

 RSA vs. ECC

A non-expert view
by

Ralph-Hardo Schulz

•The Rivest-Shamir-Adleman-system (RSA) and the
systems of

•Elliptic-curve-cryptography (ECC)

both are public key cryptosystems.

RSA

In the RSA-System, each participant, e.g. Bob, has as
private key a number d

B
 and as

public key a pair (e
B
,n) where n=pq is a pseudo-prime (i.e. a product

 of two large primes) and e
B
 d

B
≡1 (mod (p-1)(q-1)).

 In python: Rsa= lambda m: m**e
B
%n

 RSA

The security of the system depends as well on the
possbility of factorising n. For such an attack, there exist
many algorithms, e.g.
-the algorithm of Fermat ,
-the quadratic sieve (QS) (Carl Pomerance)
-the number field sieve (NFS)
A direct attack uses the
 - Continued fraction method (CFRAC) (M.J.Wiener)
which gives d from e/n if d<1/3 ·n1/4

The Quadratic Sieve and other sieves:
Find a,b with

a2≡b2 (mod n) and a ≡ ± b (mod n)

Then we have:
 n divides (a-b)(a+b), but not (a-b) and not (a+b).
Therefore: gcd(a±b,n) are non-trivial divisors of n.

„Ron was wrong, Whit is right“
was the provocative title of a paper of Arjen K. Lenstra,
Thorsten Kleinjung et al. who, 2009, had collected several
millions of RSA-keys. They could break over 12.000 keys.

„Ron was wrong, Whit is right“
was the provocative title of a paper of Arjen K. Lenstra,
Thorsten Kleinjung et al. who, 2009, had collected several
Millions of RSA-keys. They could break over 12.000 keys.

Here Ron means Ron Rivest and RSA and
Whit stands for Whit Diffie and Martin Hellman (DSA and ECC).
The main mistake made in key creation was the
 Repeated use of primes in several pseudoprimes
 such that one could break them by determining the gcd.

The (later so called) number RSA-129
(with 129 decimal digits, 476 binary digits)
which was presented by Martin Gardner 1976 (and believed by Ron Rivest
to resist quadrillion years) was factorized 1994 by 600 participants with
1017 operations using a version of the quadratic sieve.

RSA-129 =
11438162575788886766923577997614661201021829672124236
25625618429357069352457338978305971235639587050589890
75147599290026879543541

The (later so called) number RSA-129
(with 129 decimal digits, 476 binary digits)
which was presented by Martin Gardner 1976 (and believed by Ron Rivest
to resist quadrillion years) was factorized 1994 by 600 participants with
1017 operations using a version of the quadratic sieve.

RSA-129 =
11438162575788886766923577997614661201021829672124236
25625618429357069352457338978305971235639587050589890
75147599290026879543541 =
34905295108476509491478496199038981334177646384933878
43990820577*32769132993266709549961988190834461413177
642967992942539798288533

To test the security of 'semiprimes', the
RSA-Factoring-Challenge,
 a competition, was put forward by the RSA Laboratories;
it ended 2007 when Jens Franke (Bonn) et.al. had factorised

RSA-576 (2003; with 576 binary digits, 174 decimal digits),

RSA-640 (2005; with 193 decimal digits) and, together with
Thorsten Kleinjung, a

1039-Bit long Mersenne number (which was not part of the
challenge).

Predicted Approximate costs for breaking
the actually used RSA-1024 and RSA-2048:

Continued fraction: 2120, 2170 operations
Quadratic sieve: 2100, 2150

Numberfield sieve: 280, 2112

 Big decrease

(according to Tanja Lange and Daniel J.Bernstein:
ECCHacks on YouTube)

The European Union Agency for Network and Information
Security (ENISA) recommends

for RSA for the length of n
3072 Bits for medium term,

 15.360 Bits for long term security,
for ECC for the greatest prime divisor of the group order

160 Bit for medium term and
512 Bit for long term security.

Forecast for the length of secure keys of RSA and ECC
by A.Lenstra and E.Verheul (see CrypTool-Scipt)

Attacks to the LOG-problem: e.g.
Babystep-Giantstep-algorithm for determining a= log

g
(A) (i.e. A=ga).

