
1

Four presumed gaps in the
software engineering research community’s

knowledge
Lutz Prechelt Freie Universität Berlin

Berlin, Germany
prechelt@inf.fu-berlin.de

F

Abstract—Background: The state of the art in software engineering
consists of a myriad of contributions and the gaps between them; it is
difficult to characterize.
Questions: In order to help understanding the state of the art, can we
identify gaps in our knowledge that are at a very general, widely relevant
level? Which research directions do these gaps suggest?
Method: 54 expert interviews with senior members of the ICSE commu-
nity, evaluated qualitatively using elements of Grounded Theory Method-
ology.
Results: Our understanding of complexity, of good-enoughness, and of
developers’ strengths is underdeveloped. Some other relevant factors’
relevance is apparently not clear. Software engineering is not yet an
evidence-based discipline.
Conclusion: More software engineering research should concern itself
with emergence phenomena, with how engineering tradeoffs are made,
with the assumptions underlying research works, and with creating
certain taxonomies. Such work would also allow software engineering
to become more evidence-based.

1 INTRODUCTION

1.1 The state of knowledge about software engineering
What do we1 know about software engineering (SE)? How
does it work? What is the state of the art?

These questions are difficult to answer, because the
things we know are so specialized that the overall landscape
of our knowledge is highly fragmented.

For instance the Guide to the Software Engineering Body of
Knowledge [1], despite its common abbreviation as SWEBOK,
is only a guide to the knowledge (a catalog of sources),
not the knowledge itself, and still comprises more than 300
pages. It captures well-established knowledge, not the most
recent state of the art.

At the SE research front, Kitchenham and others in 2004
suggested to perform systematic literature reviews (SLRs)
in order to synthesize and consolidate research results in
order to enable evidence-based SE practice [2]–[4]. This
was successful and many SLRs have appeared since2, but

1. “we” here is the software engineering research community; the
people whose job it is to build and explicate knowledge about software
engineering.

2. There are even some SLRs of SLRs (“tertiary studies”), but most of
these are concerned with research methods [5]–[8], not SE methods [9].

they help only gradually in fighting the fragmentation, for
several reasons: Most of them are mapping studies (that
merely catalog results) rather than full SLRs (that synthesize
combined results; see [6, Table 2] and [5, Table 2]), differ-
ent SLRs are dominated by different study methods with
different validity characteristics (e.g. experiments [10] vs.
surveys [11]), and SLR quality varies widely (e.g. compare
[12] to [13]). Most importantly, however, few SLRs are about
widely applicable areas within SE (e.g. agile methods [14],
motivation [11]) while most are rather more specialized in
terms of their usage contexts; for instance: agile practices
in distributed SE [15], the role of trust in agile methods
[13], effectiveness of pair programming [10], search-based
SE techniques involving user interaction [16], unit testing
for BPEL routines [17].

This fragmentation is problematic because it makes it dif-
ficult to judge the relevance of a proposed research question:
What importance does an answer have for SE overall? How
much of an impediment is the gap that the answer might
fill? Sure, we can argue why a given research question A
appears more relevant than question B if A and B are related.
But typically we cannot – and there is hardly any basis for
systematically deriving relevant research questions.

1.2 What do we not know?
An alternative approach to making statements about the
state of SE knowledge is to characterize things we do not
know. And if we do so not at a specialized level (where the
list would be nearly endless) but at a general one, this would
overcome the fragmentation. In that case, each knowledge
gap that is pointed out would have relevance for many,
perhaps even most SE situations.

Finding such general-level gaps in the SE knowledge
is the aim of the present work. The underlying study was
largely emergent (rather than designed upfront) and came
to be as follows:

1.3 A conundrum
Ever since I entered empirical software engineering research
in 1995, I have been troubled by an apparent paradox: On

ar
X

iv
:1

91
1.

09
97

1v
1 

 [
cs

.S
E

] 
 2

2 
N

ov
 2

01
9



2

the one hand, even modest software is highly complex, few
(if any) software systems ever work fully satisfactorily, and
the people building those systems all have strong cognitive
and other limitations. On the other hand, despite many
deficiencies and local breakdowns, overall the software
ecosystem appears to work OK. How do we3 manage to
achieve that?

When this question hit me once again the week before
ICSE 2018 (International Conference on Software Engineer-
ing), I recognized that asking my colleagues about it might
be a source of insight. I worked out a concise formulation
and set out to run a number of interviews during the
ICSE conference week. The rich answers I got prompted me
to perform a thorough evaluation, which turned into the
present article. I did not initially have an idea whether or
how my interviews might turn into a research contribution;
this emerged only during analysis. Note also that the out-
come is about knowledge gaps, it does not answer the above
question.

1.4 Research contributions
Formulating research questions for the present work would
be misleading, as they were completely emergent; so I
formulate contributions only.

Imagine, purely conceptually, a Software Engineering
Topic Tree (SETT)4 that arranges SE research articles ac-
cording to their degree of specialization, with “all of SE”
at the top. Then most SE articles would be at or near leaves,
systematic literature reviews would be at medium levels,
and the present article would be near the top. In this sense,

• the article derives six areas in which our knowledge
is weakly developed and that each have relevance
for a broad variety of SE contexts;

• the article suggests research directions to fill these
knowledge gaps.

The interview respondents’ views are opinions, not facts.
But the gaps in understanding that show up in these views
are arguably facts, not opinions; the article presents evi-
dence for each of them. In contrast, the research directions
are merely sketched; a fuller discussion is left to future work.

2 METHOD

I ran 54 semi-structured expert interviews based on a 4-item
stimulus card and analyzed them using various elements
of the Grounded Theory Methodology (GTM), in particular
Open Coding, paying particular attention to elements that
are missing in the responses. I report the outcomes in a topic-
by-topic manner.

2.1 Epistemological stance
My stance is constructionist-interpretive [18], not positivist:
We should not assume the existence of a single underlying
truth; the data requires interpretation and the person of the

3. Subsequently in this article, “we” can stand for the software engi-
neering community (as in the present case), the software engineering
research community, the ICSE community, or the union of authors and
readers of this article.

4. This concept will be used again in Related Work.

researcher will unavoidably have influence on the outcome;
alternative interpretations of these same data may exist that
have similar validity. This does not threaten the validity of
the present interpretation, but in terms of appropriateness,
individual readers may prefer alternative interpretations in
some places.

2.2 Design goals and approach
Although the study overall does not have an upfront design,
the interviews have. I pursued the following ideas:

1) Openness: Due to the lack of a better idea, the study
would use my own perception of the situation as
a starting point (as sketched in the introduction),
but beyond that I avoided to direct the attention
of my respondents in any particular direction. The
approach was to use basically just a single question.
As far as I can see, this has worked well. For the
same reason, I kept interjections and followup ques-
tions during the interviews to a minimum. This has
worked well for many interviews, but presumably
made some others poorer.

2) Breadth over depth: I expected responses to be highly
diverse (which indeed they were) and thus pre-
ferred getting many short interviews over fewer
long ones.

3) Respondent diversity: I strove to represent women
disproportionately highly, because I suspected their
views might have a different distribution. I strove to
have respondents from as many countries as I could,
because I suspected that national perspectives might
differ. With one exception, a PhD student, all re-
spondents are senior researchers. This may or may
not have been a good idea.

4) Provocativeness: To reduce the risk for boilerplate-
style responses, the interview stimulus used pointed
formulations that I expected many respondents to
disagree with. The formulations were also inten-
tionally ambiguous to prompt differentiation (an
important aspect, please keep it in mind). Both of
these approaches worked in many if not all cases.

2.3 Interview structure: The stimulus card
The interview was based on the 142 mm by 104 mm lami-
nated card shown in Figure 1.

Its rear side contained a minimal informed consent
agreement appropriate for researchers:

May I record this? (audio)
Anonymous.
Will quote only anonymously.

All respondents agreed to this. One requested to have the
recording deleted after transcription, which I did.

The front side contained three statements (which I will
call S1, S2, S3) meant to establish a context for the main
interview question (which I will call QQ).

• S1: Software systems are complex.
• S2: Most software systems work only approximately

well.
• S3: Most software engineers have only modest capa-

bilities.
• QQ: What keeps the software systems world from

breaking down?



