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•The Rivest-Shamir-Adleman-system (RSA) and the 
systems of 

•Elliptic-curve-cryptography (ECC) 

both are public key cryptosystems.
 



RSA



In the  RSA-System, each participant, e.g. Bob,   has as 
private key  a number  d

B
 and as  

public key a pair (e
B
,n)   where n=pq   is a pseudo-prime   (i.e. a  product 

 of  two large primes)    and  e
B
 d

B 
≡1 (mod (p-1)(q-1)).

                                                              In python: Rsa= lambda m: m**e
B
%n

                                                                               

                        RSA



The security of the system depends as well on the 
possbility of factorising n. For such an  attack, there exist 
many  algorithms, e.g. 
-the algorithm of  Fermat , 
-the quadratic sieve (QS) (Carl Pomerance)  
-the number field sieve (NFS)   
A direct attack uses the  
   - Continued fraction method (CFRAC) (M.J.Wiener)  
which  gives d  from  e/n if d<1/3 ·n1/4 

  



  
The Quadratic Sieve and other sieves: 
Find a,b with 

a2≡b2 (mod n)    and  a ≡ ± b (mod n)

Then we have:
 n divides  (a-b)(a+b), but not (a-b) and not (a+b). 
Therefore: gcd(a±b,n) are  non-trivial divisors of n.  



„Ron was wrong, Whit is right“ 
was the provocative title of a paper of  Arjen K. Lenstra,
Thorsten Kleinjung  et al. who, 2009,  had collected several 
millions of  RSA-keys.  They could break over 12.000 keys.



„Ron was wrong, Whit is right“ 
was the provocative title of a paper of  Arjen K. Lenstra,
Thorsten Kleinjung  et al. who, 2009,  had collected several 
Millions of  RSA-keys.  They could break over 12.000 keys.

Here Ron means Ron Rivest and RSA and
Whit  stands for Whit Diffie and Martin Hellman (DSA and ECC).
The main mistake made in key creation was the
 Repeated  use of  primes in several pseudoprimes 
 such that one could break them  by determining the gcd. 



The (later so called) number RSA-129 
(with 129 decimal digits, 476 binary digits) 
which was presented by Martin Gardner 1976 (and believed by Ron Rivest 
to resist quadrillion years) was factorized 1994 by 600 participants with 
1017 operations using a version of the quadratic sieve.

RSA-129 = 
11438162575788886766923577997614661201021829672124236
25625618429357069352457338978305971235639587050589890
75147599290026879543541



The (later so called) number RSA-129 
(with 129 decimal digits, 476 binary digits) 
which was presented by Martin Gardner 1976 (and believed by Ron Rivest 
to resist quadrillion years) was factorized 1994 by 600 participants with 
1017 operations using a version of the quadratic sieve.

RSA-129 = 
11438162575788886766923577997614661201021829672124236
25625618429357069352457338978305971235639587050589890
75147599290026879543541 = 
34905295108476509491478496199038981334177646384933878
43990820577*32769132993266709549961988190834461413177
642967992942539798288533



To test the security of 'semiprimes', the 
RSA-Factoring-Challenge,
 a competition, was  put forward by the RSA Laboratories; 
it ended 2007 when Jens Franke (Bonn) et.al. had factorised 
 
RSA-576 (2003; with 576 binary digits, 174 decimal digits),  

RSA-640 (2005; with 193 decimal digits) and, together with 
Thorsten Kleinjung,  a 

1039-Bit long Mersenne number (which was not part of the 
challenge). 



Predicted Approximate costs for breaking 
the actually used RSA-1024 and RSA-2048:

Continued fraction: 2120, 2170  operations
Quadratic sieve:      2100, 2150

Numberfield sieve:   280, 2112 

                                                                       Big decrease

(according to Tanja Lange and Daniel J.Bernstein:
ECCHacks on YouTube)



The European Union Agency for Network and Information 
Security (ENISA) recommends 

for RSA  for the length of n
3072 Bits for medium term,

    15.360 Bits for long term security, 
for  ECC for the greatest prime divisor of the group order 

160 Bit for medium term and
512 Bit for long term security.



Forecast for the length of secure keys of RSA and ECC
by A.Lenstra and E.Verheul (see CrypTool-Scipt)



Attacks to the LOG-problem: e.g.
Babystep-Giantstep-algorithm for  determining   a= log

g
(A)  (i.e.  A=ga ). 

