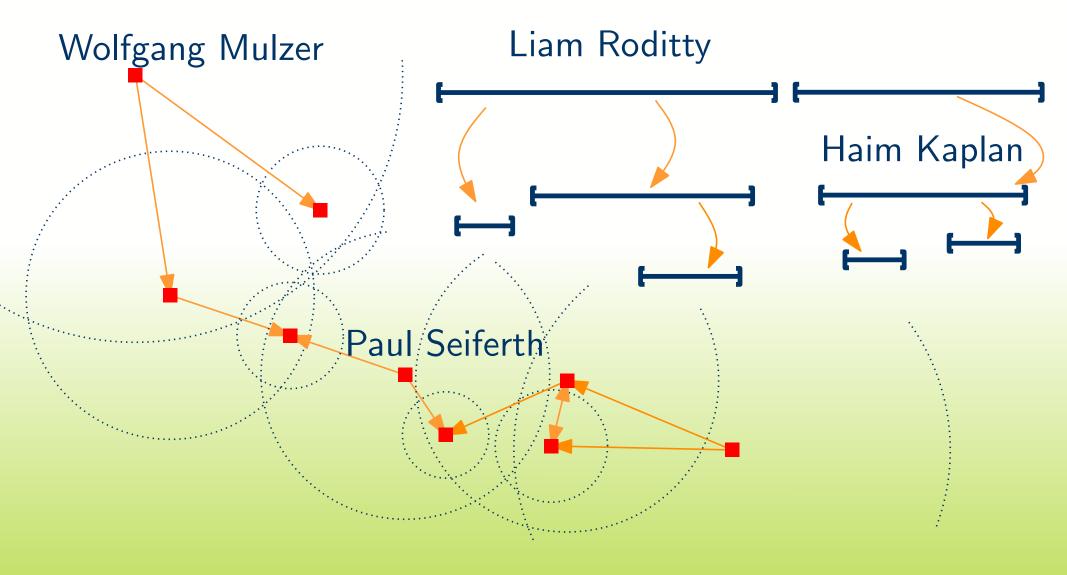
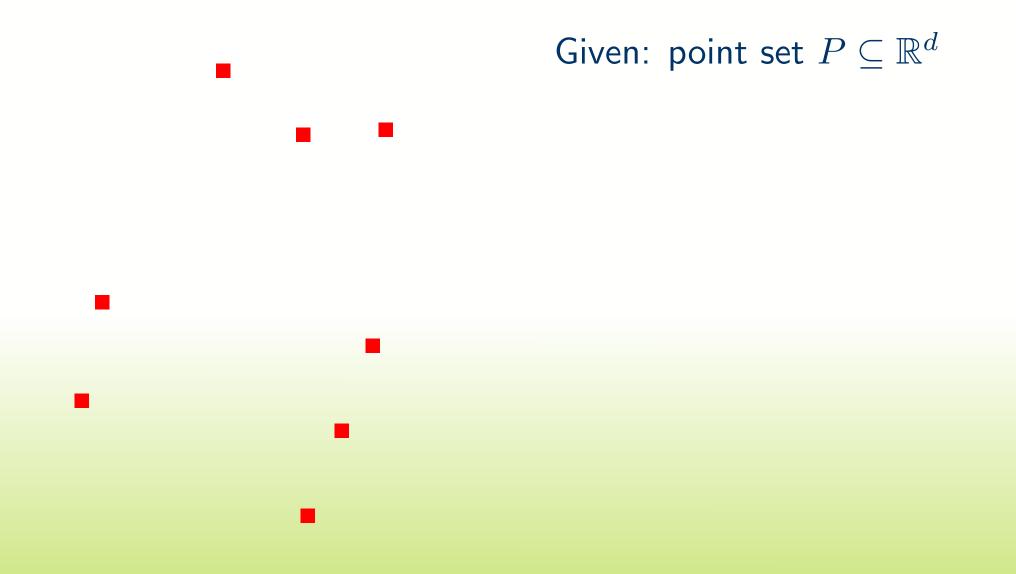
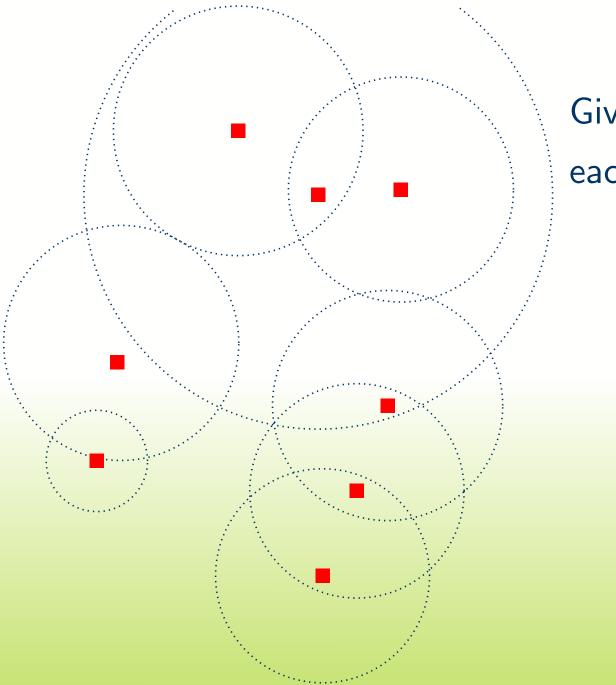
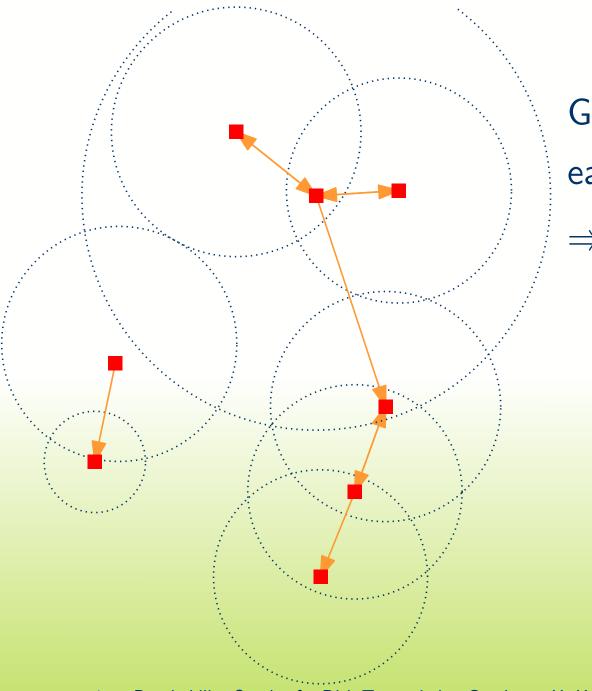
Reachability Oracles for Disk Transmission Graphs



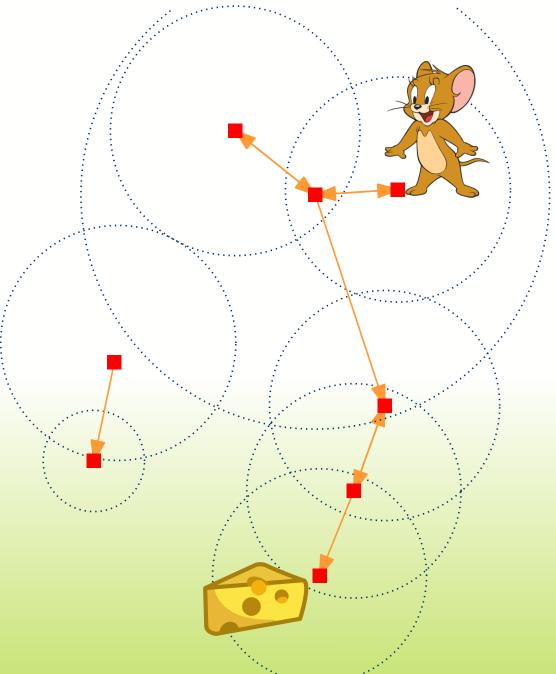




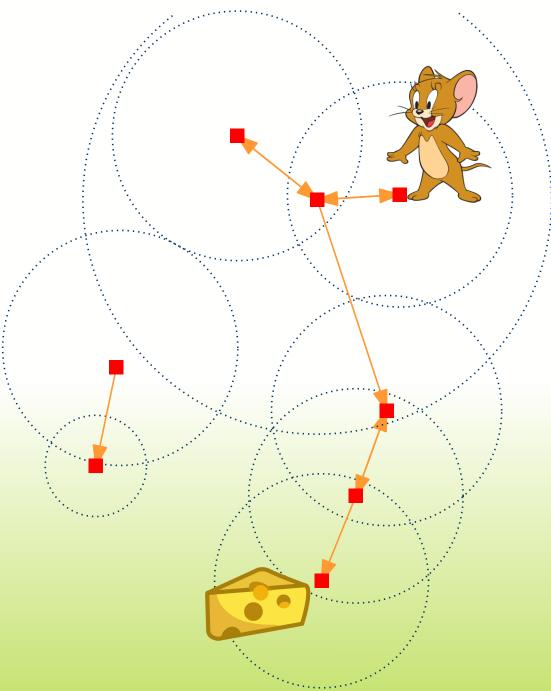
Given: point set $P \subseteq \mathbb{R}^d$ each $p \in P$ has radius r_p



Given: point set $P \subseteq \mathbb{R}^d$ each $p \in P$ has radius r_p \Rightarrow directed graph on P



Given: point set $P \subseteq \mathbb{R}^d$ each $p \in P$ has radius r_p \Rightarrow directed graph on PWant: A datastructure to answer *reachability queries*: is there a directed path between two vertices u, v?