3

Fig. 1. Stimulus card (front)

2.4 Interviewer behavior

To acquire respondents, I would approach a candidate phys-
ically and either ask “Hi <firstname>! Would you have
time for a 5-minute, 1-question interview?” or: ask “Hi
<firstname>! Would you have time for a 5-minute interview
on this question?” and hand them the stimulus card for
review.

Most interviews started there and then. Others were
postponed one or more times because the candidates were
busy or hesitant. In some cases this did not converge and
they are now missing.

At interview start, I would almost always hand over
the stimulus card so that the statements and question be-
came physically tangible and could be pointed to. My only
prompt would be something like “OK, shoot.”.

During the interview, my only common interventions
would be these:

• When respondents spoke about individual software
systems rather than the whole ecosystem, I would
emphasize the question was about the “software
systems world” and then often elaborate that this
meant “widespread collapse”.

• When respondents gave rather general answers, I
would ask for specific “ingredients”, “aspects”, or
“factors” that were most relevant for how we prevent
breakdown.

• Once one or more key ingredients had been named,
I would often ask the follow-up question “Are ICSE
and the contributions it is seeing well aligned with
what’s important for bringing software engineering
forward?”. Its actual formulation often picked up
statements the respondent had made before.5

• I sometimes asked short questions for clarification or
repeated, in different words, what I had understood.

I generally avoided nudging respondents in any particular
direction. The interview ended when the respondent had
nothing more to say.

5. The answers to this question will not be discussed here, but rather
in a separate arXiv article.

Later interviewees overheard parts of an interview in
about 10% of the cases.

2.5 Equipment used

The only equipment used for the interviews were the lam-
inated stimulus card and an Olympus VN-8700PC mono
voice recorder, which produced clear recordings despite the
often enormous background noise. Both fit easily in my
jeans pockets so that I was ready for an interview at all
times.

2.6 Respondent demographics

Of the 54 respondents, 18 (33%) were female. The respon-
dents came from 18 different countries of affiliation: USA (24
interviewees), Germany (5), Canada (4), UK (4), Switzerland
(2), India (2), Netherlands (2), Australia, Spain, Finland,
Greece, Ireland, Israel, Italy, Luxembourg, South Africa,
Sweden, Singapore.

All interviews but one were held in English; I noticed
two respondents having some difficulty expressing their
thoughts in English, all others appeared fluent.

16 respondents have previously been chairs of program
committees of the ICSE Technical Research track, another
5 have been ICSE General Chairs, and yet another 8 have
been PC chairs of other ICSE article tracks such as SEIP,
NIER, SEIS, SEET. So at least 29 respondents (54%) would
be considered very senior and many of the others were
similarly accomplished.

2.7 Interview metadata

I ran 51 interviews during the ICSE week (from Sunday
2018-05-27 to Friday 2018-06-01) and 3 more within sev-
enteen days after that, with people who could not make
time for the interview during the ICSE week; 54 interviews
overall. These range from 2 to 34 minutes in length, the
middle half being 4 to 10 minutes. A few interviews consist
of two parts, where a respondent approached me again
shortly after the interview to add something.

Respondent quotes will be attributed to respondent
pseudonyms chosen according to the names of the recording
files: R394 to R488 (with gaps).

2.8 Data analysis

Analysis used elements of Grounded Theory Methodology
GTM [19]–[21]. The approach is eclectic, taking the basic
concepts of Open Coding [19, II.5], Constant Comparison
[19, II.6], Selective Coding [19, II.8], applied multiple times,
the “as much as needed” approach to transcription [19,
p.30], and some Memoing [19, III.12], from Strauss and
Corbin, a particular emphasis of Theoretical Sensitivity
from Glaser [20] and Strauss/Corbin [19, I.3] alike, and the
Constructionist epistemological stance (with some resulting
aspects such as insistence on recordings as opposed to mere
notes and heavy reliance on quotations in the present report)
from Charmaz [18], [21].

The outcome does not claim to be a theory, so it is
unproblematic that other GTM elements are missing: Axial
Coding [19, II.7] is hardly applicable to this data, Theoretical



4

Sampling [19, II.11] and determining Theoretical Saturation
[19, p.178] were impractical.

The analysis started by turning the recordings into text.
This served two purposes: Speeding up subsequent steps
and protecting respondent anonymity in the published data
(see below). I transcribed concise pertinent parts verbatim
(shown like this: “verbatim quotation”R123, if it came from
respondent R123), paraphrased verbose pertinent parts near-
verbatim (“[paraphrased quotation]”R123), and paraphrased
less-and-less relevant parts with higher-and-higher com-
pression. In some cases I subsequently expanded para-
phrased parts.

Right after textifying each interview, I annotated them
with a preliminary set of concepts that grew in Open Coding
manner over time, using the MaxQDA 20186 software.

In a second pass through the material I created a very
short (1 to 6 lines) summary of each interview, all in a single
file, to capture the gist of each interview in order to avoid
distortion from over-emphasizing low-relevance aspects.

During this second pass, I recognized the three different
frames of reference relevant in these data (Section 3) and
discovered the core categories that led to the main insights
(Sections 4 to 7). As a consequence, rather than going
for a completely new second generation of concepts for
my annotations as planned, I merely consolidated the first
generation enough to support finding the pertinent material
and validating the statements. I limited the annotation preci-
sion to the level needed to support the rough quantification
provided here (see Section 2.9) and ensure the validity of the
quotations.

All remaining analysis was then driven by the develop-
ment and validation of the narrative you find in this article.

2.9 Quantification
Given the opinions presented below, it is tempting to ask for
quantification of their frequency. We will have to resist that
urge.

Not only is it unclear what such frequencies would
mean, because we are not looking at a representative sample
of our population. Worse: Although GTM tailors the cat-
egories to the data, the frequencies cannot be determined
properly, because many responses are highly ambiguous or
multilayered.7

To reflect at least large differences in frequency, I will use
a coarse, 4-level, linguistic, roughly logarithmic ordinal scale
as follows: “most” means at least 1-in-2; “many” means at
least 1-in-4; “some” means at least 1-in-8; “few” means at
least 2, but less than 1-in-8. The basis for these ratios is
always smaller than 54, because there is no single aspect
that all respondents commented on. Except where noted
explicitly, I do not report concepts that occur only once in
my data.

2.10 Literature micro-studies
To roughly triangulate [23] the interview-based evidence
with a very different data source, I performed a number of

6. https://www.maxqda.com/
7. It is possible to nail down categories completely despite such

effects, but this is extremely laborious and would not pay off in the
present case. For instance [22] required about 7 person-years of work to
understand 60 concepts precisely.

micro-studies.8 Most of these consider the 153 articles from
the ICSE 2018 Technical Research track (including the 47
Journal First entries) in order to estimate, roughly, how often
SE research addresses a certain issue. The classification is
made based on article title, session title, and (where needed)
the abstract. The outcomes serve as modest corroboration of
the interview interpretations, not as research results in their
own right. Details for the micro-studies are included in the
above-mentioned raw data package as well.

2.11 Member check
I sent a complete draft of the article to the respondents
for a member check, asking for possible objections to each
person’s quotations, the insights, and the conclusions. Ten
respondents reacted. As a result, I corrected the handling
of two quotations and inserted minor clarifications in a few
places. There were some comments on, but no objections
against any of the insights or conclusions.

2.12 Chain of evidence
The chain of evidence for the present study consists of
(1) the raw interview data, (2) a set of first-generation
and (3) second concepts from open coding, (4) concepts
from selective coding, and (5) the micro-studies. In this
article, (1) is represented by loads of verbatim quotations,
(4) and (5) as argumentative text. (3) is mostly and (2) is
completely suppressed for sake of readability; see Section 8
for a discussion.

A raw data package (interview transcripts, annotations,
code memos, etc.) for this study is available to fill in de-
tails.9 Quotations reported in the article were chosen for
their brevity first and to show the breadth of opinions and
formulations second.

3 DEDUCTION METHOD AND NATURE OF THE RE-
SULTS

When you think about the results below, be aware there are
three different frames of reference involved:

• Software engineering space (SES) is the space of real-
world SE phenomena.

• SE knowledge space (KS) is the space of what we, the
SE research community, know about SES.

• Interview space (IS) is the space of what my respon-
dents say about SES and KS.

When interpreted as statements of fact at the SES level,
the respondents’ IS statements can be dismissed as mere
opinions, but this is not the point of this article and not
its level of discussion. Rather, the article mainly uses the
IS statements to draw conclusions about KS — and mostly
does so by analyzing what is not being said with respect to
S1, S2, S3, or QQ.