Let m= o(g)  and  w  with  w-1<√m ≤ w; then   a=w·j + r  and  A=gwjgr

A·g-r=(gw)j.
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Attacks to the LOG-problem: e.g.
Babystep-Giantstep-algorithm for  determining   a= log

g
(A)  (i.e.  A=ga ). 

Let m= o(g)  and  w  with  w-1<√m ≤ w; then   a=w·j + r  and  A=gwjgr

A·g-r=(gw)j.

Compare:
Babystep list  {A·(g-1)r | r=0,...,w-1 }
with the 
Giantstep list  {1, gw,  (gw)2,..., (gw)w-1 }
(which is not dependend from a).

 
MAN IN THE MIDDLE



Index-Calculus-algorithm to find log
g
b

Try to represent  gz  in G=<g> for  random z  with  a 
factor-basis S={a

1
,..,a

t 
}, i.e.  gz=a

1
s1 ···a

t

st 

giving z ≡ s
1
log

g
a

1
+...+ s

t
log

g
a

t
 (mod n)

Repeat to get  log
g
a

i 
 as solutions of  a system of 

linear equations.
Try to find s with gsb=a

1
b1

...a
t
bt ; from that one gets 

log
g
b=b

1
 log

g
a

1
+..-s (mod n)

Other algorithm: Pohlig-Hellman, Pollard-Rho, number field sieve, function 
field sieve



Visualisation of the key exchange system by  Diffie  and Hellmann 
with CrypTool 1

Generator  g 

Secret random 
number: 
a  of Alice, 
b of Bob
Public A and B with
A=ga und    B=gb 

Common secret:
S=gab =Ab=Ba



ElGamal crypto-system

Private key                a
Public key                 (g,A)               (with A:=ga)
Encoding of plain 
                  text m     E(m):=(gk,m·Ak)
                                 for a randomly chosen k 
                                  to protect a:  Ak=(ga)k=(gk)a 
 
Decoding                  D(x,y):=(xa)-1 ·y

 Verification                D(gk,m·Ak )=((gk)a)-1mAk=g-akgakm=m.



Examples of real elliptic curves with Weierstrass equation 
y2=x3+bx+c



Addition on an elliptic curve



Elliptic curve over  Z
97   

(generated with CrypTool by B.Esslinger)



Daniel Bernstein (Chicago and Eindhoven) and 
Tanja Lange (Eindhoven) recommend  elliptic curves 
with other equations 
  (because of easier implementation  and 

possible back doors 
in the curves recommended by NIST)

   http://ecchacks.cr.yp.to/.
 https://www.youtube.com/watch?v=l6jTFxQaUJA}  
(Video)



E.g.:
It is known that the
„Dual Elliptic Curve Deterministic Random Number 
Generator“ 
has a back door:

If the points are randomly chosen, the x-coordinates are not
randomly distributed.



Europol chief warns on computer encryption
(BBC 29 March 2015)

„Hidden areas of the internet and encrypted 
communications make it harder to monitor 
terror suspects“, 
warns Europol's Rob Wainwright.



Other types of elliptic curves:
Edwards curves  with equation 

ax2+y2=1+dx2y2 (with a non-square d)
Montgommery curves 

By2=x3+Ax2+x
with special case Bernsteins elliptic curve25519
                         (used in OpenSSH, GnuPG)



 y2=x3+486662x2+x  
Bernstein's elliptic curve 

http://www.heise.de/security/meldung/Konkurrenz-fuer-die-NIST-Bernsteins-Elliptische-Kurven-auf-dem-Weg-
zum-Standard-2560881.html



E:     y2=x3+Ax2+x  
p=2255-19 
A with A²-4 not a square mod  p, e.g. 
A=486662

Bernstein's elliptic curve
 

 

„Curve 25519-Function“: IF
p
-restricted x-coordinate 

scalar multiplication on E(IFp²)



Post Quantum Computer

Research on lattices, error corrrecting  
codes, TSP (time stamp protocols), Hash 

based procedures 



Thank you for your attention!
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