obtain the following.

Corollary 13 In a connected graph G with n vertices and maximum degree ∆,
we have

VR(G, t) ≤ 1− 1

2∆
+

1

2n∆
.

Let Sk,N be the spider graph formed from a star with k leaves by replacing
every leaf with a path of length N . Since player A can always choose the center
of Sk,N on her first move, it is easy to see that VR(Sk,N , 1)→ 1− 1

k as N →∞.
This shows the bound in Lemma 12 cannot be substantially improved.

For t ≥ 2, we were not able to determine whether the bound in Corollary 13
can be improved or not. However, we were able to find graphs which show that
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the bound in Corollary 13 cannot be decreased by more than 1
2∆ , by proving

the following.

Theorem 14 For every ∆, t ≥ 1 and ε > 0, there is a connected graph G with
maximum degree ∆ satisfying

VR(G, t) ≥ 1− 1

∆
− ε.

In order to prove Theorem 14, we first need to show that for every t, there
are graphs with maximum degree 3 on which B can claim almost all the vertices
after t rounds. We prove the following.

Lemma 15 For every t ≥ 1 and ε > 0, there is a graph Gt,ε with maximum
degree 3 and the following property: Player B has a strategy for the Voronoi
game on Gt,ε such that after each round 1, . . . , t, he will control a fraction 1− ε
of the vertices after each of the rounds 1, . . . , t.

Proof: The proof is an extension of Theorem 4. We set d = d 2t
ε e. Instead of

a hyperplane in Zd, we will take a full cube of side length L = d2t from which
the lowest corner has been cut off: the graph H has vertex set

{ (x1, x2, . . . , xd) ∈ Zd | 0 ≤ xi ≤ L, x1 + x2 + · · ·+ xd ≥ L }.

Two vertices are connected in H whenever their L1 distance is 1, i.e. they
differ in one coordinate and the difference is 1. Then the distance between
any two vertices equals their L1 distance. As before, the corners C are the
points (L, 0, . . . , 0), (0, L, 0, . . . , 0), . . . , (0, . . . , 0, L). The distance from a vertex
(x1, . . . , xd) to the j-th corner can be calculated as

L+

d∑
i=1

xi − 2xj .

The strategy of Theorem 4 must be adapted to account for the fact that H
has additional vertices: Suppose A takes vertex x = (x1, . . . , xd), and suppose
w.l.o.g. that x1 ≥ L/d = dt is the largest coordinate. Then B calculates the
response point π1(x) = (x′1, x

′
2, . . . , x

′
d), where x′i = min{xi + 1, L} for i =

2, . . . , d, and x′1 = x1 − (d− 1) ≥ (t− 1)d. These formulas ensure that x′ ∈ H,
and one can easily show that every corner except the first is closer to x′ than
to x.

By an argument analogous to the proof of Theorem 4, one can find a strategy
S for B in the Voronoi game on H which ensures that after each round 1, . . . , t,
there are at least d− t corners c satisfying

dist(c,B) < dist(c, A),

where A and B are the sets of vertices chosen by A and B respectively.
To cut down the maximum degree, we use a variation of the cube-connected

cycles of Preparata and Vuillemin [9]. We construct “grid-connected cycles”.
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x1

x2

x3

1+
1−

2−

3−

3+ 2+

Figure 3: Representing the a 3 × 2 × 2 section of the grid Z3 (shown on the
left) by grid-connected cycles. The connection paths should have 6d − 2 = 16
intermediate vertices, but only 3 are shown.

Each point x ∈ Zd is replaced by a circular ring of 2d nodes that are labeled
1+, 1−, 2+, 2−, . . . , d+, d− in cyclic order. We denote them by x(1+), x(1−) etc.
For i = 1, . . . , d, node x(i+) is connected to node x′(i−) by a connection path of
6d− 1 edges, where x′ = x+ ei and ei is the i-th unit vector. Figure 3 shows a
three-dimensional example. The resulting graph has maximum degree 3. Nodes
on the boundary of the cube have unused connections. For each corner, we
pick one of these degree-2 nodes and attach a very long path of length N to it.
As usual, we make N so big that the original graph becomes only a negligible
fraction of the whole graph. This gives us the graph G = Gt,ε.

The following proposition implies that playing the Voronoi game on Gt,ε is
approximately the same as playing it on H. The distances are preserved up to
a multiplicative factor with an additive error.

Proposition 16 Let x(p±) and y(q±) be two vertices of G corresponding to
grid points x, y ∈ Zd. Then their distance dist(x(p±), y(q±)) in the graph is
bounded as follows:

6d · ‖x− y‖1 − 1 ≤ dist(x(p±), y(q±)) ≤ 6d · ‖x− y‖1 + 5d

Proof: Lower bound. The connection paths that connect different rings corre-
spond to neighbouring points in Zd. Hence the path between x(p±) and y(q±)
needs at least ‖x− y‖1 of these connection paths. But since these paths are not
directly adjacent, a path in G has has to contain at least one ring edge between
any two connection paths.

