
Open Problems in Discrete Differential Geometry

Collected by Günter Rote

PROBLEM 1 (Sergei Tabachnikov). Paper Möbius strip and paper cylin-
der eversion
One can make a smooth Möbius strip from a paper rectangle if its aspect ratio is
sufficiently large, but not from a square.

Question 1. What is the smallest length λ such that a smooth Möbius band can
be made of a 1× a paper rectangle if a > λ?

The known bounds are π
2 ≤ λ ≤

√
3 [1, 2], and it is conjectured that λ =

√
3. For

smooth immersions, the answer is λ = π/2. See [3, 4, 5] and the references there for
developable Möbius bands. A related problem concerns the eversion of a cylinder:

Question 2. What is the least perimeter µ of a paper cylinder of height 1 that
can be turned inside out in the class of embedded smooth developable surfaces.

The known bounds are π ≤ µ ≤ π + 2, and for smooth immersions, the answer
is µ = π [2].

[1] D. Fuchs, S. Tabachnikov. Mathematical omnibus. Thirty lectures on classic mathematics.
Amer. Math. Soc., Providence, RI, 2007.

[2] B. Halpern, C. Weaver. Inverting a cylinder through isometric immersions and isometric

embeddings. Trans. Amer. Math. Soc. 230 (1977), 41–70.
[3] T. Randrup, P. Røgen. Sides of the Möbius strip. Arch. Math. 66 (1996), 511–521.

[4] I. Sabitov. Isometric immersions and embeddings of a flat Möbius strip into Euclidean
spaces. Izv. Math. 71 (2007), 1049–1078.

[5] G. Schwarz. The dark side of the Moebius strip. Amer. Math. Monthly 97 (1990), 890–897.

PROBLEM 2 (Sergei Tabachnikov). Commuting billiard maps
Given a smooth convex plane domain, the billiard ball map sends an incoming
ray (the trajectory of the billiard ball) that hits the boundary from inside to an
outgoing ray according to the law of reflection: the angle of incidence equals the
angle of reflection.

Consider two nested convex domains. The two billiard ball maps, T1 and T2,
act on the oriented lines that intersect both domains. If the domains are bounded
by confocal ellipses, then the respective billiard ball maps commute; see, e.g., [4].

Question. Assume that the two maps commute: T1 ◦T2 = T2 ◦T1. Does it follow
that the two domains are bounded by confocal ellipses?

For piecewise analytic billiards, this conjecture was proved in [2]. For “outer
billiards”, an analogous fact is proved in [3]. Of course, this problem has a multi-
dimensional version, open both for inner and outer billiards; see, e.g., [1] on multi-
dimensional integrable billiards.

[1] V. Dragović, M. Radnović. Poncelet porisms and beyond. Integrable billiards, hyperelliptic
Jacobians and pencils of quadrics. Birkhäuser, Basel, 2011.

[2] A. Glutsyuk. On 4-reflective complex analytic planar billiards. arXiv:1405.5990, 2014.
[3] S. Tabachnikov. Commuting dual billiard maps. Geom. Dedicata 53 (1994), 57–68.
[4] S. Tabachnikov. Geometry and billiards. Amer. Math. Soc., Providence, RI, 2005.
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PROBLEM 3 (Mikhail Skopenkov). Inverse problem for alternating-
current networks
An alternating-current network [2, Section 2.4] is a (not necessarily planar) graph
with a fixed subset of b vertices (boundary vertices) and a complex number cxy
with positive real part (conductance) assigned to each edge xy. A voltage is a
complex-valued function vx on the set of vertices such that for each nonboundary
vertex y we have

∑
xy cxy(vx−vy) = 0, where the sum is over the edges containing

the vertex y. One can see that the voltage is uniquely determined by its boundary
values [2, Section 5.1]. The current flowing into the network through a boundary
vertex y is i(y) :=

∑
xy cxy(vx − vy). The network response is the matrix of the

linear map taking the vector of voltages at the boundary vertices to the vector of
currents flowing into the network through the boundary vertices.

The general electrical-impedance tomography problem is to reconstruct the net-
work from its response. For direct-current planar networks, meaning that all
conductances are real and positive, the problem has been solved [1].