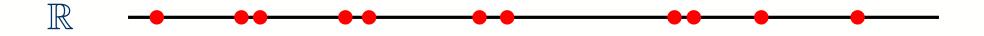


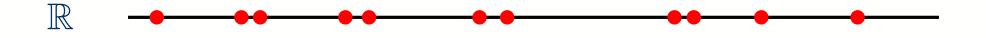
Given: point set $P \subseteq \mathbb{R}^d$ each $p \in P$ has radius r_p \Rightarrow directed graph on PWant: A datastructure to answer *reachability queries*:

answer *reachability queries*: is there a directed path between two vertices u, v?

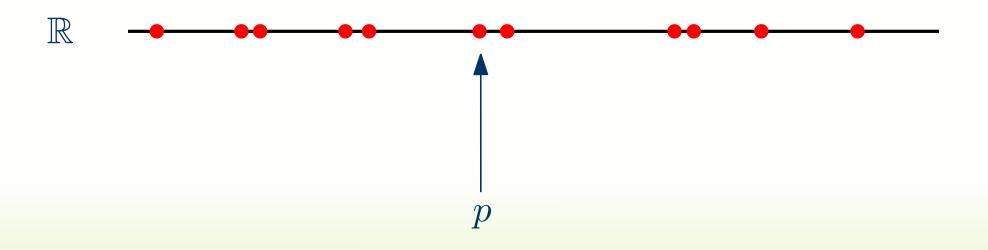
Quality measured in:

- Space S(n)
- Query Time Q(n)
- Preprocessing P(n)

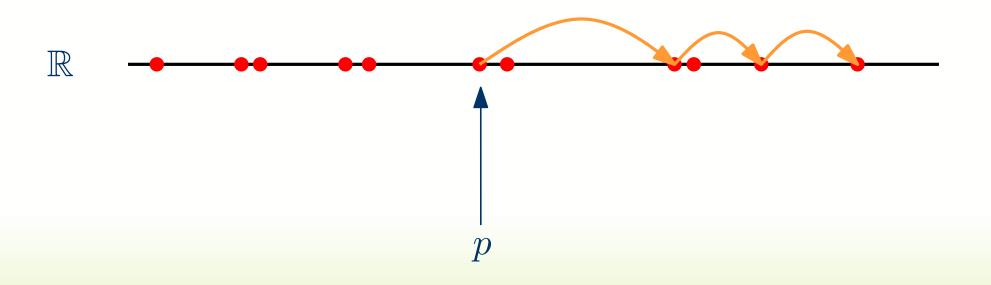




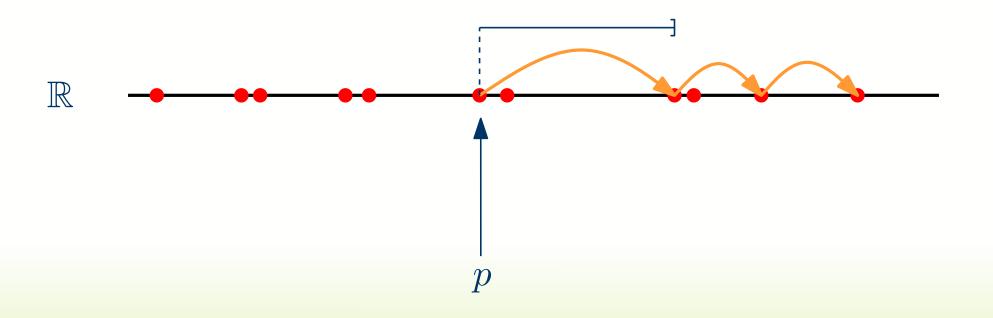
Observation: All points reachable from $p \in P$ lie in an interval.



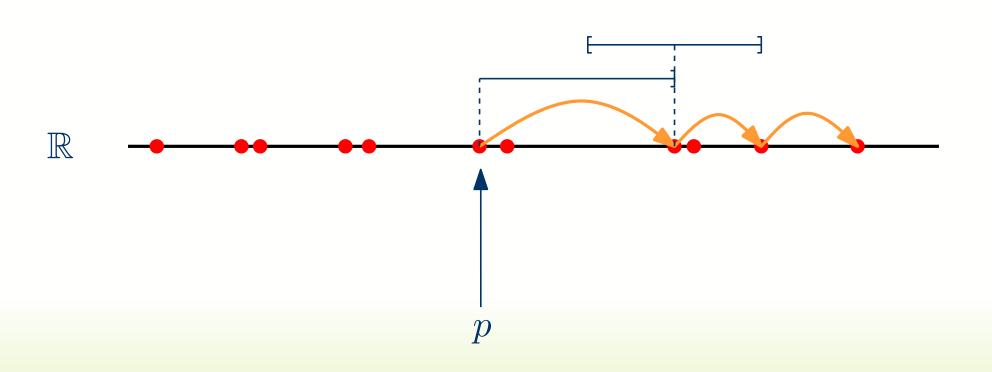
Observation: All points reachable from $p \in P$ lie in an interval.



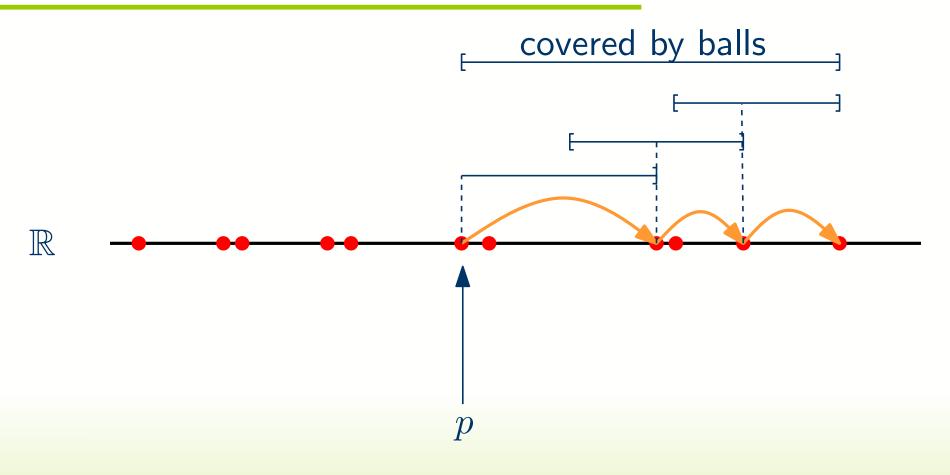
Observation: All points reachable from $p \in P$ lie in an interval.



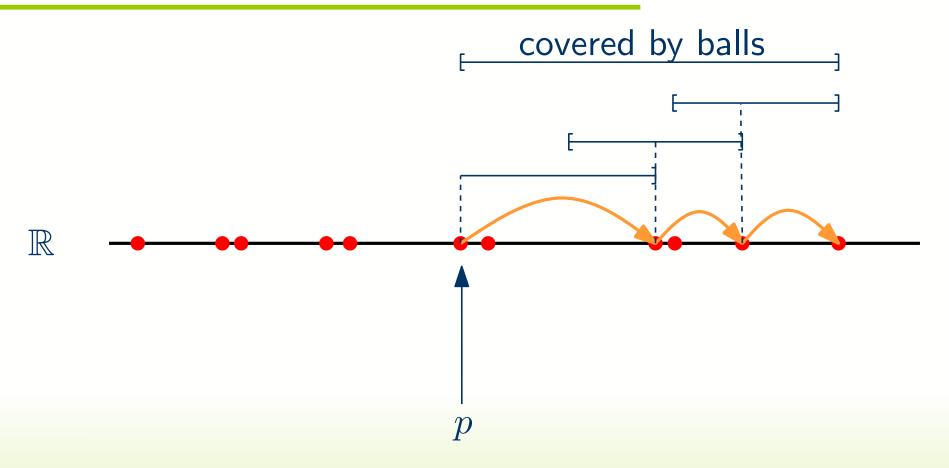
Observation: All points reachable from $p \in P$ lie in an interval.