Let m= o(g) and w with w-1<√m ≤ w; then a=w·j + r and A=gwjgr

A·g-r=(gw)j.

Attacks to the LOG-problem: e.g.
Babystep-Giantstep-algorithm for determining a= log

g
(A) (i.e. A=ga).

Let m= o(g) and w with w-1<√m ≤ w; then a=w·j + r and A=gwjgr

A·g-r=(gw)j.

Attacks to the LOG-problem: e.g.
Babystep-Giantstep-algorithm for determining a= log

g
(A) (i.e. A=ga).

Let m= o(g) and w with w-1<√m ≤ w; then a=w·j + r and A=gwjgr

A·g-r=(gw)j.

Compare:
Babystep list {A·(g-1)r | r=0,...,w-1 }
with the
Giantstep list {1, gw, (gw)2,..., (gw)w-1 }
(which is not dependend from a).

MAN IN THE MIDDLE

Index-Calculus-algorithm to find log
g
b

Try to represent gz in G=<g> for random z with a
factor-basis S={a

1
,..,a

t
}, i.e. gz=a

1
s1 ···a

t

st

giving z ≡ s
1
log

g
a

1
+...+ s

t
log

g
a

t
 (mod n)

Repeat to get log
g
a

i
 as solutions of a system of

linear equations.
Try to find s with gsb=a

1
b1

...a
t
bt ; from that one gets

log
g
b=b

1
 log

g
a

1
+..-s (mod n)

Other algorithm: Pohlig-Hellman, Pollard-Rho, number field sieve, function
field sieve

Visualisation of the key exchange system by Diffie and Hellmann
with CrypTool 1

Generator g

Secret random
number:
a of Alice,
b of Bob
Public A and B with
A=ga und B=gb

Common secret:
S=gab =Ab=Ba

ElGamal crypto-system

Private key a
Public key (g,A) (with A:=ga)
Encoding of plain
 text m E(m):=(gk,m·Ak)
 for a randomly chosen k
 to protect a: Ak=(ga)k=(gk)a

Decoding D(x,y):=(xa)-1 ·y

 Verification D(gk,m·Ak)=((gk)a)-1mAk=g-akgakm=m.

Examples of real elliptic curves with Weierstrass equation
y2=x3+bx+c

Addition on an elliptic curve

Elliptic curve over Z
97

(generated with CrypTool by B.Esslinger)

Daniel Bernstein (Chicago and Eindhoven) and
Tanja Lange (Eindhoven) recommend elliptic curves
with other equations
 (because of easier implementation and

possible back doors
in the curves recommended by NIST)

 http://ecchacks.cr.yp.to/.
 https://www.youtube.com/watch?v=l6jTFxQaUJA}
(Video)

E.g.:
It is known that the
„Dual Elliptic Curve Deterministic Random Number
Generator“
has a back door:

If the points are randomly chosen, the x-coordinates are not
randomly distributed.

Europol chief warns on computer encryption
(BBC 29 March 2015)

„Hidden areas of the internet and encrypted
communications make it harder to monitor
terror suspects“,
warns Europol's Rob Wainwright.

Other types of elliptic curves:
Edwards curves with equation

ax2+y2=1+dx2y2 (with a non-square d)
Montgommery curves

By2=x3+Ax2+x
with special case Bernsteins elliptic curve25519
 (used in OpenSSH, GnuPG)

 y2=x3+486662x2+x
Bernstein's elliptic curve

http://www.heise.de/security/meldung/Konkurrenz-fuer-die-NIST-Bernsteins-Elliptische-Kurven-auf-dem-Weg-
zum-Standard-2560881.html

E: y2=x3+Ax2+x
p=2255-19
A with A²-4 not a square mod p, e.g.
A=486662

Bernstein's elliptic curve

„Curve 25519-Function“: IF
p
-restricted x-coordinate

scalar multiplication on E(IFp²)

Post Quantum Computer

Research on lattices, error corrrecting
codes, TSP (time stamp protocols), Hash

based procedures

Thank you for your attention!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