Teaser. There is a matrix realizable as the response of the network in the figure
to the right, for the boundary vertices N1, N2, N3 and some edge conductances
R1, R2, R3, but not by the network to the left.

Denote by Ψb the set of complex b× b matrices Λ having the following 4 prop-
erties:

(1) Λ is symmetric;
(2) the sum of the entries of Λ in each row is zero;
(3) Re Λ is positive semidefinite;
(4) if U = (U1, . . . , Ub) ∈ Rb and UT (Re Λ)U = 0 then U1 = · · · = Ub.

Question 1. Prove that the set of responses of all possible connected alternating-
current networks with b boundary vertices is the set Ψb.

It is known that Conditions (1–4) are necessary. Sufficiency is known for b = 2
and b = 3 [2, Theorem 4.7].

Question 2. Provide an algorithm to reconstruct a network and edge conductances
for a given response matrix.

Note: Questions 1 and 2 have been solved by Günter Rote.

Question 3. Describe the set of responses of all series-parallel networks.
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Question 4. Describe the set of responses of all planar networks that have the
boundary vertices on the outer face.

Question 5. Let the conductance of each edge be either ω or 1/ω, where ω is a
variable. Describe the set of possible responses of such networks as functions in ω.

This is known for b = 2 boundary vertices — Foster’s reactance theorem [2, The-
orem 2.5].

[1] E. B. Curtis, J. A. Morrow, Inverse Problems for Electrical Networks, Ser. Appl. Math., vol.

13, World Scientific, Singapore, 2000.
[2] M. Prasolov and M. Skopenkov, Tiling by rectangles and alternating current, J. Combin.

Theory A 118:3 (2011), 920–937.

PROBLEM 4 (Nina Amenta). Are face angles determined by dihedral
angles?
Stoker’s conjecture says that, for a convex 3-polytope with given combinatorics, if
all dihedral angles are specified (different from 0 and π), then all face angles are
also determined.

Question. Is this also true for a non-convex polytope?

One may assume that the polytope is triangulated and that it is homeomorphic
to a sphere.

PROBLEM 5 (Günter Rote). Existence of offset polytopes
We are given a non-convex three-dimensional polytope P whose boundary is home-
omorphic to a sphere. We want to construct an offset polytope Pε in which every
face is translated outward by the same small distance ε. Pε should not have other
faces than the faces coming from P , and the boundary of Pε should remain home-
omorphic to a sphere. If P has a saddle-like vertex of degree 4 or larger, the result
is not unique.

Question. Does such an offset polytope always exist for sufficiently small ε > 0?

It is enough to solve the problem locally for each vertex v of degree d ≥ 4. Such
a vertex will be blown up into d− 2 new vertices, connected by edges that form a
tree. The faces of Pε should be simply connected when clipped to a neighborhood
of v.

PROBLEM 6 (Ulrich Bauer). Subdivision of discrete conformal struc-
tures
Let T be a triangulated surface, and let λ, µ : ET → R>0 be two discrete confor-
mally equivalent metrics on T , represented as edge lengths of the triangulation.
Here, discrete conformal equivalence means that the edge lengths of λ and µ for
any edge ij between two vertices i, j are related by µij = e

1
2 (ui+uj)λij for some

function u : VT → R on the vertices.

Question. Is there a metric subdivision scheme that preserves the conformal
equivalence?
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Specifically, a subdivision of a simplicial complex K is a complex K ′ such that
|K| = |K ′| and each simplex of K ′ is contained in some simplex of K. A metric
subdivision scheme is a map sending each simplicial complex K equipped with
a metric λ to a subdivision K ′ of K equipped with a metric λ′. A particular
example is the barycentric subdivision. The question is whether there exists a
metric subdivision scheme such that the subdivided metrics λ′ and µ′ are still
conformally equivalent.

[1] F. Luo. Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math., 6(5):765–780,

2004.

PROBLEM 7 (Jim Propp, Richard Kenyon). Disk packings of maximum
area
Consider two disks of radius 1 with centers at (±1, 1). Together with the x-
axis, they enclose at curved triangular region. Into this region, we want to place
infinitely many non-overlapping disks that touch the x-axis, such that their total
area is maximized.