The reasoning works like this:
1. QQ asks for a rough theory of how SE works and S1, S2,
S3 are relevant only to help stating this theory.

8. Another one is for supporting a statement in the Related Work
section.

9. https://www.dropbox.com/s/woabq7kuxipojz8/
knowgaps-materials.zip?dl=0

https://www.maxqda.com/
https://www.dropbox.com/s/woabq7kuxipojz8/knowgaps-materials.zip?dl=0
https://www.dropbox.com/s/woabq7kuxipojz8/knowgaps-materials.zip?dl=0


5

2. If none or nearly none of the expert respondents use some
concept X although (i) X would be useful for their discussion
of S1, S2, S3, QQ and (ii) the respondents are researchers
and therefore normally justify their views, I conclude that
knowledge of X is not or not readily available to those
respondents. Let us call this conclusion CX.
3. Since the respondents are many, broadly selected, senior
representatives of the ICSE community, I conclude that CX
holds for the ICSE community as a whole.
4. Since ICSE represents top-quality SE research broadly, I
further conclude that CX holds for the SE research commu-
nity as a whole.

4 S1: SOFTWARE SYSTEMS ARE COMPLEX

If respondents comment on S1, S2, or S3 at all (many did
not), I expect their comments to provide support for their
answer to QQ and analyze them from that perspective.

The result sections on S1, S2, S3, and QQ follow a
common pattern: They first describe general observations
about the responses, then formulate an insight, and then
present evidence supporting that insight.

OBSERVATIONS: S1 was meant as a common starting
point, a self-evident consensus statement present only to set
the stage for the controversial statements S2 and S3 follow-
ing it. And indeed almost everybody of the 27 respondents
who commented on S1 agreed with it:
“I definitely agree that’s the case.”R471 or
“And yeah, of course: Software is complex”R462 or
“I’d agree with all three of those; that seems fairly uncon-
troversial to me.”R452 and so on. A few remarked it wasn’t
unconditionally true, e.g.
“I’m willing to accept that as a statement [sic!]; not all
software systems are complex”R445.

To my surprise, two respondents rejected S1. They both
referred to the execution state space and argued that only a
tiny part of it was actually relevant:
“A small number of variables matter”R400 or
“actually [developers] don’t have to reason about all of it,
they just have to reason about a little bit of it”R414.

Reviewing the evidence offered by the large majority
that had agreed to S1 led to

Insight 1: Our notion of complexity is undercomplex.
I will first explain this by evidence taken from the inter-

views (indicated by the g symbol), then by further evidence
from a micro-study (symbol p).

g EVIDENCE 1A: The respondents who agreed with
S1 offered no evidence in support of their claim nor even
a definition of complexity. Where an implicit concept of
complexity became visible at all, it was either size (“you’re
asking about software systems that are complex, not small
ones; [...] a few million lines of code”R452) or it referred to
some effect of complexity (“[...] not just that it’s too complex
to understand [...]”R467).

Few respondents differentiated complexity into different
kinds (technical vs. socio-technical; R416,R446) or complexity
from different sources (components, interaction, algorithm,
distribution, scheduling; R396). No respondent offered a ref-
erence that would spell out the discriminations. �

p EVIDENCE 1B: There is a trans-disciplinary literature
on Systems Science and Complex Systems [24], [25] which

offers a number of attributes associated with complexity,
such as nonlinearity, emergence, self-organization, adapta-
tion, or feedback loops. Of these, the one most broadly ap-
plicable to software is emergence, but current SE literature
has little discussion of that. Searching for the word stem
“emerg” in the PDFs of the ICSE 2018 technical research
track finds 144 matches in 35 articles, but zero of those
relate to software complexity. The closest miss, a work on
“emerging issues”, talks about a merely temporal aspect
[26]. �

5 S2: MOST SOFTWARE SYSTEMS WORK ONLY
APPROXIMATELY WELL

OBSERVATIONS: The purposefully ambiguous and provoca-
tive S2 question resulted in a lot more discussion. Many
of the 33 respondents who commented on S2 criticized the
formulation, e.g. by pointing out that SE shoots at a moving
target (“Requirements evolve”R439). Two relevant criticisms
recurred. First, some respondents found the word ’only’ to
be overly negative, e.g.
“[...] that’s a celebration!”R400 or
“’Approximately’ is what you want in engineering”R419.

Second, some pointed out that software is part of a socio-
technical system. In some cases this was apparently crucial
for giving a positive answer:
“Software plus society: yes.”R414 or
“they are working sufficiently well so that they are use-
ful.”R430 or
“most systems work sufficiently well. They support their
community, support society.”R448

In one case it was reason for a strongly negative one:
“I think of what we are doing as racking up social debt.
Analogous to technical debt. Big time.”R446.

Overall, half the respondents who commented on S2
agreed with it; some disagreed, nearly all of them in the
optimistic direction (“Not true [...]. I think they work very
well.”R440 or “Most software systems that are used work
well for the purposes their users expect of them and there-
fore they work well.”R445) and many took no clear position.

But lurking behind all this differentiation is a lot of
vagueness in a relevant area:

Insight 2: We lack understanding of what makes software
“good enough”.

I will again first explain this by evidence taken from the
interviews, then by further evidence from a micro-study.

g EVIDENCE 2A: The idea of software being good enough
and working sufficiently well came up in many responses and
in many guises, e.g.
as a self-evident observation:
“Approximately well may be well enough, that’s the
point.”R397;
as typical-case satisficing:
“they work approximately well. That’s often good enough;
it’s usually good enough.”R397;
as a sufficient-for-praise level of quality:
“But we have many many computer systems doing amazing
things all the time; and working very well, working well
enough.”R418;
as an investment decision and engineering tradeoff:



6

“It’s always how much do you want to invest to get your
software right and when is it good enough”R396;
as defined by socio-technical criteria:
“Many systems are working and they are working suffi-
ciently well so that they are useful.”R430;
as a morally justifiable standard:
“In most cases we’re building systems that are good enough
for their purpose and there’s nothing wrong with that.”R448;
as a matter of life and death:
“I want my airbags to go off; and those work pretty
well”R471;

Like the latter, many comments on S2 and (more
often) QQ suggested that high-stakes software (“air-
planes”Several) usually worked well while low-stakes soft-
ware (“apps”Several) often did not but that this was accept-
able. But what about the huge region in between: medium-
stakes software? This was hardly ever mentioned and no-
body ever offered a definition of “good enough” for this
realm. Indeed, given the multitude of perspectives offered
above, a definition is not obvious. �

Given that this notion appears to sit at the very center of
software quality, SE research without such a definition does
not appear good enough.

p EVIDENCE 2B: In a literature micro-study, I looked
for ICSE 2018 articles that appeared to have any kind of
conscious quality tradeoff as a main concern. This is con-
siderably wider than good-enoughness and so provides a
conservative estimate how big the problem formulated by
Insight 2 is. Considering all 153 articles, the search found
only five such articles10 [27]–[31], or 3%. �

6 S3: MOST SOFTWARE ENGINEERS HAVE ONLY
MODEST CAPABILITIES

OBSERVATIONS: Of the 36 respondents who commented on
S3, most agreed with it, if in very different ways:
from “Not all programmers are super-programmers.”R471

over “Sure, I don’t know what more to say.”R416

and “we know software engineers are not very good at their
jobs. I work at one of the best places in the world11and
still...it scares me.”R415

to “I’ve seen software developers; they do mostly suck.”R467.
These statements resonate with topics we are all familiar
with from the SE literature when developers are discussed:
they often commit mistakes, often produce deficient de-
signs, are often lazy, often lack discipline.

Some respondents, however, disagree with S3 – also in
very different ways:
from “To be a software engineer, you need to have good
capabilities.”R419

over “I think most people who develop software and have
only modest capabilities are not software engineers.”R459

to “we’re talking about the most intelligent people on the
planet here”R421.

Other comments state that (1) capabilities vary widely,
(2) needed capabilities vary widely as well (“People find
software systems where the complexity matches their capa-
bilities.”R399) and (3) a few brilliant people can achieve a lot

10. Three of these are journal-first publications.
11. practitioner industrial respondent

as enablers for the others (“We get the good people to design
the essence, so that everybody else can build the peripheral
stuff that is not as critical. Which means that the people that
are average can contribute as much as the people that are
great.”R395).