Observation: All points reachable from $p \in P$ lie in an interval.



Observation: All points reachable from $p \in P$ lie in an interval.

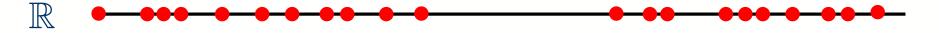


Observation: All points reachable from $p \in P$ lie in an interval.

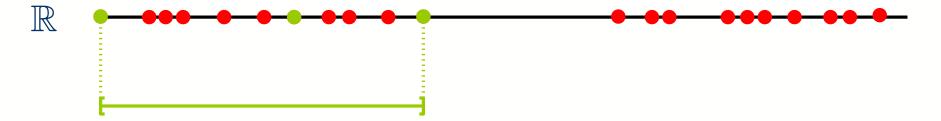
DS: Save for each $p \in P$ the boundary points of this *reachability* interval.

Look at the strongly connected components!

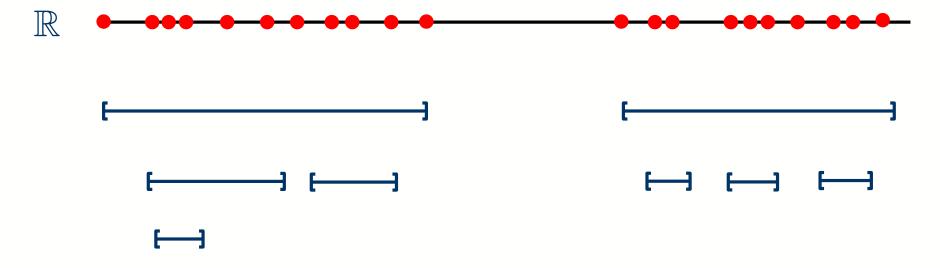
Look at the strongly connected components!



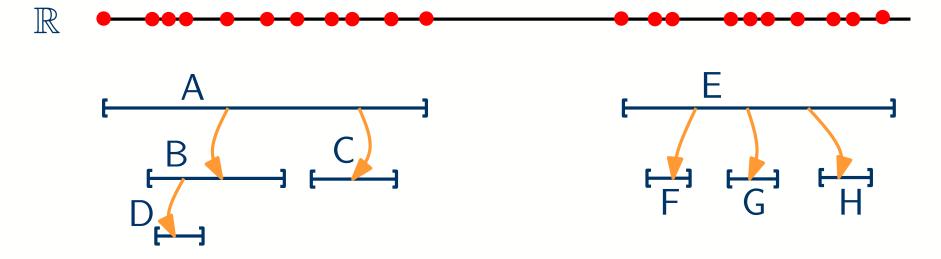
Look at the strongly connected components!

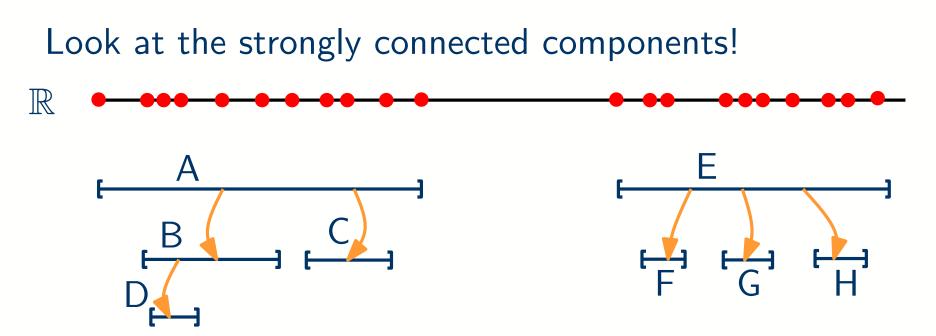


Look at the strongly connected components!

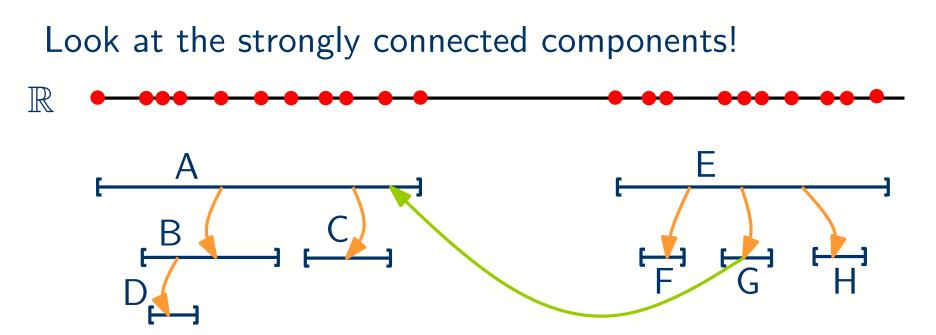


Look at the strongly connected components!



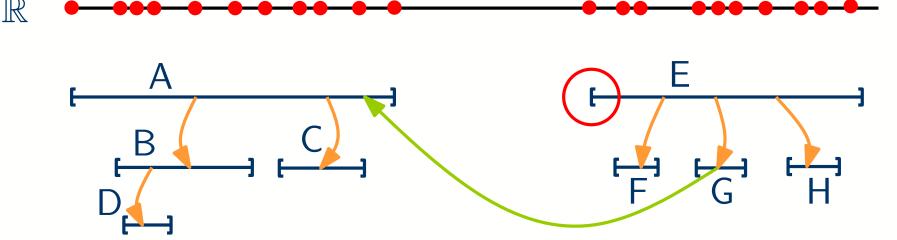


Observation: It suffices to look at siblings

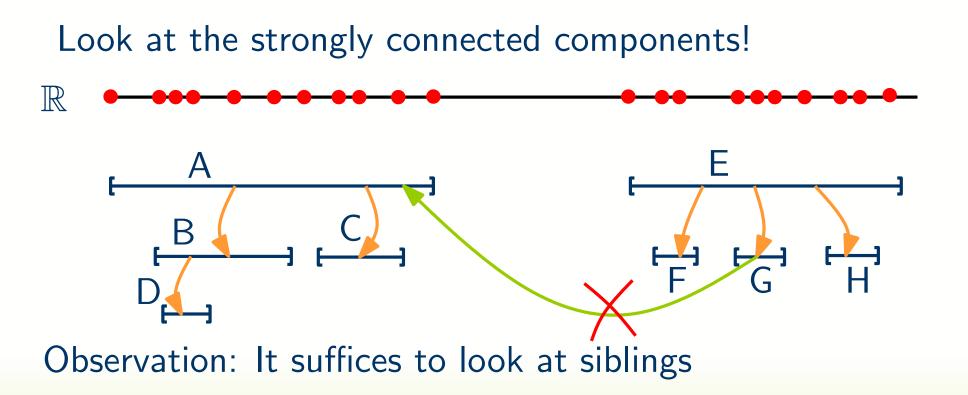


Observation: It suffices to look at siblings

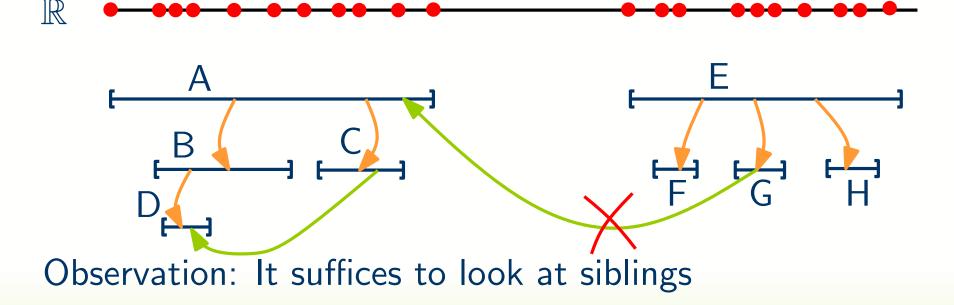
Look at the strongly connected components!



