
- --- -

How to Make Zuse's Z3 a Universal

Computer

Raul Rajas

September 5, 1997

Abstract

The computing machine Z3, buHt by Konrad Zuse from 1938 to
1941, could only execute fixed sequences of floating-point arithmetical
operations (addition, subtraction, multiplication, division and square
root) coded in a punched tape. We show in this paper that a single
program loop containing this type of instructions can simulate any
Turing machine whose tape is of bounded size. This is achieved by
simulating conditional branching and indirect addressing by purely
arithmetical means. Zuse's Z3 is therefore, at least in principle, as
universal as today's computers which have a bounded memory size.
This result is achieved at the cost of blowing up the size of the program
stored on punched tape.

Universal Machines and Single Loops

Nobody has ever built a universal computer. The reason is that a uni-
versal computer consists, in theory, of a fixed processor and a memory
of unbounded size. This is the case of Turing machines with their
unbounded tapes. In the theory of general recursive functions there
is also a small set of rules and some predefined functions, but there is
no upper bound on the size of intermediate reduction terms. Modern
computers are only potentially universal: They can perform any com-
putation that a Turing machine with a bounded tape can perform. If
more storage is required, more can be added without having to modify
the processor (provided that the extra memory is still addressable).

1



- -- ------

It is the purpose of this paper to show that Komad Zuse's Z3,
a computing automaton built in Berlin from 1938 to 1941, can be
programmed in principle as any other universal computer. This is a
surprising result, since the Z3 can only compute sequences of arith-
metical operations (addition, subtraction, multiplication and division)
stored in a punched tape. There is no conditional branching. Since
both ends of the punched tape can be glued together, the Z3 is a
machine capable of executing a single loop of arithmetical operations
using numbers stored in memory.

It is well known that any computer program containing conditional
branches and the usual instructions of imperative languages, like for
example FORTRAN, can be programmed using a single WHILE loop
[1]. Also, all conditional branches can be eliminated from the loop [2].
I showed in [3] that if the Z3 is extended with indirect addressing it
can simulate a Turing machine. We will adopt the techniques used in
those papers in order to show that a Turing machine can be simulated
by a single program loop of a machine capable of computing the four
basic arithmetic operations.

Our computing model is the following: there exist memory loca-
tions which we will denote by lower case letters. We can only refer
explicitly to memory addresses (there is no indirect addressing). Ini-
tially (for the sake of simplicity) we will restrict our programs for the
Z3 to a language containing only statements of the form

a = b op c,

where op represents one of the four basic arithmetic operations. Any
statement a = b op c can be "compiled" using the two registers of
the Z3 and four assembler instructions (which load the two argument
registers in the appropriate order):

LOAD b
LOAD c

op
STORE a

The store operation refers implicitly to the first register (accumulator)
of the processor. All computations are performed with floating-point
numbers. The mantissa has aprecision of 16 bits for its fractional
part. The Z3 uses normalized floating-point numbers (Le. with a
mantissa m such that 1 :S m < 2). The special case of a zero mantissa

2




