
Time-Space Trade-offs for
Triangulations and Voronoi

Diagrams
Matias Korman Wolfgang Mulzer André van Renssen

Institut für Informatik,
Freie Universität
Berlin. Germany

National institute of
informatics.

Tokyo, Japan

National institute of
informatics.

Tokyo, Japan

Marcel Roeloffzen Paul Seiferth Yannik Stein

Institut für Informatik,
Freie Universität
Berlin. Germany

Institut für Informatik,
Freie Universität
Berlin. Germany

National institute of
informatics.

Tokyo, Japan

Limited Memory

Started in the 70’s

Limited Memory

Started in the 70’s

still relevant today

Model

Word RAM with unit costs, parameter s

input memory

working memory

output memory

read-only

read/write

write-only

n words

O(s) words

word = Ω(log n) bits

Our Results

Input set P of n points in R2

Output edges of a triangulation in arbitrary order

Our Results

Input set P of n points in R2

Output edges of a triangulation in arbitrary order

Related Results
• O(n log n) time with O(n) space
• O(n2) time with O(1) space

[Asano et al. ’11]

Our Results

Input set P of n points in R2

Output edges of a triangulation in arbitrary order

Theorem. Let P ⊂ R2 be a set of n points. Then, we can
report a triangulation of P in O(n2/s + n log n log s) time
using O(s) space.

Related Results
• O(n log n) time with O(n) space
• O(n2) time with O(1) space

[Asano et al. ’11]

Our Results

Input set P of n points in R2

Output edges of a triangulation in arbitrary order

Theorem. Let P ⊂ R2 be a set of n points. Then, we can
report a triangulation of P in O(n2/s + n log n log s) time
using O(s) space.

Related Results
• O(n log n) time with O(n) space
• O(n2) time with O(1) space

[Asano et al. ’11]

• O(1) space: O(n2) time
• O(n) space: O(n log2 n) time

Our Results — Continued

Input set P of points in R2

Output vertices of the Voronoi diagram in arbitrary order

Our Results — Continued

Input set P of points in R2

Output vertices of the Voronoi diagram in arbitrary order

Related Results
• O(n log n) time with O(n) space
• O(n2) time with O(1) space

[Asano et al. ’11]

Our Results — Continued

Input set P of points in R2

Output vertices of the Voronoi diagram in arbitrary order

Related Results
• O(n log n) time with O(n) space
• O(n2) time with O(1) space

[Asano et al. ’11]

Theorem. Reporting Voronoi diagrams of a set of n points in
the plane can be done in O((n2/s) log s + n log s log∗ s)
expected time using O(s) space.

Our Results — Continued

Input set P of points in R2

Output vertices of the Voronoi diagram in arbitrary order

Related Results
• O(n log n) time with O(n) space
• O(n2) time with O(1) space

[Asano et al. ’11]

Theorem. Reporting Voronoi diagrams of a set of n points in
the plane can be done in O((n2/s) log s + n log s log∗ s)
expected time using O(s) space.

• O(1) space: O(n2) time
• O(n) space: O(n log n log∗ n) time

Computing VD(P) in O(s) space — Overview

Phase I: Sampling
• Take random sample R ⊂ P of size O(s)

Computing VD(P) in O(s) space — Overview

Phase I: Sampling
• Take random sample R ⊂ P of size O(s)

Computing VD(P) in O(s) space — Overview

Phase I: Sampling
• Take random sample R ⊂ P of size O(s)

Phase II: Compute VD(P)
• Compute VD(R)

Computing VD(P) in O(s) space — Overview

Phase I: Sampling
• Take random sample R ⊂ P of size O(s)

Phase II: Compute VD(P)
• Compute VD(R)
• Triangulate cells of VD(R)

Computing VD(P) in O(s) space — Overview

Phase I: Sampling
• Take random sample R ⊂ P of size O(s)

Phase II: Compute VD(P)
• Compute VD(R)
• Triangulate cells of VD(R)

• For each triangle ∆: report VD(P) ∩∆

Triangles Can Be Handled Locally

v

Definition.

VD(R)

Triangles Can Be Handled Locally

conflict circle C(v)
v

Definition.

VD(R)

Triangles Can Be Handled Locally

conflict circle C(v)
v

Bv

Definition.