Which sounds a lot more optimistic, but also curiously
unfamiliar from the research literature. Which leads to

Insight 3: We don’t know much about what software
engineers are good at.
This time, we rely on a micro-study only.

p EVIDENCE 3A: We determine how many works at
ICSE have one or more developer strengths as a main
concern or one or more developer weaknesses or both or
neither – and expect the latter group to be largest. For
instance all works that focus on product rather than process
will automatically land in the “neither” group. Considering
all 153 articles, we find 14 studies (9%) that are developer-
behavior-centric (about actual behavior, not tasks, roles,
practices, or expectations), but only six of them (a mere 4%)
are outside the “neither” category: Four concern weaknesses
[27], [32]–[34], one concerns strengths [30], and one concerns
both [35].12

Apparently, most developer-centric work is merely de-
scriptive, not evaluative. Within evaluative works, there
indeed appear to be more regarding weaknesses than
strengths, but both types are rare. �

7 QQ: WHAT KEEPS THE SOFTWARE SYSTEMS
WORLD FROM BREAKING DOWN?
OBSERVATIONS: While nobody claimed or assumed every-
thing was fine and many respondents talked about various
cases or degrees of local breakdowns, only few respondents
rejected the assumption behind QQ and stated they ex-
pected the software systems world to likely break down
(“There’s very little from keeping the software systems
world from breaking down.”R407) or saw it as breaking
down already (“I do not think that the software systems
world is not breaking down. It is.”R436).

At the other end of the spectrum, only few respondents
expressed that they firmly expected the software systems
world to not break down (“I’m totally impressed how soft-
ware is being constructed.”R439)

The big majority, however, took the assumption of non-
breakdown for granted and focused on what they consid-
ered key factors preventing breakdown. A majority would
initially state only one key factor and add others only after
prodding. The ensuing overall list of presumed key factors
is long and diverse. I consolidated the list by grouping
related concepts (which had originally been formed accord-
ing to an intuition of sufficient differentness) until, with
two exceptions that appeared too relevant, they all had
“some” mentions (that is, in at least 7 interviews) or “many”
mentions.

There is only one factor with many mentions: The devel-
opers .
“Of course, people are always the most important.”R431 or
“It’s because people are creative.”R460 or
“It isn’t our research community that keeps it from breaking

12. Two of these six are journal-first publications.



7

down, that’s for sure. I think it’s the people in industry that
figure out what’s happening and adapt.”R488.

After that, there are 11 factors mentioned in more than a
few interviews (in decreasing order of frequency):

• An appropriate development process13:
“Disciplined practices”R426 or
“a reasonable process”R403 or
“we have learned to think about our processes”R462.

• The flexibility of users :
“Systems actually do break down all the time, but as
humans we work around these systems.”R418 or
“Humans are resilient; the human world is resilient.
Human processes step in”R445 or
“expectation management. [We have learned to tell
people this is the best they will get – with some bugs
in it.]”R433 or
“People are incredibly adaptive.”R434.

• Abstraction :
“It all boils down to abstraction.”R485 or
“’Module’ would probably be my biggest.”R438.

• Software adaptation/evolution :
“We organically grow the systems to be more and
more complex”R418 or
“we continue to invent”R483.

• Quality assurance :
“inspections”R474 or
“a lot of testing being absolutely indispensable.”R428.

• Repairing flaws :
“[Few of our errors] manifest in visible faults. And
when they do, we fix them.”R403 or
“we continue to fix some of the things that weren’t
working as well in the past.”R483.

• Good-enoughness (as a required level of quality far
below perfection):
“Beta-testers find stuff and everybody assumes that’s
just fine.”R436 or
“Most of the time, no really terrible things hap-
pen.”R462.

• System resilience against imperfections:
“Fault-tolerant software”R462 or
“Code is less sensitive to input changes than we
think.”R486.

• Development tool support :
“Tooling helps. Much more so today than in the
past.”R395 or
“a lot of advances in computer-supported coopera-
tive work.”R420.

• Developer collaboration :
“Teamwork.”R453 or
“People together are intelligent enough for fixing
stuff that doesn’t properly work.”R424.

• Reuse of software and approaches:
“many systems today are built out of components
that have proven their worth.”R395 or
“Solution by analogy.”R460.

I left two factors as separate concepts although they were
mentioned in only a few interviews. Both apply predomi-
nantly to critical systems:

13. “appropriate” does not imply well-defined, fully orderly, etc.

• effort/investment :
“in many software organizations things get built by
brute force. Built and maintained by brute force.
That’s not [efficient], a lot of effort is wasted, but es-
pecially critical systems like flight software, Airbus,
things are verified again and again.”R430 or
“A lot of manpower is invested”R425 or
“an enormous amount of redundancy and recheck
and carefulness which is built into all of the processes
to make sure that that stuff works. And so they
check and recheck and recheck and recheck and
recheck.”R436.

• formal methods :
“adopting formal methods that have matured
enough to get some incremental value out of it.”R414.

All of these 14 were explained in some way by at least
a few respondents and appeared sensible and sufficiently
important to me to consider them all valid factors. As a list
of “key” factors they are already many, but looking at them
more closely led to

Insight 4: There is no consensus on a small set of neat key
software engineering success factors. 14

I will first explain how the set is not small, then how the
concepts suggested are not neat.

g EVIDENCE 4A: The above factors list is misleading
in the sense that it may suggest each item is a single, neat
concept. And indeed that may be sort of true for some, for
instance abstraction and collaboration . But most are in fact
collections of related, but different concepts. For instance the
biggest one, developers , upon closer inspection falls apart
into the remainder represented in the examples given above
and two clusters. Cluster 1 talks about developers’ attitude:
“people with a particular sense of quality.”R409 or
“Maybe I’m a paranoid software engineer15and that’s the
appropriate thing to be.”R415.
Cluster 2 talks about high developer capabilities:
“exceptional people”R394 or
“We get the good people to design the essence, so that
everybody else can build the peripheral stuff that is not as
critical. Which means that the people that are average can
contribute as much as the people that are great.”R395.
Cluster 2 further falls apart into comments regarding the cru-
cial role of the top-talented developers (as in the quotations
above) and other comments assuming that talent is generally
high (as in the R488 quotation at the top). Likewise for most
other concepts. �

g EVIDENCE 4B: Futhermore, it is nearly impossible to
make these concepts orthogonal and independent of each
other. For instance the concept behind the R395 developer
quotation above is intertwined with the abstraction concept;
good-enoughness can only be understood via users’ flexi-
bility ; the effort/investment talks about a style of quality
assurance ; and so on. �

So now we know that perceived SE success factors are
diverse. But what about the validity of the specific factors
offered by the respondents? Investigating the evidence of-
fered by the respondents led to

14. Note that “success” here is just an abbreviation for non-
breakdown.

15. practitioner industrial respondent



8

Insight 5: Software engineering is so far not an evidence-
based discipline.

I will make three arguments based on the kinds of
evidence offered in the interviews16 and a fourth based on a
comparison with medicine.

g EVIDENCE 5A: Many respondents did not offer any
evidence at all. This occurred in two forms: In form 1,
the factor would simply be stated, period. Form 2 was
less obvious: Mentioned factors were often accompanied
by examples of all kinds, from vague hints to phenomena
through to specific titles of research articles. There were 65
such examples overall throughout the study, many of those
not single examples but a short salvo of two to four related
ones. The roles of these examples where split about half-
and-half into corroboration of a statement on the one hand
(see Evidence 5b and 5c for a discussion of these) versus
mere clarification on the other17 – the latter not constituting
even an attempt at providing evidence. �

g EVIDENCE 5B: In some cases, the example offered was
highly underspecific, coming from a non-software domain,
which suggests SE evidence is less readily available: “And
when those edge cases happen is when we find things
collapsing. The Shuttle breaking apart”R416. Here, “edge
cases” relates to software logic but the example given does
not. �

g EVIDENCE 5C: Most evidence offered was infor-
mal, most often referring to certain categories of software,
less often to specific software systems, some non-software
domain, personal experience, or 2018 ICSE keynote talks.
Respondents made only 11 references to specific research
works and only about half of those were used to corroborate
a claimed success factor. �

p EVIDENCE 5D: Contrast this with the situation in
a more strongly evidence-oriented discipline: In medicine,
there is the Cochrane Collaboration, an open consortium of
researchers from over 130 countries who prepare systematic
reviews and meta-analyses of the evidence provided in the
medical literature. On their website [36], one can find 391
such reviews for the search term “diabetes” alone; works
that meta-evaluate treatments for diabetes or diabetes as
a complicating factor in the treatment of other diseases. A
medical researcher would presumably refer to some of this
evidence in a context where it is relevant. �

So there is plenty of evidence that we do not make much
use of evidence.