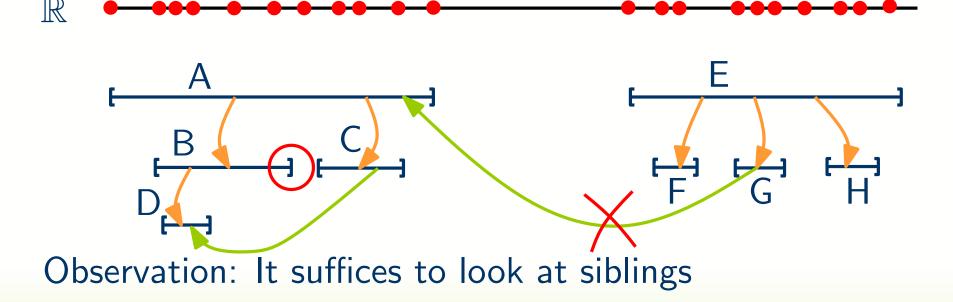
Observation: It suffices to look at siblings



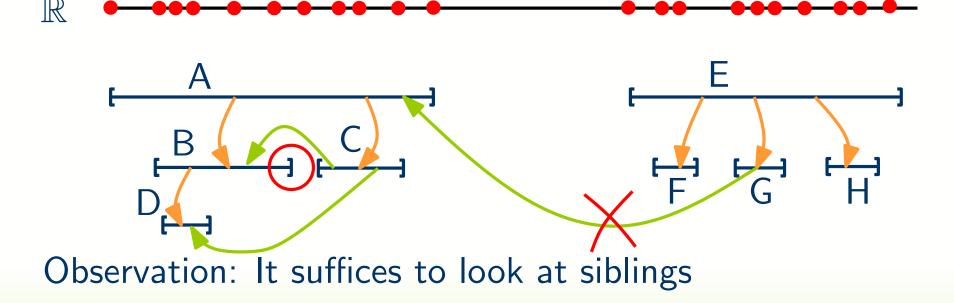
Look at the strongly connected components!



Look at the strongly connected components!

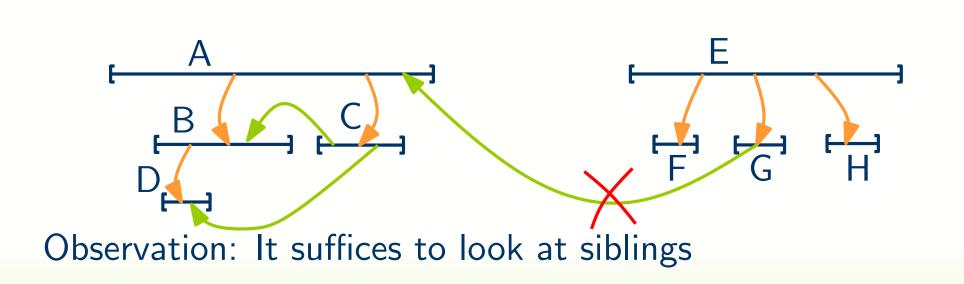


Look at the strongly connected components!



 \mathbb{R}

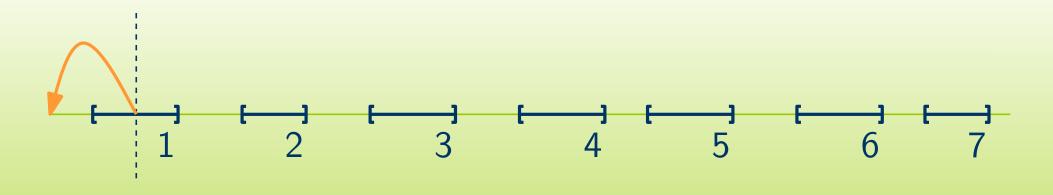
Look at the strongly connected components!



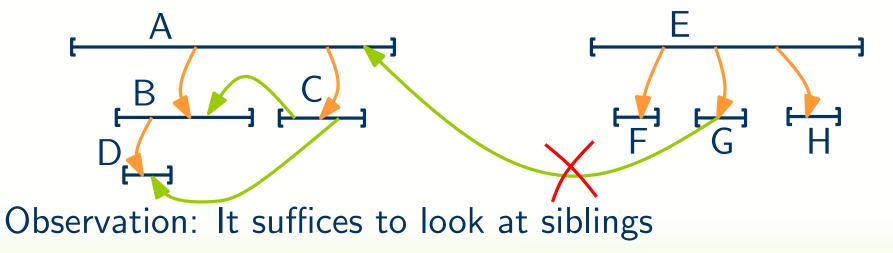
 \mathbb{R}

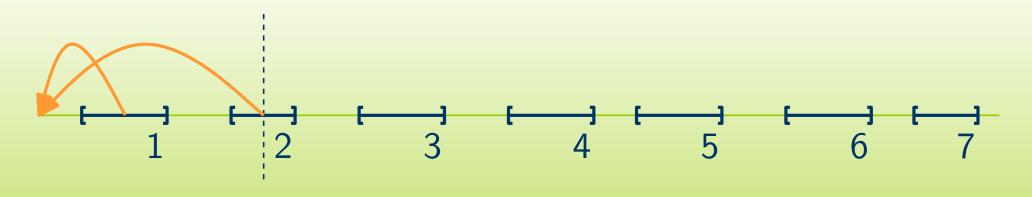
Look at the strongly connected components!

Observation: It suffices to look at siblings

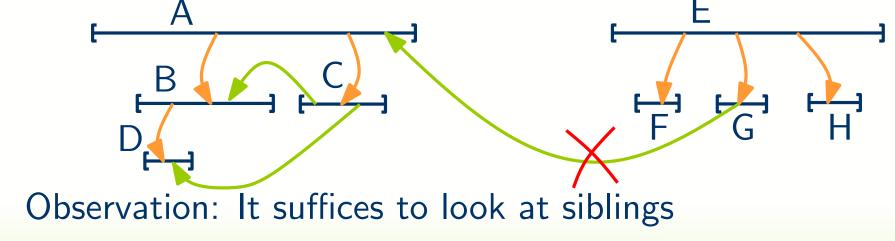


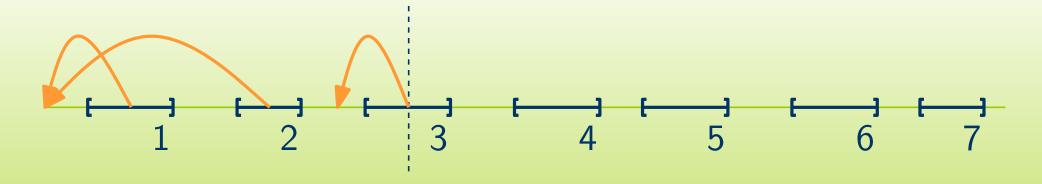
Look at the strongly connected components!



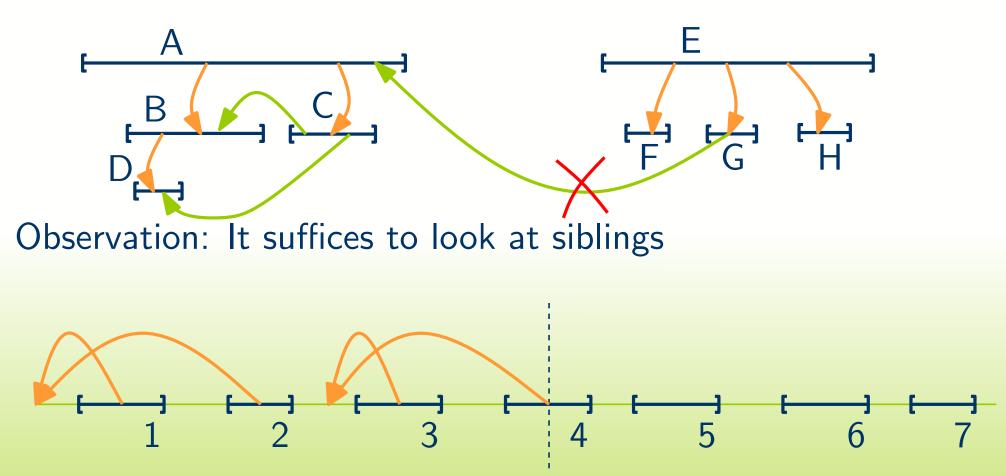


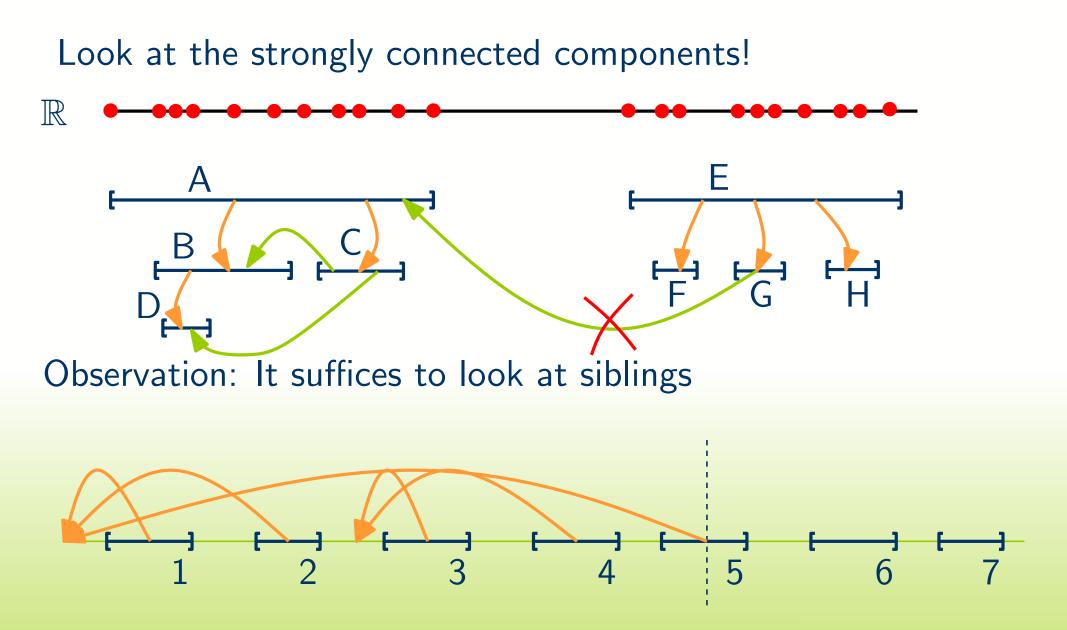
Look at the strongly connected components!