VD(R)

Triangles Can Be Handled Locally

conflict circle C(v)
v

Bv

Definition.

VD(R)

Lemma. Let ∆ = {v1, v2, v3} be a triangle
in the triangulation of VD(R). Then,

VD(P) ∩∆ = VD(Bv1
∪Bv2

∪Bv3
∪ {s}︸ ︷︷ ︸

:=B∆

) ∩∆

site whose cell
contains ∆

Triangles Can Be Handled Locally

conflict circle C(v)
v

Bv

Definition.

VD(R)

Lemma. Let ∆ = {v1, v2, v3} be a triangle
in the triangulation of VD(R). Then,

VD(P) ∩∆ = VD(Bv1
∪Bv2

∪Bv3
∪ {s}︸ ︷︷ ︸

:=B∆

) ∩∆

O(s) triangles → want B∆ = O(n/s) for all triangles ∆

site whose cell
contains ∆

Phase II: Compute VD(P)

Assumption: for each ∆: B∆ = O(n/s)

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

• requires O(n/s) scans of B∆

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

• requires O(n/s) scans of B∆

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

• requires O(n/s) scans of B∆

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

• requires O(n/s) scans of B∆

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

All parallel instances want to read: do full scan
• requires O(n/s) scans of B∆

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

All parallel instances want to read: do full scan
• requires O(n/s) scans of B∆

• For each input point p:
• determine all conflict sets B∆ : p ∈ B∆ by point loc.

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

All parallel instances want to read: do full scan
O(n log s) time

• requires O(n/s) scans of B∆

• For each input point p:
• determine all conflict sets B∆ : p ∈ B∆ by point loc.

Phase II: Compute VD(P)

Run in parallel for each ∆ the algorithm by Asano et al.

• O(n2/s2) time and O(1) space

Assumption: for each ∆: B∆ = O(n/s)

All parallel instances want to read: do full scan
O(n log s) time

Running Time (Without Sampling)

Total: O((n2/s) log s)

O(s log s): compute & triangulate V D(R)
O(n2/s): Asano et al. algorithm instances
O((n/s)(n log s)) = O((n2/s) log s): provide input

• requires O(n/s) scans of B∆

• For each input point p:
• determine all conflict sets B∆ : p ∈ B∆ by point loc.

Computing VD(P) in O(s) space — Overview

Phase I: Sampling
• Take random sample R ⊂ P of size O(s)

Phase II: Compute VD(P)
• Compute VD(R)
• Triangulate cells of VD(R)

• For each triangle ∆: report VD(P) ∩∆

Phase I: Sampling — Overview

Want: for each ∆: B∆ = O(n/s)

Phase I: Sampling — Overview

• Take random sample R ⊆ P of size s

Want: for each ∆: B∆ = O(n/s)

O(n) time

Phase I: Sampling — Overview

• Take random sample R ⊆ P of size s

• For each vertex v ∈ VD(R) compute its excess tv

Want: for each ∆: B∆ = O(n/s)

O(n) time

tv = |Bv|
n/s

v

Phase I: Sampling — Overview

• Take random sample R ⊆ P of size s

• For each vertex v ∈ VD(R) compute its excess tv

Want: for each ∆: B∆ = O(n/s)

O(n) time

tv = |Bv|
n/s

v

• For each input point p:
• determine all v ∈ VD(R) : p ∈ Bv

by point local. and increase counters

• counter per vertex v ∈ VD(R)

Phase I: Sampling — Overview

• Take random sample R ⊆ P of size s

• For each vertex v ∈ VD(R) compute its excess tv

Want: for each ∆: B∆ = O(n/s)

O(n) time

tv = |Bv|
n/s

O(n log s) time

v

• For each input point p:
• determine all v ∈ VD(R) : p ∈ Bv

by point local. and increase counters

• counter per vertex v ∈ VD(R)

Phase I: Sampling — Overview

• Take random sample R ⊆ P of size s

• For each vertex v ∈ VD(R) compute its excess tv

• sample additional points from Bv

Want: for each ∆: B∆ = O(n/s)

O(n) time

tv = |Bv|
n/s

O(n log s) time

v

• For each input point p:
• determine all v ∈ VD(R) : p ∈ Bv

by point local. and increase counters

• For vertices v with large excess:

