Time-Space Trade-offs for Triangulations and Voronoi Diagrams

Matias Korman

0

Ο

National institute of informatics. Tokyo, Japan Wolfgang Mulzer Institut für Informatik, Freie Universität Berlin. Germany

Marcel Roeloffzen National institute of informatics. Tokyo, Japan

Paul Seiferth Institut für Informatik, Freie Universität Berlin. Germany

André van Renssen

National institute of informatics. Tokyo, Japan

Yannik Stein Institut für Informatik, Freie Universität Berlin. Germany

 \cap

0

Limited Memory

Started in the 70's

Limited Memory

Started in the 70's

still relevant today

Model

Word RAM with unit costs, parameter s

word = $\Omega(\log n)$ bits

Input set *P* of *n* points in \mathbb{R}^2 **Output** edges of a triangulation in arbitrary order

Input set *P* of *n* points in \mathbb{R}^2

Output edges of a triangulation in arbitrary order

Related Results

- $O(n \log n)$ time with O(n) space
- $O(n^2)$ time with O(1) space [Asano et al. '11]

Input set P of n points in \mathbb{R}^2

Output edges of a triangulation in arbitrary order

Related Results

- $O(n \log n)$ time with O(n) space
- $O(n^2)$ time with O(1) space [Asano et al. '11]

Theorem. Let $P \subset \mathbb{R}^2$ be a set of n points. Then, we can report a triangulation of P in $O(n^2/s + n \log n \log s)$ time using O(s) space.

Input set P of n points in \mathbb{R}^2

Output edges of a triangulation in arbitrary order

Related Results

- $O(n \log n)$ time with O(n) space
- $O(n^2)$ time with O(1) space [Asano et al. '11]

Theorem. Let $P \subset \mathbb{R}^2$ be a set of n points. Then, we can report a triangulation of P in $O(n^2/s + n \log n \log s)$ time using O(s) space.

- O(1) space: $O(n^2)$ time
- O(n) space: $O(n \log^2 n)$ time

Input set P of points in \mathbb{R}^2

Output vertices of the Voronoi diagram in arbitrary order

Input set P of points in \mathbb{R}^2

Output vertices of the Voronoi diagram in arbitrary order

Input set *P* of points in \mathbb{R}^2

Output vertices of the Voronoi diagram in arbitrary order

Theorem. Reporting Voronoi diagrams of a set of n points in the plane can be done in $O((n^2/s) \log s + n \log s \log^* s)$ expected time using O(s) space.

Input set *P* of points in \mathbb{R}^2

Output vertices of the Voronoi diagram in arbitrary order

Theorem. Reporting Voronoi diagrams of a set of *n* points in the plane can be done in $O((n^2/s)\log s + n\log s\log^* s)$ expected time using O(s) space.

- O(1) space: O(n²) time
 O(n) space: O(n log n log* n) time

Phase I: Sampling

• Take random sample $R \subset P$ of size O(s)

Phase I: Sampling

• Take random sample $R \subset P$ of size O(s)

Phase I: Sampling

• Take random sample $R \subset P$ of size O(s)

Phase II: Compute VD(P)

• Compute VD(R)

Phase I: Sampling

• Take random sample $R \subset P$ of size O(s)

Phase II: Compute VD(P)

- Compute VD(R)
- Triangulate cells of VD(R)

Ο

O

Ο

Phase I: Sampling

• Take random sample $R \subset P$ of size O(s)

Phase II: Compute VD(P)

• Compute VD(R)

Ο

Ο

- Triangulate cells of VD(R)
- For each triangle Δ : report $VD(P) \cap \Delta$

Phase II: Compute VD(P)**Assumption:** for each Δ : $B_{\Delta} = O(n/s)$

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

Run in parallel for each Δ the algorithm by Asano et al.

• $O(n^2/s^2)$ time and O(1) space

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

- $O(n^2/s^2)$ time and O(1) space
- requires O(n/s) scans of B_{Δ}

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

- $O(n^2/s^2)$ time and O(1) space
- requires O(n/s) scans of B_{Δ}

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

- $O(n^2/s^2)$ time and O(1) space
- requires O(n/s) scans of B_{Δ}

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

- $O(n^2/s^2)$ time and O(1) space
- requires O(n/s) scans of B_{Δ}

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

Run in parallel for each Δ the algorithm by Asano et al.