Reviewing together the examples offered per respondent
finds another disturbing pattern which leads to

Insight 6: We lack a shared taxonomy of software engi-
neering contexts.

I will explain this based on how respondents discrimi-
nated contexts when they explained their view of success
factors.

g EVIDENCE 6A: Software engineering settings or con-
texts are diverse in many respects, such as team size, devel-
opment durations, product and release models, technology
used, degrees of reuse, development process models, quality

16. Please keep in mind Section 3.
17. I tried to find quotations to illustrate the difference, but they all

would require so much context from the interview that they are not
practical to present.

assurance methods and intensities, software architectures,
and many more. Most key success factors should not be
expected to apply to all of these contexts alike.

And yet, some respondents made no context discrimina-
tions at all. Most did, but their discriminations are mostly
only binary and mostly along the same dimension: low-
criticality situations (“apps”Several) versus high-criticality
situations (“airplanes”Several). Cases in between, although
relevant, are rarely talked about explicitly. The context char-
acterization tends to be stereotypical and those stereotypes
are not accurate.

In particular, most respondents appeared to consider the
techniques applied in high-criticality settings to be of high-
tech type, whereas those few respondents who have actually
seen such contexts characterize them as mostly low-tech, as
we already saw above:
“brute force”R430 or
“they check and recheck and recheck and recheck and
recheck.”R436 or
“And there was a sufficient amount of paranoia. Which you
had to have, because you knew that if your software was
broken, things were going to blow up, people were going
to die. I don’t know how much that actually helped us18,
though. I know we had bugs in that software.”R415

Besides criticality levels, a number of other dimensions
were used to discriminate contexts in a manner relevant
for the applicability of key success factors, but all of those
only by one or a few respondents. The two that appear
most relevant are when clear expectations about the soft-
ware’s behavior disappear (“I’m very worried as the world
embraces machine learning”R472) or when humans can no
longer compensate software misbehavior (“Where the tran-
sition, the problems, will happen is as automation increases.
There won’t be that human backstop that’s there to do that
last-minute adapation. And I do worry a little bit about
that.”R434) �

Summing up, the success factor statements made by
the respondents tended to be overly general, presumably
because we have no standard vocabulary in our community
for thinking and talking about reasonably sized subsectors
of our field.

8 LIMITATIONS

Tracy [37] suggests a set of eight method-independent qual-
ity criteria for qualitative studies: (a) worthy topic, (b) rich
rigor, (c) sincerity, (d) credibility, (e) resonance, (f) significant
contribution, (g) ethics, and (h) meaningful coherence, each
with several facets [37, Table 1]. They are useful for study
design by researchers and for quality assessment by readers.

A credible author self-assessment with these criteria
would require multiple pages, but in short I see the biggests
strengths of the present work in (a) worthy topic (facets:
relevant, significant, interesting) by the generality of the
statements made and the research directions suggested in
Section 10 and in (h) meaningful coherence (facets: achieves
stated goal, uses methods that fit the goal, meaningfully
interconnects its pieces) by a gapless train of thought and
careful argumentative triangulation that considers multiple
possible views.

18. practitioner industrial respondent



9

The biggest weakness is in (b) rich rigor (facets: ap-
propriate theoretical constructs, time in the field, samples,
contexts, analysis processes) for primarily the following
reasons:

• Analysis processes: The deduction rules from Sec-
tion 3 in step 3 rely on inference from my respon-
dents’ collective interview behavior to the commu-
nity’s knowledge: If some knowledge X was not used
by any of the respondents although it would have
been useful for their argumentation, I conclude that
the community overall is missing that knowledge.
This conclusion may be invalid if the format of
the interviews provided insufficient trigger for the
respondents to show their knowledge of X. It is
also invalid if, due to the spontaneous character of
the interview, the knowledge of X was momentarily
unavailable to them – but if they had had a few days
to dig through the literature or simply think about
what they know, they could have come up with it.

• Samples: More junior researchers might have added
views or evidence not currently present in the inter-
view data; a few senior respondents I would have
liked to have are also not present in the data. Their
presence might have shifted a few of the emphases
with respect to concepts that had only some or few
mentions.

• Analysis processes: The reduced presentation of the
chain of evidence as described in Section 2.12 limits
the reader’s possibilities for checking the analysis
underway. This decision was made to make the
article readable, as a more rigorous presentation
would have meant to (1) litter the article with many
more distracting concept names and lengthy concept
definitions, (2) do so even for some low-relevance
concepts, (3) and even for some first-generation open
codes that do not fit into the article’s train-of-thought
at all – which is why they were replaced by the
second generation.
Instead, I hope there is sufficient credibility of the
presentation for most of my readers and refer the
others to the raw data package for further detail.

Of these, the second and third are likely minor, but the
first is a serious threat to the validity of the findings.

9 RELATED WORK

9.1 Relating to knowledge gaps

It appears that newer SE articles talk (in their final section)
about knowledge gaps less often than it was formerly the
case:

p EVIDENCE 7A: Out of a random sample of 10 articles
from ICSE 1997, 5 of them describe knowledge gaps of sorts
[38]–[42], 3 at least speak of work remaining to be done [43]–
[45], and only 2 do neither [46], [47].

For ICSE 2018, the corresponding numbers are 1 time yes
[48], 4 times to-do [49]–[52], and 5 times nothing [32], [53]–
[56]. The difference from 1997 to 2018 is statistically signif-

icant (Fisher’s exact test, p < 0.01; one-sided19 asymptotic
with-ties Mann-Whitney test, p < 0.032). �

I interpret this as an increased reluctance to talk about
what we do not know. This is at or near the leaves of the
SETT; what about higher up?

Systematic Literature Reviews sometimes conclude there
are large gaps in the knowledge about the respective topic
area. For instance in their SLR on software measurement and
process improvement, Unterkalmsteiner et al. [57] conclude
“Considering that confounding factors are rarely discussed (19
out of 148 studies [. . . ]), the accuracy of the evaluation results
can be questioned”, yet “no good conceptual model or framework
for such a discussion is currently available.” And Hannay et
al. [10], after their quantitative meta-analysis of pair pro-
gramming efficiency, conclude that knowledge about more
complex, qualitative factors is low: “Only by understanding
what makes pairs work, and what makes pairs less efficient, can
steps be taken to provide beneficial conditions for work and to
avoid detrimental conditions”. So much for medium levels of
the SETT; what about still higher up?

This brings us back to the discussion from Section 1.1.
More pertinent work, if it exists, is difficult to find, because
all obvious search terms for it are impractically broad.
Several of the sources in the following subsection could be
pertinent (and a few are, to a small degree), but they all
focus on knowledge, not knowledge gaps.

9.2 Relating to the interview content

Is there literature that answers QQ? The literature most
related to QQ is that on critical success factors. There are
such works for domains only partly related to SE, such
as general project management [58] or information systems
[59]. Within SE, there are works for subdomains, such as
agile methods [60], or using specific perspectives, such as
CMMI [61] or project management failures [62].

If we count out textbooks, there appear to be only few
works with a global perspective. Hoare [63] asks “How did
software get so reliable without proof?”. This looks pertinent,
but turns out to be a position paper with no evidence
and not even references. The Handbook of Endres and
Rombach [64] is focused on references to evidence, but is un-
opinionated with respect to discriminating key factors from
less central ones. The latter is also true for the SWEBOK
Guide [1], which furthermore does not emphasize evidence.

The best match appears to be Johnson et al. [65], which
asked a pre-structured form of QQ in 2013: They derive 28
SE success factors and ask each of 60 ICSE participants to
arrange his or her personal top-10 of those factors into a
boxes-and-arrows diagram of how they impact “software
engineering success”. The authors cluster these diagrams
into three recurring types and point out that finding multi-
ple types implies a lack of consensus in our field. SE context
discriminations are actively suppressed by the study design
[65, Section 2.1]. Also, the factors mentioned are at least as
vague as in the present study, but this is not discussed at all.

With respect to SE community knowledge gaps, all four
sources mention that gaps exist, but none of them work out

19. one-sided because I was surprised by the low values in 2018 and
only then decided to look at 1997, firmly expecting to find higher ones.