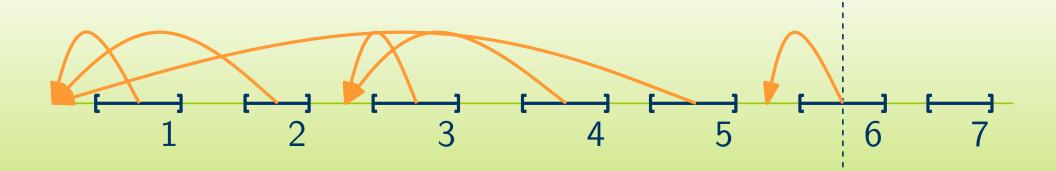
Look at the strongly connected components! \mathbb{R}



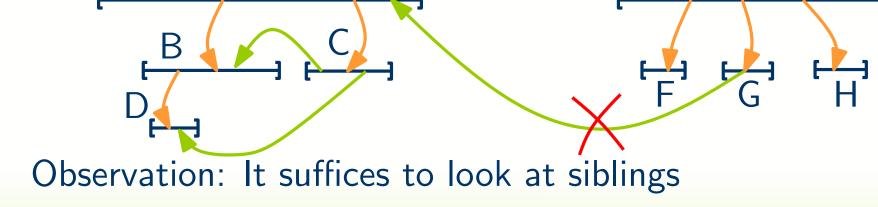


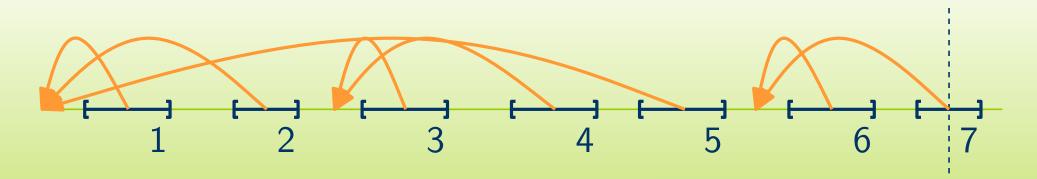
 \mathbb{R}

Look at the strongly connected components!



Look at the strongly connected components!





	P(n)	S(n)	Q(n)	Restrictions
d = 1	$O(n \log n)$	O(n)	O(1)	none
d = 2				

Theorem (Thorup): For **planar** graphs we can compute a reachability oracle with $S(n) = O(n \log n)$ and Q(n) = O(1) in time $O(n \log n)$

Theorem (Thorup): For **planar** graphs we can compute a reachability oracle with $S(n) = O(n \log n)$ and Q(n) = O(1) in time $O(n \log n)$

Plan:

 Make graph planar without changing reachability
 Use Thorup's Theorem

Theorem (Thorup): For **planar** graphs we can compute a reachability oracle with $S(n) = O(n \log n)$ and Q(n) = O(1) in time $O(n \log n)$

Plan:

Possible crossings:

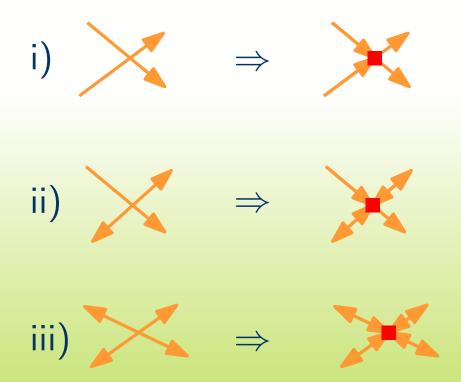
 Make graph planar without changing reachability
 Use Thorup's Theorem

Theorem (Thorup): For **planar** graphs we can compute a reachability oracle with $S(n) = O(n \log n)$ and Q(n) = O(1) in time $O(n \log n)$

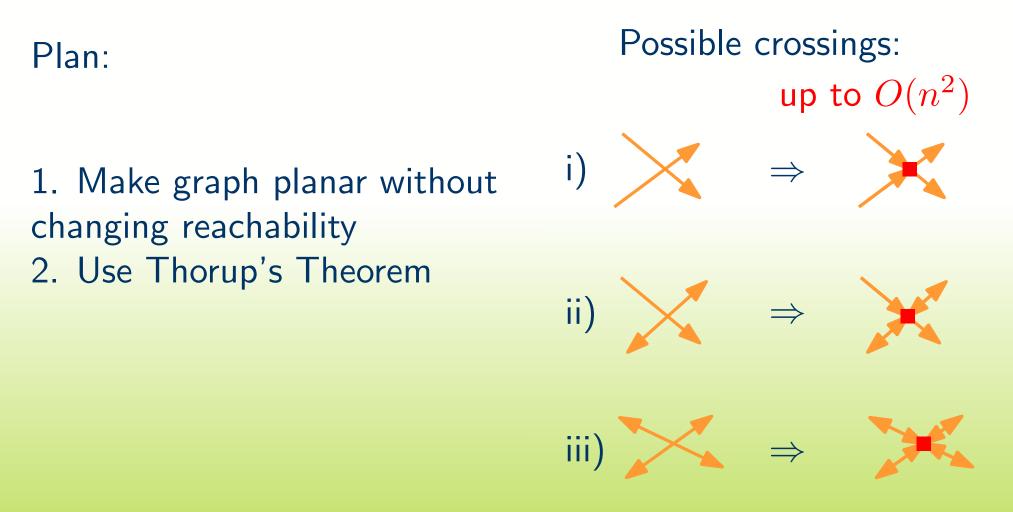
Plan:

Possible crossings:

 Make graph planar without changing reachability
 Use Thorup's Theorem



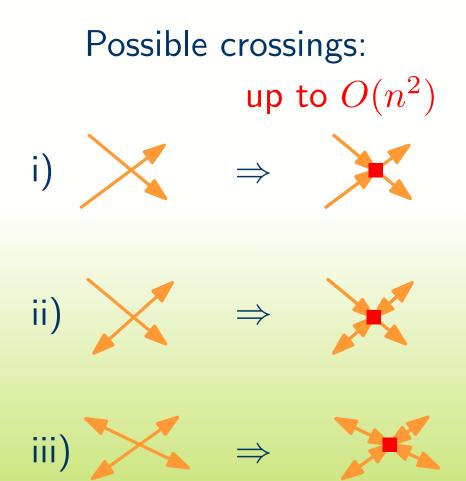
Theorem (Thorup): For **planar** graphs we can compute a reachability oracle with $S(n) = O(n \log n)$ and Q(n) = O(1) in time $O(n \log n)$



Theorem (Thorup): For **planar** graphs we can compute a reachability oracle with $S(n) = O(n \log n)$ and Q(n) = O(1) in time $O(n \log n)$

Plan:

- 1. Prune G to reduce crossings
- 2.X. Make graph planar without changing reachability
 3.X. Use Thorup's Theorem