- $O(n^2/s^2)$ time and O(1) space
- requires O(n/s) scans of B_{Δ}

All parallel instances want to read: do full scan

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

Run in parallel for each Δ the algorithm by Asano et al.

- $O(n^2/s^2)$ time and O(1) space
- requires O(n/s) scans of B_{Δ}

All parallel instances want to read: do full scan

- For each input point *p*:
 - determine all conflict sets $B_{\Delta} : p \in B_{\Delta}$ by point loc.

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

Run in parallel for each Δ the algorithm by Asano et al.

- $O(n^2/s^2)$ time and O(1) space
- requires O(n/s) scans of B_{Δ}

All parallel instances want to read: do full scan $O(n \log s)$ time

• For each input point *p*:

• determine all conflict sets $B_{\Delta} : p \in B_{\Delta}$ by point loc.

Assumption: for each Δ : $B_{\Delta} = O(n/s)$

Run in parallel for each Δ the algorithm by Asano et al.

- $O(n^2/s^2)$ time and O(1) space
- requires O(n/s) scans of B_{Λ}

 \mathbf{O}

Ο

All parallel instances want to read: do full scan $O(n \log s)$ time

• For each input point *p*:

• determine all conflict sets $B_{\Delta}: p \in B_{\Delta}$ by point loc.

O

Ο

0

Running Time (Without Sampling)

 $O(s \log s)$: compute & triangulate VD(R) $O(n^2/s)$: Asano et al. algorithm instances $O((n/s)(n \log s)) = O((n^2/s) \log s)$: provide input Total: $O((n^2/s) \log s)$

Ο

O

Ο

Phase I: Sampling

• Take random sample $R \subset P$ of size O(s)

Phase II: Compute VD(P)

• Compute VD(R)

Ο

Ο

- Triangulate cells of VD(R)
- For each triangle Δ : report $VD(P) \cap \Delta$

Want: for each Δ : $B_{\Delta} = O(n/s)$

Want: for each Δ : $B_{\Delta} = O(n/s)$

• Take random sample $R \subseteq P$ of size s

time

n)

Want: for each Δ : $B_{\Delta} = O(n/s)$

- Take random sample $R \subseteq P$ of size s
- For each vertex $v \in VD(R)$ compute its excess t_v $t_v = \frac{|B_v|}{n/s}$

Want: for each Δ : $B_{\Delta} = O(n/s)$

- Take random sample $R \subseteq P$ of size s
- For each vertex $v \in VD(R)$ compute its excess t_v

 $t_v = \frac{|B_v|}{m^{1/2}}$

- counter per vertex $v \in VD(R)$
- For each input point *p*:
 - determine all $v \in VD(R) : p \in B_v$ by point local. and increase counters

n) time

Want: for each Δ : $B_{\Delta} = O(n/s)$

- Take random sample $R \subseteq P$ of size s
- For each vertex $v \in VD(R)$ compute its excess t_v

$$t_v = \frac{|B_v|}{n/s}$$
 $O(n\log s)$ time

time

n

- counter per vertex $v \in VD(R)$
 - For each input point *p*:
 - determine all $v \in VD(R) : p \in B_v$ by point local. and increase counters

Want: for each Δ : $B_{\Delta} = O(n/s)$

0

00

0

- Take random sample $R \subseteq P$ of size s
- For each vertex $v \in VD(R)$ compute its excess t_v

$$t_v = \frac{|B_v|}{n/s}$$
 $O(n\log s)$ time

- counter per vertex $v \in VD(R)$
 - For each input point p:
 - determine all $v \in VD(R) : p \in B_v$ by point local. and increase counters

time

• For vertices v with large excess:

0

• sample additional points from B_v

- For vertices v with large excess:
 - sample additional $O(t_v \log t_v)$ points R_v from B_v

