Efficient Spanner Construction for Disk Transmission Graphs

```
Haim Kaplan (Tel Aviv University)
Wolfgang Mulzer (Freie Universität Berlin)
Liam Roditty (Bar-Ilan University)
Paul Seiferth (Freie Universität Berlin)
```

Given: point set $P \subset \mathbb{R}^2$

We want to compute a t-spanner $H \subseteq G$: for any $p, q \in P$ we get $d_H(p, q) \le t \cdot d_G(p, q)$

We want to compute a t-spanner $H \subseteq G$: for any $p, q \in P$ we get $d_H(p, q) \le t \cdot d_G(p, q)$

We want to compute a t-spanner $H \subseteq G$: for any $p, q \in P$ we get $d_H(p, q) \le t \cdot d_G(p, q)$

Results

Theorem 1: Let $P \subset \mathbb{R}^2$ be a point set with radii and with spread Φ . Let G be the transmission graph of P. For any t > 1 we can compute a t-spanner $H \subseteq G$ for G in time $O(n(\log n + \log \Phi))$.

Theorem 2: Let Ψ be the ratio of the largest and smallest radius in P. We can compute a t-spanner $H \subseteq G$ in time $O(n(\log n + \log \Psi))$.

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

2^i	

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is

- finite set $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$,
- symmetric neighborhood relation $N \subseteq Q \times Q$,
- sets $R_{\sigma} \subseteq P \cap \sigma$ for $\sigma \in Q$

2^i	

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

so that for all $(\sigma, \sigma') \in N$,

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

so that for all $(\sigma, \sigma') \in N$,

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

so that for all $(\sigma, \sigma') \in N$,

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

 $R_{\sigma'} := \text{all points that might intersect } \sigma \in N(\sigma')$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

so that for all $(\sigma, \sigma') \in N$,

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

 $R_{\sigma'} := \text{all points that might intersect } \sigma \in N(\sigma')$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $\mathcal{Q} \subset \bigcup_{i=0}^{\infty} \mathcal{Q}_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

so that for all $(\sigma, \sigma') \in N$,

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

 $R_{\sigma'} := \text{all points that might intersect } \sigma \in N(\sigma')$

For $i \in \mathbb{N}$ let \mathcal{Q}_i be the grid with diameter 2^i

A c-separated annulus decomposition for G is $Q \subset \bigcup_{i=0}^{\infty} Q_i$, $N \subseteq Q \times Q$, $R_{\sigma} \subseteq P \cap \sigma$

so that for all $(\sigma, \sigma') \in N$,

- 1. $diam(\sigma) = diam(\sigma')$
- 2. $d(\sigma, \sigma') \in [(c-2)\operatorname{diam}(\sigma), 2c\operatorname{diam}(\sigma))$
- 3. for every edge \overrightarrow{pq} of G, there is a $(\sigma, \sigma') \in N$ with $q \in \sigma$, $p \in \sigma'$, and with an $r \in R_{\sigma'}$ with $q \in D(r)$

 $R_{\sigma'}:=$ all points that might intersect $\sigma\in N(\sigma')\cup p_{\mathsf{max}}$

fix a cone C of the k cones

fix a cone C of the k cones

set all points in P to active

set all points in P to active for each cell $\sigma \in \mathcal{Q}$ by increasing diameter

set all points in P to active for level i of the quadtree in increasing order

set all points in P to active for level i of the quadtree in increasing order for each $|v| i cell \sigma$

```
set all points in P to active
for level i of the quadtree in increasing order
   for each |v| i cell \sigma
       for each cell \sigma' \in N(\sigma)
```

set all points in P to active for level i of the quadtree in increasing order for each $|v| i cell \sigma$ for each cell $\sigma' \in N(\sigma)$

set all points in P to active for level i of the quadtree in increasing order for each $|v| i cell \sigma$ for each cell $\sigma' \in N(\sigma)$

set all points in P to active for level i of the quadtree in increasing order for each $|v| i cell \sigma$ for each cell $\sigma' \in N(\sigma)$ $Q \leftarrow \textit{relevant} \text{ points in } P \cap \sigma$

set all points in P to active for level i of the quadtree in increasing order

```
for each |v| i cell \sigma for each cell \sigma' \in N(\sigma) Q \leftarrow \textit{relevant} \text{ points in } P \cap \sigma
```