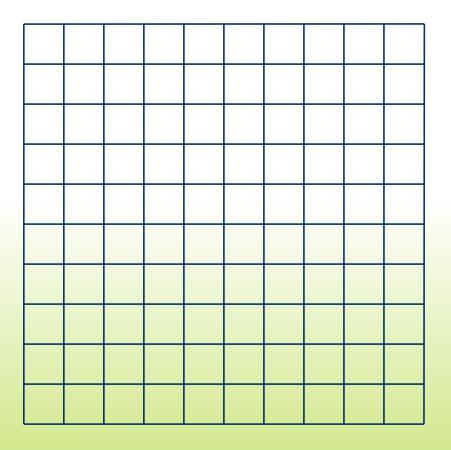


Pruning G

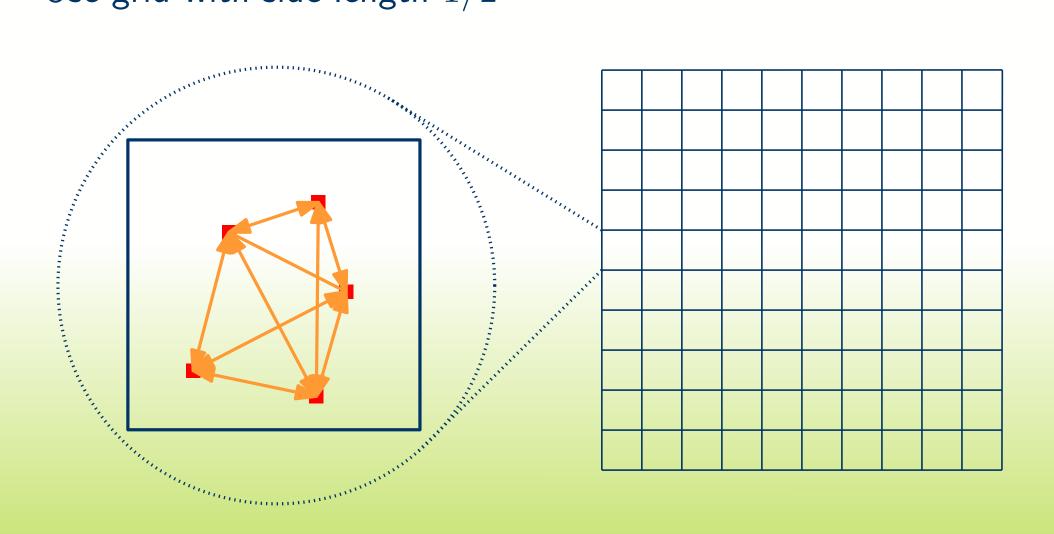
Want: O(n) edges; O(n) crossings; same reachability

Pruning G

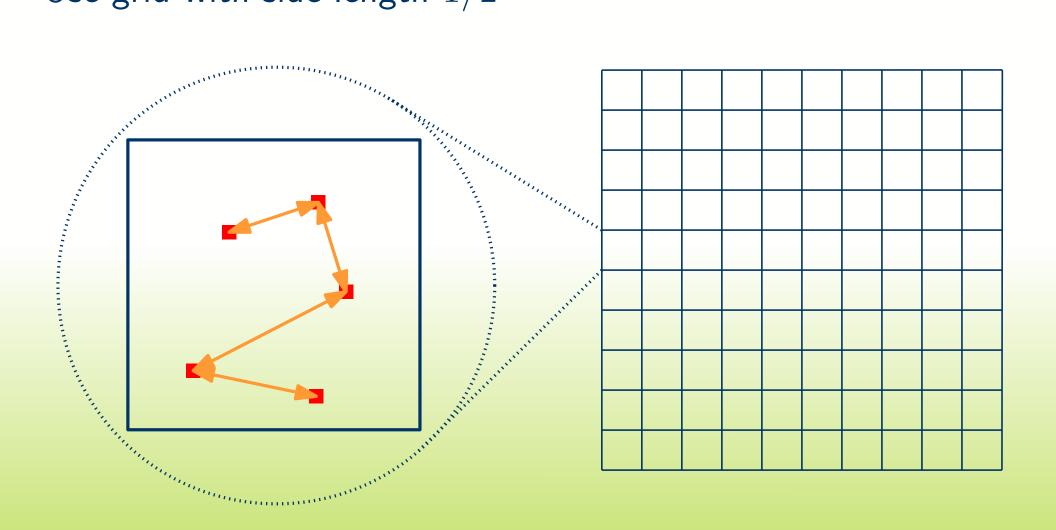
Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2



Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2



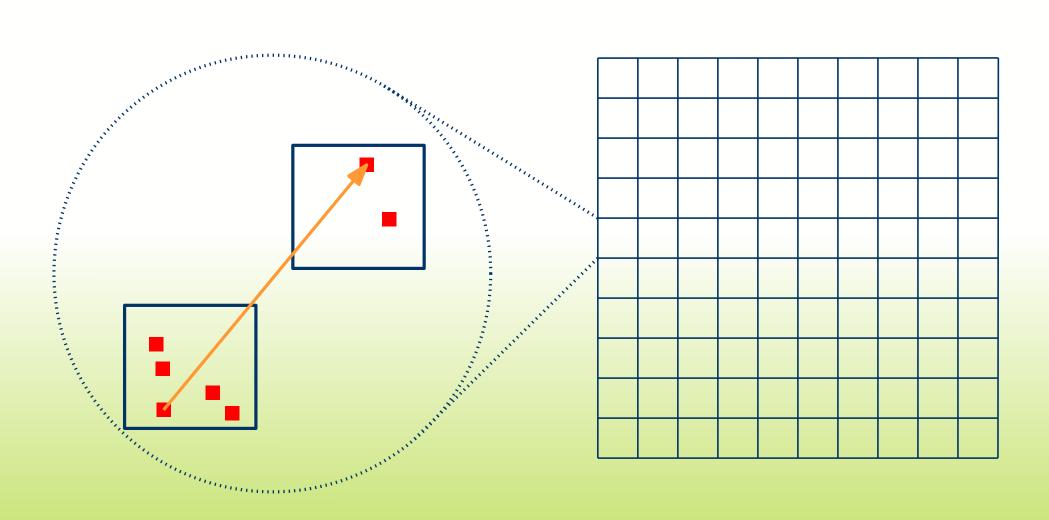
Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2



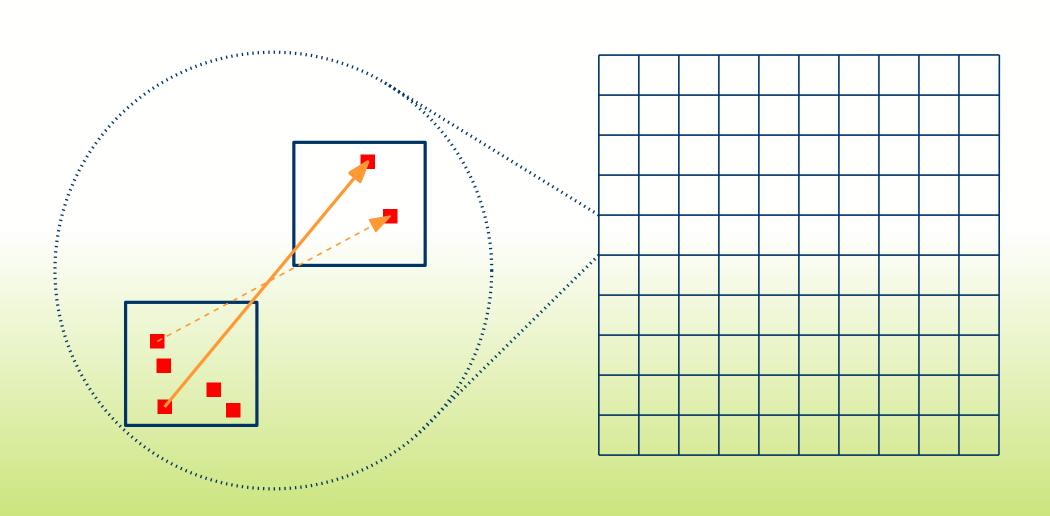
Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2



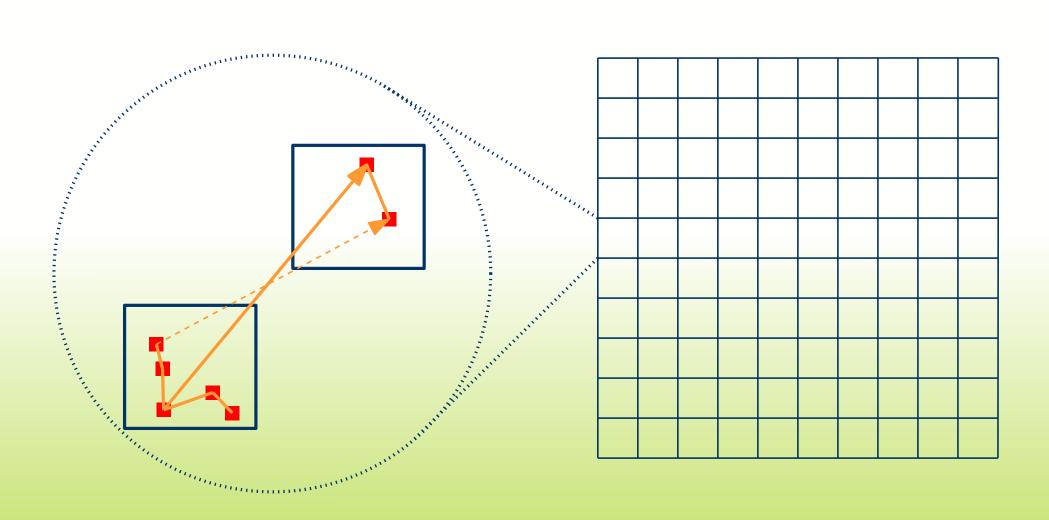
Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2