10

which gaps appear to have key roles for the state of our
knowledge.

A diverse set of literature was suggested by my re-
spondents (some of it after the interview when I asked by
email), e.g. about S1-not-as-high-as-one-might-think com-
plexity [66]–[68], about the possibility of catastrophes due
to our limited understanding [69, regarding S1, S2, S3, QQ],
about Lehman’s astonishingly fresh and comprehensive
laws of software evolution [70, regarding S1, S2, S3, QQ],
about good-enoughness [71, regarding S2, QQ], about the
role of developers as people and as knowledge carriers
beside and beyond the program code [72, regarding S1,
QQ], about research with industrial relevance [73, regarding
IA], or about the astonishing amount of knowledge and
collaboration required for producing something as simple
as a pencil [74, regarding QQ].

Also, Dijkstra’s Turing Lecture [75], when read from an
S1/S3/QQ/IA perspective, is not only as keen as we would
expect, but also surprisingly fresh. What’s missing is mostly
the social dimension, on both the development and the
usage side.

10 CONCLUSIONS AND FURTHER WORK

10.1 Insights

We (the SE research community) are concerned a lot with
complexity, but hardly understand how it comes to be (see
Section 4). We are aware that perfection is not typically to
be achieved, but barely understand how quality tradeoffs
are made (see Section 5). We research or invent techniques
without giving much consideration to the conditions under
which they will or will not be helpful (see Section 7).

10.2 ETAT: Suggested research directions

The above points suggest a number of research directions
that should presumably be emphasized more in SE research.

1. Focus on emergence (see Insight 1): Assuming the
indirect complexity effects are harder to understand and
handle than direct ones, we should do more research to
understand where and how complexity phenomena emerge
from constituent parts and events.

2. Focus on tradeoffs (see Insight 2): Assuming that
good-enoughness and developer limitations have near-
ubiquitous relevance for impactful SE research, we should
do more research to understand where, how, and how well
engineers make tradeoffs in practical SE situations.

3. Evaluate assumptions (see Insight 6): Assuming that
differences between software engineering contexts are rel-
evant, we should collect and tabulate all the assumptions,
tacit or explicit, that are used for justifying and scoping
SE research in order to determine which different contexts
might be relevant. These assumptions should then be eval-
uated: When are they true? When are they not-so-true? To
which degree?

4. Create taxonomies (see Insight 5): Based on these
results we could then define community-wide terminology
that allows to state assumptions and claims more pre-
cisely than we do today, in order to become a properly
evidence-based discipline. Such terminology would define
taxonomies of the different sources and kinds of complexity

(from emergence analysis), the different natures of engineer-
ing decisions (from tradeoffs analysis), and the different
contexts in which we attempt to produce software (from
assumptions analysis and field work).

For refering to these goals together, I suggest we call
them ETAT goals (acronym of emergence, tradeoffs, as-
sumptions, taxonomies; also French for state or constitution
or various other things).

10.3 Next step

TSE reviewers of this work found the problem with the
deduction rule (as discussed in Section 8) so big that they
insisted the insights relying on the rule need to be indepen-
dently validated.

So a survey asking about those statements and about
possible counter-examples of work providing the respective
knowledge is the next step in this research.

ACKNOWLEDGMENTS

I dearly thank my interviewees for their time and explana-
tions. I thank Franz Zieris and Kelvin Glaß for sharing their
views as pilot respondents. I am indebted to Franz Zieris for
his excellent contribution as advocatus diaboli.

REFERENCES

[1] P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering
Body of Knowledge (SWEBoK V3.0). IEEE Computer Society, 2014.

[2] B. A. Kitchenham, T. Dybå, and M. Jørgensen, “Evidence-based
software engineering,” in Proc. of the 26th Int’l Conf. on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 273–281.

[3] B. A. Kitchenham, “Procedures for undertaking systematic
reviews,” Computer Science Department, Keele University,
ISSN:1353-7776, Tech. Rep. SE-0401, 2004. [Online]. Available: http:
//www.academia.edu/download/35088954/kitchenham.pdf

[4] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Software
Engineering Group , School of Computer Science and
Mathematics, Keele University, Tech. Rep. EBSE-2007-01,
2007. [Online]. Available: http://www.robertfeldt.net/advice/
kitchenham_2007_systematic_reviews_report_updated.pdf

[5] B. A. Kitchenham, R. Pretorius, D. Budgen, P. Brereton, M. Turner,
M. Niazi, and S. G. Linkman, “Systematic literature reviews in
software engineering - A tertiary study,” Information & Software
Technology, vol. 52, no. 8, pp. 792–805, 2010.

[6] F. Q. B. da Silva, A. L. de Medeiros Santos, S. Soares, A. C. C.
França, C. V. F. Monteiro, and F. F. Maciel, “Six years of systematic
literature reviews in software engineering: An updated tertiary
study,” Information & Software Technology, vol. 53, no. 9, pp. 899–
913, 2011.

[7] D. Cruzes and T. Dybå, “Research synthesis in software engineer-
ing: A tertiary study,” Information & Software Technology, vol. 53,
no. 5, pp. 440–455, 2011.

[8] S. Imtiaz, M. Bano, N. Ikram, and M. Niazi, “A tertiary study:
experiences of conducting systematic literature reviews in soft-
ware engineering,” in 17th International Conference on Evaluation
and Assessment in Software Engineering, EASE ’13, Porto de Galinhas,
Brazil, April 14-16, 2013, F. Q. B. da Silva, N. J. Juzgado, and G. H.
Travassos, Eds. ACM, 2013, pp. 177–182.

[9] G. K. Hanssen, D. Smite, and N. B. Moe, “Signs of agile trends
in global software engineering research: A tertiary study,” in 6th
IEEE International Conference on Global Software Engineering, ICGSE
2011, Workshop Proceedings, Helsinki, Finland, August 15-18, 2011.
IEEE Computer Society, 2011, pp. 17–23.

[10] J. E. Hannay, T. Dybå, E. Arisholm, and D. I. Sjøberg, “The
effectiveness of pair programming: A meta-analysis,” Information
and Software Technology, vol. 51, no. 7, pp. 1110–1122, 2009.

http://www.academia.edu/download/35088954/kitchenham.pdf
http://www.academia.edu/download/35088954/kitchenham.pdf
http://www.robertfeldt.net/advice/kitchenham_2007_systematic_reviews_report_updated.pdf
http://www.robertfeldt.net/advice/kitchenham_2007_systematic_reviews_report_updated.pdf


11

[11] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Mo-
tivation in software engineering: A systematic literature review,”
Information & Software Technology, vol. 50, no. 9-10, pp. 860–878,
2008.

[12] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg, “A sys-
tematic review of effect size in software engineering experiments,”
Information & Software Technology, vol. 49, no. 11-12, pp. 1073–1086,
2007.

[13] E. Hasnain and T. Hall, “Investigating the role of trust
in agile methods using a light weight systematic literature
review,” in Agile Processes in Software Engineering and Extreme
Programming, 9th International Conference, XP 2008, Limerick,
Ireland, June 10-14, 2008. Proceedings, ser. Lecture Notes in
Business Information Processing, P. Abrahamsson, R. Baskerville,
K. Conboy, B. Fitzgerald, L. Morgan, and X. Wang, Eds.,
vol. 9. Springer, 2008, pp. 204–207. [Online]. Available:
https://doi.org/10.1007/978-3-540-68255-4_22

[14] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Information & Software Tech-
nology, vol. 50, no. 9-10, pp. 833–859, 2008.

[15] S. Jalali and C. Wohlin, “Agile practices in global software engi-
neering - A systematic map,” in 5th IEEE International Conference on
Global Software Engineering, ICGSE 2010, Princeton, NJ, USA, 23-26
August, 2010. IEEE Computer Society, 2010, pp. 45–54.

[16] A. Ramirez, J. R. Romero, and C. Simons, “A systematic review of
interaction in search-based software engineering,” IEEE Trans. on
Software Engineering, 2019, to appear.

[17] Z. Zakaria, R. B. Atan, A. A. A. Ghani, and N. F. M. Sani, “Unit
testing approaches for BPEL: A systematic review,” in 16th Asia-
Pacific Software Engineering Conference, APSEC 2009, 1-3 December
2009, Batu Ferringhi, Penang, Malaysia, S. Sulaiman and N. M. M.
Noor, Eds. IEEE Computer Society, 2009, pp. 316–322.