 $\rightarrow t_v \geq 2$

• For vertices v with large excess: • $t_v \ge 2$ • sample additional $O(t_v \log t_v)$ points R_v from B_v

• For vertices v with large excess: • $t_v \ge 2$ • sample additional $O(t_v \log t_v)$ points R_v from B_v

• For vertices v with large excess: • $t_v \ge 2$ • sample additional $O(t_v \log t_v)$ points R_v from B_v

Lemma. Let $R' = R \cup \{R_v \mid t_v \ge 2, R_v \text{ is a good sample}\}$. Then, for all triangles Δ in the triangulation of VD(R') we have $B_{\Delta} = O(n/s)$.

Lemma. Let $R' = R \cup \{R_v \mid t_v \ge 2, R_v \text{ is a good sample}\}$. Then, for all triangles Δ in the triangulation of VD(R') we have $B_{\Delta} = O(n/s)$.

Lemma. $\mathbf{E}\left[\sum_{v \in \mathrm{VD}(R)} |R_v|\right] = O(s)$

For vertices v with large excess:
t_v ≥ 2
sample additional O(t_v log t_v) points R_v from B_v
Call a sample R_v good iff for all u ∈ R_v : |B_u ∩ B_v| ≤ n/s

For vertices v with large excess:
t_v ≥ 2
sample additional O(t_v log t_v) points R_v from B_v
Call a sample R_v good iff for all u ∈ R_v : |B_u ∩ B_v| ≤ n/s

Lemma. A sample is good with probability at least 3/4.

- For vertices v with large excess:
 - sample additional $O(t_v \log t_v)$ points R_v from B_v

 $ightarrow t_n > 2$

Call a sample R_v good iff for all $u \in R_v$: $|B_u \cap B_v| \leq \frac{n}{s}$

Lemma. A sample is good with probability at least 3/4.

Sample in Rounds

1. Round: take one sample per vertex $v : t_v \ge 2$ Pr[half of the samples are good] $\ge 1/2$

- For vertices v with large excess:
 - sample additional $O(t_v \log t_v)$ points R_v from B_v

 $\rightarrow t_n > 2$

Call a sample R_v good iff for all $u \in R_v$: $|B_u \cap B_v| \leq \frac{n}{s}$

Lemma. A sample is good with probability at least 3/4.

Sample in Rounds

- **1. Round:** take one sample per vertex $v : t_v \ge 2$ Pr[half of the samples are good] $\ge 1/2$
- 2. Round: take two samples per remaining vertex

- For vertices v with large excess:
 - sample additional $O(t_v \log t_v)$ points R_v from B_v

 $ightarrow t_n > 2$

Call a sample R_v good iff for all $u \in R_v$: $|B_u \cap B_v| \leq \frac{n}{s}$

Lemma. A sample is good with probability at least 3/4.

Sample in Rounds

- **1. Round:** take one sample per vertex $v : t_v \ge 2$ Pr[half of the samples are good] $\ge 1/2$
- 2. Round: take two samples per remaining vertex

Expected #Rounds: $O(\log^* s)$ **One Round:** Sampling & Checking Samples $O(n \log s)$ **Total:** $O(n \log s \log^* s)$

Putting it together

Phase I: Computing $R': O(n \log s \log^* s)$ expected time **Phase II:** Computing $VD(P): O((n^2/s) \log s)$ time

Putting it together

Phase I: Computing $R': O(n \log s \log^* s)$ expected time **Phase II:** Computing $VD(P): O((n^2/s) \log s)$ time

Theorem. Reporting Voronoi diagrams of a set of n points in the plane can be done in $O((n^2/s) \log s + n \log s \log^* s)$ expected time using O(s) space.

Putting it together

Phase I: Computing $R': O(n \log s \log^* s)$ expected time **Phase II:** Computing $VD(P): O((n^2/s) \log s)$ time

Theorem. Reporting Voronoi diagrams of a set of n points in the plane can be done in $O((n^2/s) \log s + n \log s \log^* s)$ expected time using O(s) space.

Open Problem: Can we do the same in worst-case time?