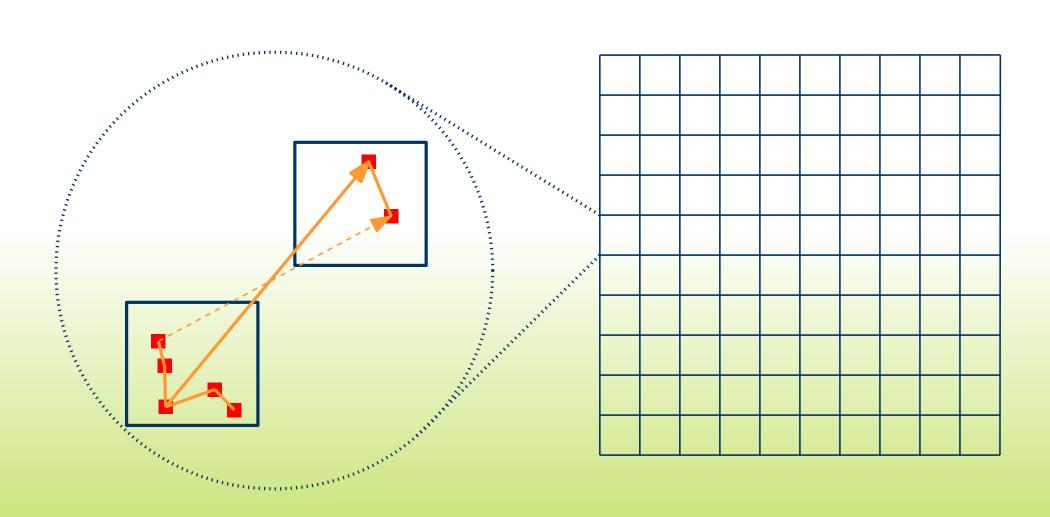
Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2



Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2

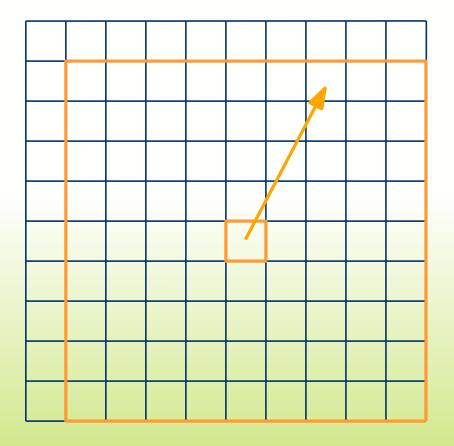


Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2



Want: O(n) edges; O(n) crossings; same reachability Use grid with side length 1/2

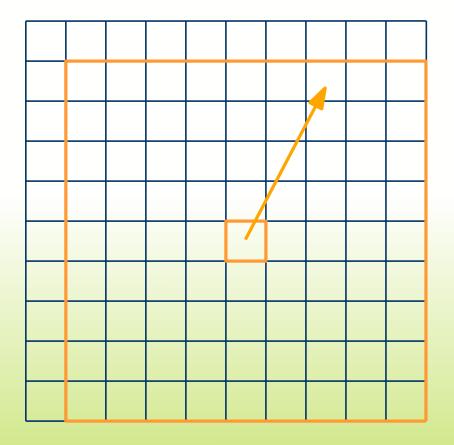
Def: *Neighborhood* of \Box : 9×9 grid \Box is centered at



Want: O(n) edges; O(n) crossings; same reachability

Use grid with side length $1/2\,$

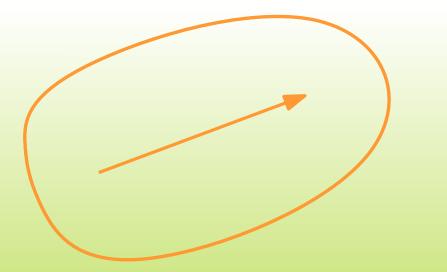
Def: *Neighborhood* of \Box : 9×9 grid \Box is centered at

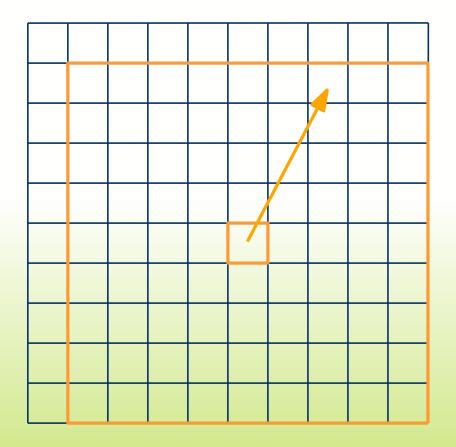


Want: O(n) edges; O(n) crossings; same reachability

Use grid with side length $1/2\,$

Def: *Neighborhood* of \Box : 9×9 grid \Box is centered at

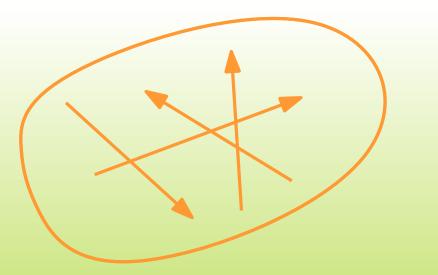


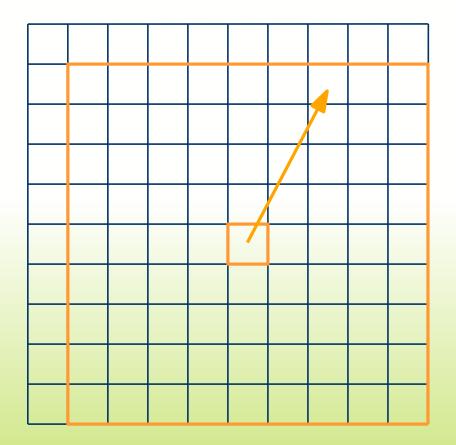


Want: O(n) edges; O(n) crossings; same reachability

Use grid with side length $1/2\,$

Def: *Neighborhood* of \Box : 9×9 grid \Box is centered at

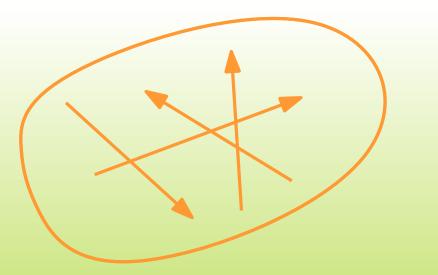


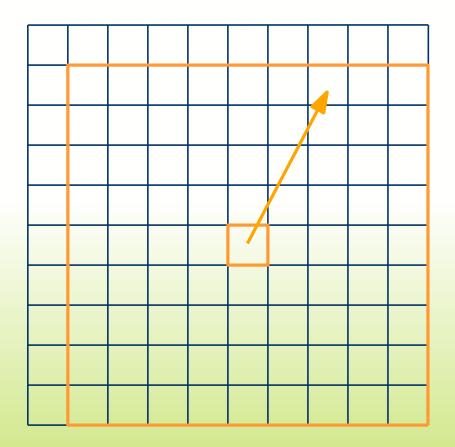


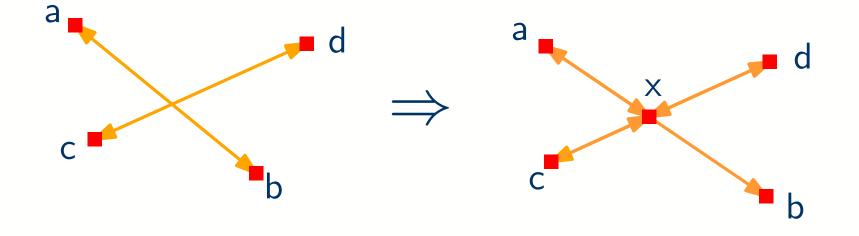
Want: O(n) edges; O(n) crossings; same reachability