• counter per vertex v ∈ VD(R)

Sampling from Conflict Sets

• For vertices v with large excess:

tv ≥ 2
• sample additional O(tv log tv) points Rv from Bv

v

Sampling from Conflict Sets

• For vertices v with large excess:

tv ≥ 2
• sample additional O(tv log tv) points Rv from Bv

Sampling from Conflict Sets

• For vertices v with large excess:

tv ≥ 2
• sample additional O(tv log tv) points Rv from Bv

Sampling from Conflict Sets

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff
for all u ∈ Rv : Bu contains
at most n

s points from Bv

• sample additional O(tv log tv) points Rv from Bv

u
≤ n

s points

Sampling from Conflict Sets

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff
for all u ∈ Rv : Bu contains
at most n

s points from Bv

Lemma. Let R′ = R ∪ {Rv | tv ≥ 2, Rv is a good sample}.
Then, for all triangles ∆ in the triangulation of VD(R′) we
have B∆ = O(n/s).

• sample additional O(tv log tv) points Rv from Bv

u
≤ n

s points

Sampling from Conflict Sets

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff
for all u ∈ Rv : Bu contains
at most n

s points from Bv

Lemma. Let R′ = R ∪ {Rv | tv ≥ 2, Rv is a good sample}.
Then, for all triangles ∆ in the triangulation of VD(R′) we
have B∆ = O(n/s).

Lemma. E[
∑

v∈VD(R) |Rv|] = O(s)

• sample additional O(tv log tv) points Rv from Bv

u
≤ n

s points

Sampling Efficiently from Conflict Sets

• sample additional O(tv log tv) points Rv from Bv

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff for all u ∈ Rv : |Bu ∩Bv| ≤ n
s

Sampling Efficiently from Conflict Sets

• sample additional O(tv log tv) points Rv from Bv

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff for all u ∈ Rv : |Bu ∩Bv| ≤ n
s

Lemma. A sample is good with probability at least 3/4.

Sampling Efficiently from Conflict Sets

• sample additional O(tv log tv) points Rv from Bv

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff for all u ∈ Rv : |Bu ∩Bv| ≤ n
s

Lemma. A sample is good with probability at least 3/4.

Sample in Rounds
1. Round: take one sample per vertex v : tv ≥ 2

Pr[half of the samples are good] ≥ 1/2

Sampling Efficiently from Conflict Sets

• sample additional O(tv log tv) points Rv from Bv

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff for all u ∈ Rv : |Bu ∩Bv| ≤ n
s

Lemma. A sample is good with probability at least 3/4.

Sample in Rounds
1. Round: take one sample per vertex v : tv ≥ 2

Pr[half of the samples are good] ≥ 1/2

2. Round: take two samples per remaining vertex

...

Sampling Efficiently from Conflict Sets

• sample additional O(tv log tv) points Rv from Bv

• For vertices v with large excess:

tv ≥ 2

Call a sample Rv good iff for all u ∈ Rv : |Bu ∩Bv| ≤ n
s

Lemma. A sample is good with probability at least 3/4.

Sample in Rounds
1. Round: take one sample per vertex v : tv ≥ 2

Pr[half of the samples are good] ≥ 1/2

2. Round: take two samples per remaining vertex

...Expected #Rounds: O(log∗ s)
One Round: Sampling & Checking Samples O(n log s)
Total: O(n log s log∗ s)

Putting it together

Phase I: Computing R′: O(n log s log∗ s) expected time

Phase II: Computing V D(P): O((n2/s) log s) time

Putting it together

Phase I: Computing R′: O(n log s log∗ s) expected time

Phase II: Computing V D(P): O((n2/s) log s) time⇒

Theorem. Reporting Voronoi diagrams of a set of n points in
the plane can be done in O((n2/s) log s + n log s log∗ s)
expected time using O(s) space.

Putting it together

Phase I: Computing R′: O(n log s log∗ s) expected time

Phase II: Computing V D(P): O((n2/s) log s) time⇒

Theorem. Reporting Voronoi diagrams of a set of n points in
the plane can be done in O((n2/s) log s + n log s log∗ s)
expected time using O(s) space.

Open Problem: Can we do the same in worst-case time?