[18] K. Charmaz, “Constructionism and the Grounded Theory
method,” in Handbook of Constructionist Research, J. Holstein and
J. Gubrium, Eds. The Guilford Press, 2008, pp. 397–412.

[19] A. L. Strauss and J. M. Corbin, Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. SAGE, 1990.

[20] B. G. Glaser, Theoretical Sensitivity: Advances in the Methodology of
Grounded Theory. Mill Valley, CA: Sociology Press, 1978.

[21] K. Charmaz, Constructing grounded theory: A practical guide through
qualitative analysis. London: Sage, 2006.

[22] S. Salinger and L. Prechelt, Understanding Pair Programming: The
Base Layer. BoD, Norderstedt, Germany, 2013, 978-3-7322-8193-0.

[23] R. K. Yin, Case Study Research: Design and Methods. Sage, 2003.
[24] G. E. Mobus and M. C. Kalton, Principles of Systems Science, ser.

Understanding complex systems. Springer, 2015, iSBN 978-
1493919192.

[25] Wikipedia, “Complex system,” https://en.wikipedia.org/wiki/
Complex_system, July 2018.

[26] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review
analysis for identifying emerging issues,” in Proc. 40th Int’l.
Conf. on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, 2018, pp. 48–58. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180218

[27] I. Hadar, T. Hasson, O. Ayalon, E. Toch, M. Birnhack, S. Sherman,
and A. Balissa, “Privacy by designers: software developers’ pri-
vacy mindset,” Empirical Software Engineering, vol. 23, no. 1, pp.
259–289, 2017.

[28] A. Head, C. Sadowski, E. R. Murphy-Hill, and A. Knight, “When
not to comment: questions and tradeoffs with API documentation
for C++ projects,” in Proc. 40th Int’l. Conf. on Software Engineeering,
M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman, Eds.
ACM, 2018.

[29] N. Ramasubbu and C. F. Kemerer, “Integrating technical debt
management and software quality management processes: a
framework and field tests,” IEEE Transactions on Software
Engineering, 2019, to appear. [Online]. Available: http://doi.
ieeecomputersociety.org/10.1109/TSE.2017.2774832

[30] I. Rehman, M. Mirakhorli, M. Nagappan, A. A. Uulu, and
M. Thornton, “Roles and impacts of hands-on software architects
in five industrial case studies,” in Proc. 40th Int’l. Conf. on Software
Engineering, M. Chaudron, I. Crnkovic, M. Chechik, and M. Har-
man, Eds. ACM, 2018.

[31] M. Scavuzzo, E. Di Nitto, and D. Ardagna, “Experiences and
challenges in building a data intensive system for data migration.”
Empirical Software Engineering, vol. 23, no. 1, pp. 52–86, 2017.

[32] M. Beller, N. Spruit, D. Spinellis, and A. Zaidman, “On the
dichotomy of debugging behavior among programmers,” in Proc.
40th Int’l. Conf. on Software Engineering, M. Chaudron, I. Crnkovic,
M. Chechik, and M. Harman, Eds. ACM, 2018, pp. 572–583.

[33] D. M. German, G. Robles, G. Poo-Caamaño, X. Yang, H. Iida, and
K. Inoue, ““Was my contribution fairly reviewed?”: a framework
to study the perception of fairness in modern code reviews,”
in Proc. 40th Int’l. Conf. on Software Engineering, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
523–534.

[34] J. Krüger, J. Wiemann, W. Fenske, G. Saake, and T. Leich, “Do
you remember this source code?” in Proc. 40th Int’l. Conf. on
Software Engineering, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 764–775.

[35] S. Frey, A. Rashid, P. Anthonysamy, M. Pinto-Albuquerque, and
S. A. Naqvi, “The good, the bad and the ugly: a study of security
decisions in a cyber-physical systems game,” IEEE Transactions on
Software Engineering, 2019, to appear.

[36] T. Cochrane Collaboration, “Cochrane. trusted evidence. informed
decisions. better health.” https://www.cochrane.org, accessed
2018-07-23. [Online]. Available: https://www.cochrane.org/

[37] S. J. Tracy, “Qualitative quality: Eight “big-tent” criteria for excel-
lent qualitative research,” Qualitative Inquiry, vol. 16, no. 10, pp.
837–851, 2010.

[38] G. Bernot, L. Bouaziz, and P. L. Gall, “A theory of probabilistic
functional testing,” in Pulling Together, Proceedings of the 19th Inter-
national Conference on Software Engineering, Boston, Massachusetts,
USA, May 17-23, 1997., W. R. Adrion, A. Fuggetta, R. N. Taylor,
and A. I. Wasserman, Eds. ACM, 1997, pp. 216–226.

[39] J. Jacquot and D. Quesnot, “Early specification of user-interfaces:
Toward a formal approach,” in Pulling Together, Proceedings of
the 19th International Conference on Software Engineering, Boston,
Massachusetts, USA, May 17-23, 1997., W. R. Adrion, A. Fuggetta,
R. N. Taylor, and A. I. Wasserman, Eds. ACM, 1997, pp. 150–160.

[40] S. Kusumoto, O. Mizuno, T. Kikuno, Y. Hirayama, Y. Takagi,
and K. Sakamoto, “A new software project simulator based on
generalized stochastic petri-net,” in Pulling Together, Proceedings
of the 19th International Conference on Software Engineering, Boston,
Massachusetts, USA, May 17-23, 1997., W. R. Adrion, A. Fuggetta,
R. N. Taylor, and A. I. Wasserman, Eds. ACM, 1997, pp. 293–302.

[41] C. Lindig and G. Snelting, “Assessing modular structure of legacy
code based on mathematical concept analysis,” in Pulling Together,
Proceedings of the 19th International Conference on Software Engineer-
ing, Boston, Massachusetts, USA, May 17-23, 1997., W. R. Adrion,
A. Fuggetta, R. N. Taylor, and A. I. Wasserman, Eds. ACM, 1997,
pp. 349–359.

[42] C. B. Seaman and V. R. Basili, “An empirical study of commu-
nication in code inspections,” in Pulling Together, Proceedings of
the 19th International Conference on Software Engineering, Boston,
Massachusetts, USA, May 17-23, 1997., W. R. Adrion, A. Fuggetta,
R. N. Taylor, and A. I. Wasserman, Eds. ACM, 1997, pp. 96–106.

[43] L. C. Briand, P. T. Devanbu, and W. L. Melo, “An investigation
into coupling measures for C++,” in Pulling Together, Proceedings
of the 19th International Conference on Software Engineering, Boston,
Massachusetts, USA, May 17-23, 1997., W. R. Adrion, A. Fuggetta,
R. N. Taylor, and A. I. Wasserman, Eds. ACM, 1997, pp. 412–421.

[44] J. D. Reese and N. G. Leveson, “Software deviation analysis,” in
Pulling Together, Proceedings of the 19th International Conference on
Software Engineering, Boston, Massachusetts, USA, May 17-23, 1997.,
W. R. Adrion, A. Fuggetta, R. N. Taylor, and A. I. Wasserman, Eds.
ACM, 1997, pp. 250–260.

[45] E. Y. Wang, H. A. Richter, and B. H. C. Cheng, “Formalizing and
integrating the dynamic model within OMT,” in Pulling Together,
Proceedings of the 19th International Conference on Software Engineer-
ing, Boston, Massachusetts, USA, May 17-23, 1997., W. R. Adrion,
A. Fuggetta, R. N. Taylor, and A. I. Wasserman, Eds. ACM, 1997,
pp. 45–55.

[46] G. Froehlich, H. J. Hoover, L. Liu, and P. G. Sorenson, “Hooking
into object-oriented application frameworks,” in Pulling Together,
Proceedings of the 19th International Conference on Software Engineer-
ing, Boston, Massachusetts, USA, May 17-23, 1997., W. R. Adrion,
A. Fuggetta, R. N. Taylor, and A. I. Wasserman, Eds. ACM, 1997,
pp. 491–501.