set all points in P to active for level i of the quadtree in increasing order

```
for each |v| i cell \sigma for each cell \sigma' \in N(\sigma) Q \leftarrow \textit{relevant points in } P \cap \sigma
```


set all points in P to active for level i of the quadtree in increasing order

```
for each |v| i cell \sigma for each cell \sigma' \in N(\sigma) Q \leftarrow \textit{relevant points in } P \cap \sigma
```


set all points in P to active for level i of the quadtree in increasing order for each IvI i cell σ for each cell $\sigma' \in N(\sigma)$ $Q \leftarrow relevant \text{ points in } P \cap \sigma$ Sort Q in x/y-direction

set all points in P to active for level i of the quadtree in increasing order

```
for each IvI i cell \sigma
   for each cell \sigma' \in N(\sigma)
```

 $Q \leftarrow \textit{relevant} \text{ points in } P \cap \sigma$ Sort Q in x/y-direction For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $Q \leftarrow \mathit{relevant} \ \mathsf{points} \ \mathsf{in} \ P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

```
\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}
```

 $Q \leftarrow \mathit{relevant} \ \mathsf{points} \ \mathsf{in} \ P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

for each |v| i cell σ for each cell $\sigma' \in N(\sigma)$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow \mathit{relevant} \ \mathsf{points} \ \mathsf{in} \ P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

for each IvI i cell σ for each cell $\sigma' \in N(\sigma)$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

for each IvI i cell σ for each cell $\sigma' \in N(\sigma)$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

for each |v| i cell σ for each cell $\sigma' \in N(\sigma)$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \pmb{\sigma} \\ \text{for each cell } \sigma' \in N(\pmb{\sigma}) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \pmb{\sigma} \\ \text{for each cell } \sigma' \in N(\pmb{\sigma}) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow \mathit{relevant} \ \mathsf{points} \ \mathsf{in} \ P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

for each IvI i cell σ for each cell $\sigma' \in N(\sigma)$

 $Q \leftarrow \mathit{relevant} \ \mathsf{points} \ \mathsf{in} \ P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow relevant \text{ points in } P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

```
\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}
```

 $Q \leftarrow \mathit{relevant} \ \mathsf{points} \ \mathsf{in} \ P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

set all points in P to active for level i of the quadtree in increasing order

 $\begin{array}{c|c} \text{for each IvI } i \text{ cell } \sigma \\ \text{for each cell } \sigma' \in N(\sigma) \end{array}$

 $Q \leftarrow \mathit{relevant} \ \mathsf{points} \ \mathsf{in} \ P \cap \sigma$

Sort Q in x/y-direction

For each $q \in Q$, find an edge \overrightarrow{rq} with $r \in R_{\sigma'}$

This needs time $O(m \log m + n)$ where $m = |R_{\sigma'}|$ and n = |Q|

$$|N(\sigma)| = O(c^2)$$

This needs time $O(m \log m + n)$ where $m = |R_{\sigma'}|$ and n = |Q|

- $\bullet |N(\sigma)| = O(c^2)$
- each point $p \in P$ is in $O(\log \Phi)$ different sets Q

This needs time $O(m \log m + n)$ where $m = |R_{\sigma'}|$ and n = |Q|

- $|N(\sigma)| = O(c^2)$
- each point $p \in P$ is in $O(\log \Phi)$ different sets Q
- each point $p \in P$ appears in O(1) sets $R_{\sigma'}$

This needs time $O(m \log m + n)$ where $m = |R_{\sigma'}|$ and n = |Q|

- $\bullet |N(\sigma)| = O(c^2)$
- each point $p \in P$ is in $O(\log \Phi)$ different sets Q
- each point $p \in P$ appears in O(1) sets $R_{\sigma'}$

Final Results

Theorem 1: Let $P \subset \mathbb{R}^2$ be a point set with radii and with spread Φ . Let G be the transmission graph of P. For any t > 1 we can compute a t-spanner $H \subseteq G$ for G in time $O(n(\log n + \log \Phi))$.

Theorem 2: Let Ψ be the ratio of the largest and smallest radius in P. We can compute a t-spanner $H \subseteq G$ in time $O(n(\log n + \log \Psi))$.