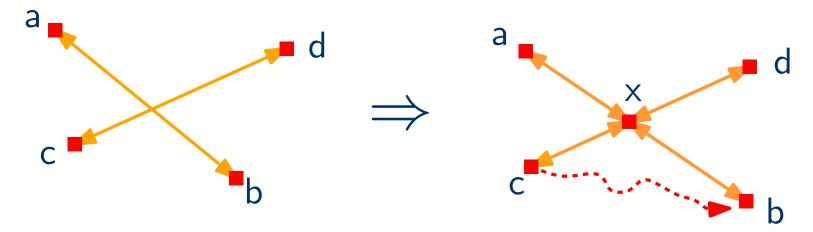
Use grid with side length $1/2\,$

Def: *Neighborhood* of \Box : 9×9 grid \Box is centered at

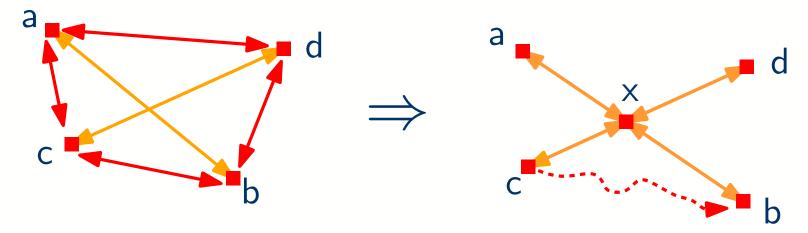




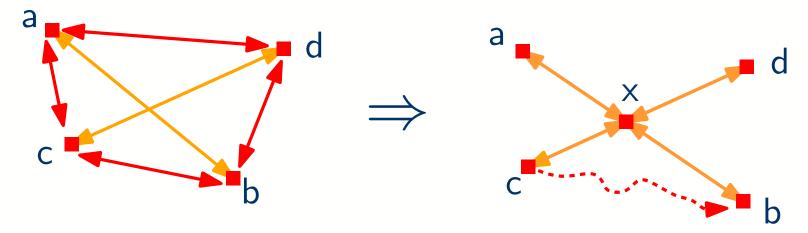




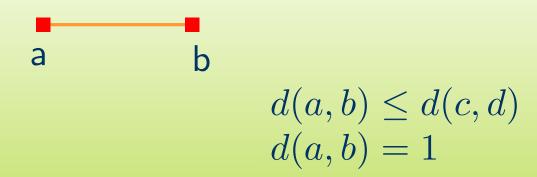
Why does this not change reachabilty?

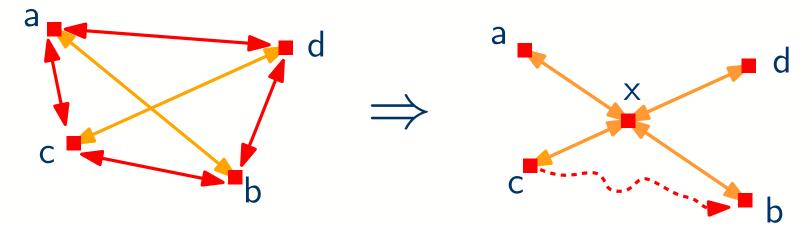


Why does this not change reachabilty?

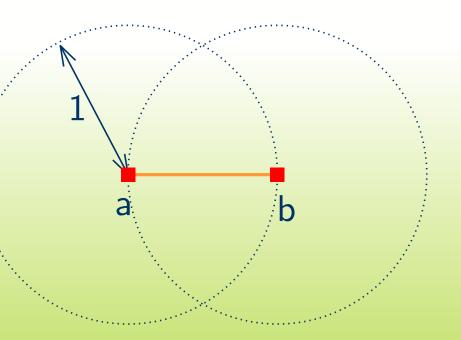


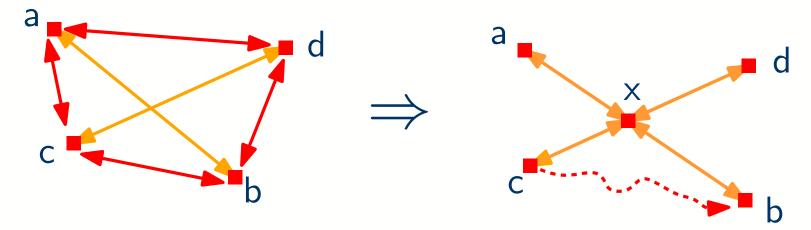
Why does this not change reachabilty?



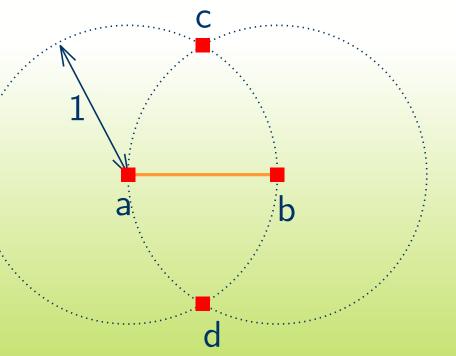


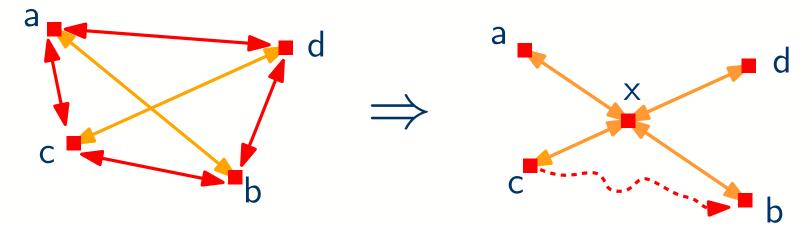
Why does this not change reachabilty?



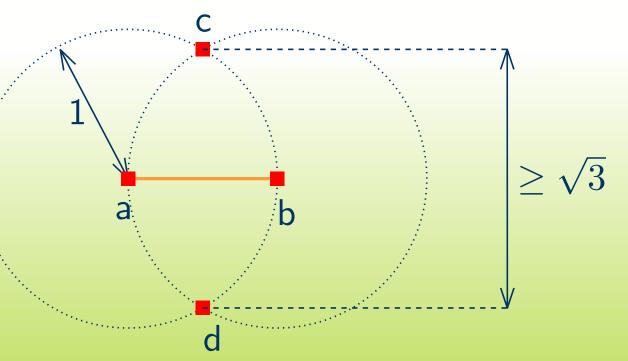


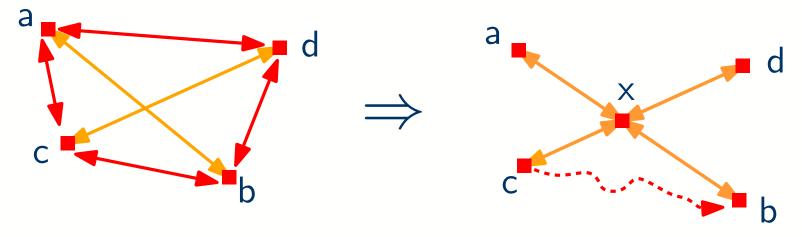
Why does this not change reachabilty?



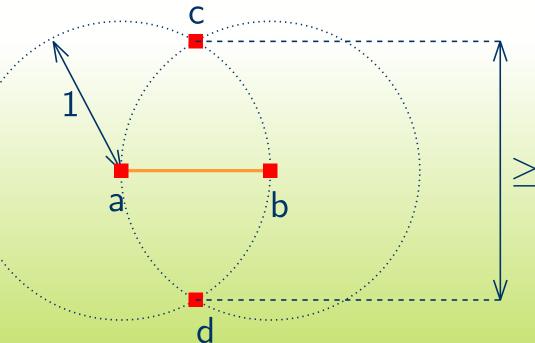


Why does this not change reachabilty?



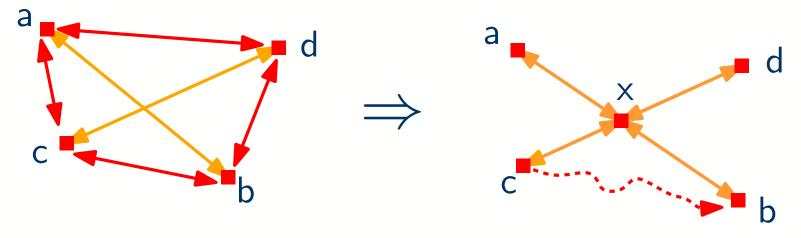


Why does this not change reachabilty?

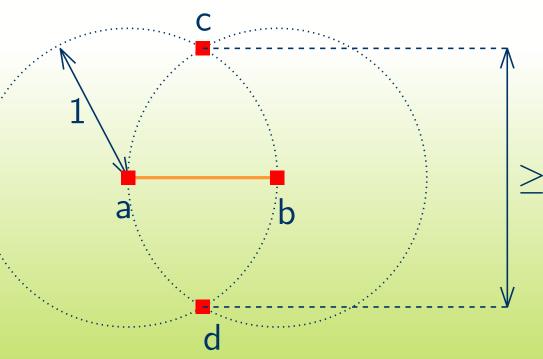


Lemma: Resolving crossings does not change the reachability **locally**.

 $\geq \sqrt{3}$



Why does this not change reachabilty?



	P(n)	S(n)	Q(n)	Restrictions
d = 1	$O(n\log n)$	O(n)	O(1)	none
d = 2	$O(n \log n)$	$O(n \log n)$	O(1)	radii in $[1,\sqrt{3})$