[47] J. M. Verner and N. Cerpa, “The effect of department size on
developer attitudes to prototyping,” in Pulling Together, Proceedings
of the 19th International Conference on Software Engineering, Boston,

https://doi.org/10.1007/978-3-540-68255-4_22
https://en.wikipedia.org/wiki/Complex_system
https://en.wikipedia.org/wiki/Complex_system
http://doi.acm.org/10.1145/3180155.3180218
http://doi.ieeecomputersociety.org/10.1109/TSE.2017.2774832
http://doi.ieeecomputersociety.org/10.1109/TSE.2017.2774832
https://www.cochrane.org/


12

Massachusetts, USA, May 17-23, 1997., W. R. Adrion, A. Fuggetta,
R. N. Taylor, and A. I. Wasserman, Eds. ACM, 1997, pp. 445–455.

[48] X. Huang, H. Zhang, X. Zhou, M. A. Babar, and S. Yang, “Syn-
thesizing qualitative research in software engineering: a critical
review,” in Proceedings of the 40th International Conference on Soft-
ware Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman, Eds.
ACM, 2018, pp. 1207–1218.

[49] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design
image to GUI skeleton: a neural machine translator to bootstrap
mobile GUI implementation,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 665–676.

[50] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, and Y. Lin, “Towards
optimal concolic testing,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 291–302.

[51] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “Ccaligner:
a token based large-gap clone detector,” in Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, Gothen-
burg, Sweden, May 27 - June 03, 2018, M. Chaudron, I. Crnkovic,
M. Chechik, and M. Harman, Eds. ACM, 2018, pp. 1066–1077.

[52] J. Yang, P. Subramaniam, S. Lu, C. Yan, and A. Cheung, “How
not to structure your database-backed web applications: a study
of performance bugs in the wild,” in Proceedings of the 40th In-
ternational Conference on Software Engineering, ICSE 2018, Gothen-
burg, Sweden, May 27 - June 03, 2018, M. Chaudron, I. Crnkovic,
M. Chechik, and M. Harman, Eds. ACM, 2018, pp. 800–810.

[53] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chau-
dron, I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018,
pp. 12–23.

[54] L. Lambers, D. Strüber, G. Taentzer, K. Born, and J. Huebert,
“Multi-granular conflict and dependency analysis in software
engineering based on graph transformation,” in Proceedings of
the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
716–727.

[55] M. Wen, J. Chen, R. Wu, D. Hao, and S. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceed-
ings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp.
1–11.

[56] Y. Zhao, M. S. Laser, Y. Lyu, and N. Medvidovic, “Leveraging
program analysis to reduce user-perceived latency in mobile ap-
plications,” in Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and M. Harman,
Eds. ACM, 2018, pp. 176–186.

[57] M. Unterkalmsteiner, T. Gorschek, A. K. M. M. Islam, C. K. Cheng,
R. B. Permadi, and R. Feldt, “Evaluation and measurement of
software process improvement - A systematic literature review,”
IEEE Trans. Software Eng., vol. 38, no. 2, pp. 398–424, 2012.

[58] T. Cooke-Davies, “The ’real’ success factors on projects,” Interna-
tional Journal of Project Management, vol. 20, no. 3, pp. 185–190,
2002.

[59] E. W. T. Ngai, C. C. H. Law, and F. K. T. Wat, “Examining
the critical success factors in the adoption of enterprise resource
planning,” Computers in Industry, vol. 59, no. 6, pp. 548–564, 2008.
[Online]. Available: https://doi.org/10.1016/j.compind.2007.12.
001

[60] T. Chow and D.-B. Cao, “A survey study of critical success
factors in agile software projects,” Journal of Systems and

Software, vol. 81, no. 6, pp. 961–971, 2008. [Online]. Available:
https://doi.org/10.1016/j.jss.2007.08.020

[61] D. R. Goldenson and D. L. Gibson, “Demonstrating the impact and
benefits of CMMI: An update and preliminary results,” Carnegie
Mellon Software Engineering Institute, Special Report CMU/SEI-
2003-SR-009, 2003.

[62] K. Ewusi-Mensah, Software Development Failures: Anatomy of Aban-
doned Projects. MIT Press, 2003.

[63] C. A. R. Hoare, “How did software get so reliable without proof?”
in International Symposium of Formal Methods Europe. Springer,
1996, pp. 1–17.

[64] A. Endres and D. Rombach, A handbook of software and systems
engineering: Empirical observations, laws, and theories. Pearson
Education, 2003.

[65] P. Johnson, P. Ralph, M. Ekstedt, and Iaaktudy, “Consensus in
software engineering: A cognitive mapping study,” CoRR, vol.
abs/1802.06319, 2018. [Online]. Available: http://arxiv.org/abs/
1802.06319

[66] M. Allamanis, E. T. Barr, P. T. Devanbu, and C. A. Sutton, “A
survey of machine learning for big code and naturalness,” ACM
Comput. Surv., vol. 51, no. 4, pp. 81:1–81:37, 2018.

[67] T. Menzies, D. Owen, and J. Richardson, “The strangest thing
about software,” IEEE Computer, vol. 40, no. 1, pp. 54–60, 2007.

[68] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R.
White, and J. R. Woodward, “Genetic improvement of software:
A comprehensive survey,” IEEE Trans. Evolutionary Computation,
vol. 22, no. 3, pp. 415–432, 2018.

[69] N. G. Leveson, “High-pressure steam engines and computer soft-
ware,” in Proc. 14th Int’l. Conf. on Software Engineering, Melbourne.,
1992, pp. 2–14.

[70] M. M. Lehman, “On understanding laws, evolution, and conserva-
tion in the large-program life cycle,” Journal of Systems and Software,
vol. 1, pp. 213–221, 1980.

[71] M. Shaw, “Everyday dependability for everyday needs,” in Sup-
plemental Proc. 13th Int’l Symp. on Software Reliability Engineering.
IEEE Computer Society, 2002, pp. 7–11.

[72] P. Naur, “Programming as theory building (1985),” in Computing:
a human activity, P. Naur, Ed. ACM, 1992.

[73] V. R. Basili, L. C. Briand, D. Bianculli, S. Nejati, F. Pastore, and
M. Sabetzadeh, “Software engineering research and industry: A
symbiotic relationship to foster impact,” IEEE Software, vol. 35,
no. 5, pp. 44–49, 2018.

[74] L. E. Read, “I, pencil,” The Freeman, 1958, reprinted by
the Foundation for Economic Education. [Online]. Available:
https://fee.org/resources/i-pencil/

[75] E. W. Dijkstra, “The humble programmer,” Communications
of the ACM, vol. 15, no. 10, pp. 859–866, 1972. [Online].
Available: https://www.cs.utexas.edu/~EWD/transcriptions/
EWD03xx/EWD340.html

Lutz Prechelt Lutz Prechelt received a PhD
from the University of Karlsruhe for work that
combined machine learning and compiler con-
struction for parallel machines. He then moved to
empirical software engineering and performed a
number of controlled experiments before spend-
ing three years in industry as a manager. He
is now full professor for software engineering
at Freie Universität Berlin. His research inter-
ests concern the human factor in the software
development process, asking mostly exploratory

research questions and addressing them with qualitative methods. Addi-
tional research interests concern research methods and the health of the
research system. He is the founder of the Forum for Negative Results
and of Review Quality Collector.

https://doi.org/10.1016/j.compind.2007.12.001
https://doi.org/10.1016/j.compind.2007.12.001
https://doi.org/10.1016/j.jss.2007.08.020
http://arxiv.org/abs/1802.06319
http://arxiv.org/abs/1802.06319
https://fee.org/resources/i-pencil/
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

	1 Introduction
	1.1 The state of knowledge about software engineering
	1.2 What do we not know?
	1.3 A conundrum
	1.4 Research contributions

	2 Method
	2.1 Epistemological stance
	2.2 Design goals and approach
	2.3 Interview structure: The stimulus card
	2.4 Interviewer behavior
	2.5 Equipment used
	2.6 Respondent demographics
	2.7 Interview metadata
	2.8 Data analysis
	2.9 Quantification
	2.10 Literature micro-studies
	2.11 Member check
	2.12 Chain of evidence

	3 Deduction Method and Nature of the Results
	4 S1: Software Systems are Complex
	5 S2: Most Software Systems Work Only Approximately Well
	6 S3: Most Software Engineers Have Only Modest Capabilities
	7 QQ: What Keeps the Software Systems World From Breaking Down?
	8 Limitations
	9 Related Work
	9.1 Relating to knowledge gaps
	9.2 Relating to the interview content

	10 Conclusions and Further Work
	10.1 Insights
	10.2 ETAT: Suggested research directions
	10.3 Next step

	References
	Biographies
	Lutz Prechelt