Question. Is it true that the greedy method of successively placing each new circle
into the interstices such that they touch two previously placed circles will give the
maximum area?

PROBLEM 8 (Günter Rote). A curious identity on self-stresses
Take the wheel graph G (the graph of a pyramid) embedded in the plane in general
position, with a central vertex p0 that is connected to vertices p1, . . . , pn (n ≥ 3)
forming a cycle. On the 2n edges of this graph, we define the following function:

ωi,i+1 :=
1

[pipi+1p0][p1p2 . . . pn]
, ω0,i :=

[pi−1pipi+1]

[pi−1pip0][pipi+1p0][p1p2 . . . pn]
.

for i = 1, . . . , n, where [q1q2 . . . qk] denotes signed area of the polygon q1q2 . . . qk,
and pn+1 = p1. This function is a self-stress: the equilibrium condition

∑
j ωij(pj−

pi) = 0 holds for every vertex i, where the summation is over all edges ij incident
to i. Pick two arbitrary points a and b and define another function fij on the
edges of G:

fij := [apipj ][bpjpj ],

Then we have the following identity, which was used (and proved) for n = 3 in [1].

(1)
∑

ij∈E(G)

ωijfij = 1

A different formula for fij that fulfills (1) is given by a line integral over the
segment pipj , see [1, Lemma 3.10]:

f ′ij := 3
2 · ‖pi − pj‖ ·

∫ pj

x=pi

‖x‖2 ds = 1
2 · ‖pi − pj‖

2 ·
(
‖pi‖2 + ‖pj‖2 + 〈pi, pj〉

)
Question 1. Are there other graphs with n vertices and 2n− 2 edges, for which a
self-stress ω satisfying (1) can be defined? The next candidates with 6 vertices are
the graph of a triangular prism with an additional edge, and the complete bipartite
graph K3,3 with an additional edge.
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Question 2. What is the meaning of the identity (1)? Is it an instance of a more
general phenomenon? What are the connections to homology and cohomology?

[1] Günter Rote, Francisco Santos, and Ileana Streinu, Expansive motions and the polytope of

pointed pseudo-triangulations, in: Discrete and Computational Geometry—The Goodman-
Pollack Festschrift, Springer, 2003, pp. 699–736, arXiv:math/0206027 [math.CO].

PROBLEM 9 (Hao Chen and Arnau Padrol, reported by Günter M. Ziegler).
Approximately inscribed polytopes
Steinitz proved in 1928 [3] that not every combinatorial type of 3-polytope can be
inscribed, that is, realized with all vertices on a sphere. However, a weak version
of this is true: Due to the Koebe–Andreev–Thurston circle packing theorem (see
e.g. [2, 4]), every 3-polytope can be realized with all edges tangent to the sphere
– and thus it has a representation with

• all vertices outside a sphere
• all facets cutting into the sphere.

The question is whether this extends to higher dimensions:

Question. Does every combinatorial type of d-polytope have a realization with
• vertices outside a (d− 1)-sphere,
• facets cutting into the same (d− 1)-sphere.

Our conjecture is that this is false for d > 3, perhaps already for d = 4, but
certainly for high dimensions d, where we know that there are infinitely many
projectively unique polytopes. The examples constructed in [1] are essentially
inscribable, but there should be other such polytopes whose “shape” is far off
from that of a sphere/quadric. However, we have not been able to construct such
a polytope yet.

[1] Karim Adiprasito and Günter M. Ziegler. Many projectively unique polytopes. Inventiones
math., 199:581–652, 2015.

[2] Alexander I. Bobenko and Boris A. Springborn. Variational principles for circle patterns,
and Koebe’s theorem. Transactions Amer. Math. Soc., 356:659–689, 2004.

[3] Ernst Steinitz. Über isoperimetrische Probleme bei konvexen Polyedern. J. reine angewandte

Math., 159:133–143, 1928.
[4] Günter M. Ziegler. Convex polytopes: Extremal constructions and f-vector shapes. In

E. Miller, V. Reiner, and B. Sturmfels, editors, “Geometric Combinatorics”, Proc. Park City

Mathematical Institute (PCMI) 2004, pages 617–691, Providence, RI, 2007. Amer. Math.
Society.
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