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Model

Word RAM with unit costs, parameter s

input memory

working memory

output memory

read-only

read/write

write-only

n words

O(s) words

word = Ω(log n) bits
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Our Results — Continued

Input set P of points in R2

Output vertices of the Voronoi diagram in arbitrary order

Related Results
• O(n log n) time with O(n) space
• O(n2) time with O(1) space

[Asano et al. ’11]

Theorem. Reporting Voronoi diagrams of a set of n points in
the plane can be done in O((n2/s) log s + n log s log∗ s)
expected time using O(s) space.

• O(1) space: O(n2) time
• O(n) space: O(n log n log∗ n) time
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Computing VD(P ) in O(s) space — Overview

Phase I: Sampling
• Take random sample R ⊂ P of size O(s)

Phase II: Compute VD(P )
• Compute VD(R)
• Triangulate cells of VD(R)

• For each triangle ∆: report VD(P ) ∩∆
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Triangles Can Be Handled Locally

conflict circle C(v)
v

Bv

Definition.

VD(R)

Lemma. Let ∆ = {v1, v2, v3} be a triangle
in the triangulation of VD(R). Then,

VD(P ) ∩∆ = VD(Bv1
∪Bv2

∪Bv3
∪ {s}︸ ︷︷ ︸

:=B∆

) ∩∆

O(s) triangles → want B∆ = O(n/s) for all triangles ∆

site whose cell
contains ∆
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Phase II: Compute VD(P )

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

All parallel instances want to read: do full scan
O(n log s) time

Running Time (Without Sampling)

Total: O((n2/s) log s)

O(s log s): compute & triangulate V D(R)
O(n2/s): Asano et al. algorithm instances
O((n/s)(n log s)) = O((n2/s) log s): provide input

• requires O(n/s) scans of B∆

• For each input point p:
• determine all conflict sets B∆ : p ∈ B∆ by point loc.
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Phase I: Sampling — Overview

• Take random sample R ⊆ P of size s

• For each vertex v ∈ VD(R) compute its excess tv

• sample additional points from Bv

Want: for each ∆: B∆ = O(n/s)

O(n) time

tv = |Bv|
n/s

O(n log s) time

v

• For each input point p:
• determine all v ∈ VD(R) : p ∈ Bv

by point local. and increase counters

• For vertices v with large excess:

• counter per vertex v ∈ VD(R)
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• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff
for all u ∈ Rv : Bu contains
at most n

s points from Bv

Lemma. Let R′ = R ∪ {Rv | tv ≥ 2, Rv is a good sample}.
Then, for all triangles ∆ in the triangulation of VD(R′) we
have B∆ = O(n/s).

Lemma. E[
∑

v∈VD(R) |Rv|] = O(s)

• sample additional O(tv log tv) points Rv from Bv

u
≤ n

s points
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Sampling Efficiently from Conflict Sets

• sample additional O(tv log tv) points Rv from Bv

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff for all u ∈ Rv : |Bu ∩Bv| ≤ n
s

Lemma. A sample is good with probability at least 3/4.

Sample in Rounds
1. Round: take one sample per vertex v : tv ≥ 2

Pr[half of the samples are good] ≥ 1/2

2. Round: take two samples per remaining vertex

...Expected #Rounds: O(log∗ s)
One Round: Sampling & Checking Samples O(n log s)
Total: O(n log s log∗ s)
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Putting it together

Phase I: Computing R′: O(n log s log∗ s) expected time

Phase II: Computing V D(P ): O((n2/s) log s) time⇒

Theorem. Reporting Voronoi diagrams of a set of n points in
the plane can be done in O((n2/s) log s + n log s log∗ s)
expected time using O(s) space.

Open Problem: Can we do the same in worst-case time?