Upper bound. Consider two nodes x(p±) and y(q±) that we want to connect
by a path. Let u = (u1, . . . , ud) be the elementwise maximum of x and y:
ui = max{xi, yi}. Then we have ‖x − y‖1 = ‖x − u‖1 + ‖y − u‖1 To get from
x(p±) to y(q±), we go via the ring u. We connect x(p±) to the node u((p−1)−)
by sequentially increasing each coordinate value i = p, p+1, . . . , p−1 from xi to
ui. This procedure works because the graph represents a subcube of Zd, from
which some “lower” part has been removed. It is always possibly to increase a
coordinate, up the maximum L.
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We make possibly one initial step to x(p+). The coordinate move in direction
i goes from some node z(i+) to some node z′(i−) in 6d|xi−ui|−1 steps, strictly
alternating between connection paths and ring edges. One more step brings
us to z′((i + 1)+) to get ready for the next coordinate direction, for a total of
6d|xi − ui| steps. This bound does not work for xi = ui: there we need 2 steps
from z(i+) to z((i + 1)+). In total, we can bound the number of steps to at

most
∑d

i=1(6d|xi − ui| + 2) = 6d‖x − u‖1 + 2d. Similarly, y(q±) is connected
to some vertex on the ring u in at most 6d‖y − u‖1 + 2d, steps, and we need at
most d additional steps on the ring u. �

We continue the proof of Lemma 15. Let V ′ ⊂ V (G) denote the nodes on
rings, and let f : V ′ → H ⊂ Zd denote the function which maps every node
x(i±) to its grid point x. As a consequence of the previous proposition, for two
vertices u, v ∈ H, we can recover the L1 distance of their corresponding grid
points from their distance in the graph:

‖f(u)− f(v)‖1 =

⌊
dist(u, v) + 1

6d

⌋
This means that strict equalities between distances in H carry over to corre-
sponding vertices of V ′.

Player B’s strategy on Gt,ε is as follows: If A moves to a node u on one
of the rings, B interprets this as a move to f(u) in H, calculates his response
x according to the strategy S on H, and chooses an arbitrary node x(q±) on
the corresponding ring. If A selects several nodes on the same ring, they are
interpreted as wasted moves in H. If A plays on one of the long paths, this
is interpreted as a move to the corresponding corner vertex. Finally, A might
move to a node w on a connection path between vertices u and u′ on two rings.
Then f(u) and f(u′) differ in exactly one coordinate xj . Let us assume that
f(u) has the smaller xj-coordinate. Then B interprets this as a move to f(u)
and responds as above. To analyze the error incurred by this interpretation, let
us imagine that A had covered both u and u′. This would certainly be more
advantageous for A than covering w alone. However there is only one corner
which is closer to f(u′) than to f(u): the j-th corner. All other corners are
closer to f(u). Thus, by allowing A to cover the vertex u′ in addition to u,
she can win at most one additional corner. It follows that after the k-th round
(1 ≤ k ≤ t), A owns at most 2k corners. This implies the lemma. �

We can now prove Theorem 14.

Proof: [Proof of Theorem 14.] For given ε and t, we construct the graph G from
∆ disjoint copies of Gt,ε called G1, . . . , G∆ and an extra vertex v, by adding
exactly one edge between v and an arbitrary vertex of Gi for each i.

On her first move A claims the vertex v. Subsequently A always claims a
vertex from the same Gi as B in the previous move. A treats G1, . . . , G∆ as
separate games, and plays the strategy of the second player given by Lemma 15.
Hence she controls at least (1−ε)|V (Gi)| vertices of Gi after her move. However,
she cannot answer the very last move of B.
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This ensures that at the end she controls at least (1−ε)|V (Gi)| of the vertices
of each Gi except for one. Since for i 6= j there are no edges between Gi and Gj ,
Player B can capture at most |Gi| = 1

∆ (|V (G)| − 1) vertices on his last move.
Therefore A controls at least at least

(
1− ε− 1

∆

)
|V (G)| vertices at the end of

the game, proving the result. �

Remarks and acknowledgment

Several questions are left open. Are there trees T for which VR(T, t) is close
to 1

4 or can the first player always get at least 1
3 of the vertices, for t ≥ 3?

How much can she get if they play on a planar graph, e.g., on a grid? What
about biased versions of the game, where the players play different amounts of
pebbles?

A very interesting special case is the one-round game where the first player
claims t vertices, then the second player claims one. Denote by VRt:1(G, 1) the
fraction that the first player gets after an optimal play on G and the minimum
over all G for such a game by VRt:1 = infG VRt:1(G, 1). We know very little of
VRt:1, it is even possible that VRt:1 = 0 for every t or maybe already VR2:1 > 0.
Recently it was shown, by constructing a family of functions that represent a
combinatorial abstraction of the game, by David Speyer [10] that VR2:1 ≤ 10

21
and then by Sam Zbarsky [12] that VRt:1 ≤ t−1

t+1 . Is this bound sharp?
This work started at the Fourth Emléktábla Workshop in Tihany in August

2012, whose topic was Positional Games. We are thankful to the organizer and
Miloš Stojaković for posing the problem. We are grateful to Younjin Kim and
Tamás Hubai for several observations.
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