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Abstract

We consider interpolation between keyframe hierarchies. We im-
pose a set of weak constraints that allows smooth interpolation be-
tween two keyframe hierarchies in an animation or, more generally,
allows the interpolation in ann�parameter family of hierarchies.
We use hierarchical triangulations obtained by the Rivara element
bisection algorithm and impose a weak compatibility constraint on
the set of root elements of all keyframe hierarchies. We show that
the introduced constraints are rather weak.

The strength of our approach is that the interpolation works in the
class of conforming triangulations and simplifies the task of finding
the intermediate hierarchy, which is the union of the two (, or more,)
keyframe hierarchies involved in the interpolation process. This
allows for an efficient generation of the intermediate connectivity
and additionally ensures that the intermediate hierarchy is again a
conforming hierarchy satisfying the same constraints.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling - Surface and object representations—
; I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modeling - Hierarchy and geometric transformations—; I.3.6
[Computer Graphics]: Methodology and Techniques - Graphics
data structures and data types—; I.3.7 [Computer Graphics]: Three-
dimensional graphics and realism - animation—
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level-of-detail, multiresolutional representation

1 Introduction

Surfaces in animation often change their shape in time. If there is no
functional description of the deformation available, one often uses
the keyframe technique to describe the animation. Here a surface is
stored at a finite set of key-times, and in-between surfaces are com-
puted by interpolating between adjacent keyframes. In the special
case that all keyframe surfaces have the same underlying simplicial
complex, the interpolation task reduces to the simple linear interpo-
lation between corresponding pairs of vertices, or interpolation of
higher polynomial order if more keyframes are considered.

The interpolation task becomes more delicate if the keyframe
surfaces are allowed to have different underlying simplicial com-
plexes. In our discussion we restrict all surfaces of an animation
to be topologically equivalent, i.e. they have the same genus and
boundary curves. Nevertheless, our task remains to interpolate be-
tween topologically equivalent – but differently discretized – sur-
faces. Such surfaces occur naturally, in numerics when an initial
surface evolves by minimizing an energy functional and it is adap-
tively refined and coarsened after each time step. These surfaces
also arise in flow visualization, where an initial test ball is inserted
in the flow and after some time-steps the ball strongly deforms, re-
quiring an adaptive change of its mesh. In both cases one obtains
a new keyframe object after each time-step, and interpolation be-
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tween keys with different meshes is required for slow-motion play-
back.

We consider hierarchies of triangles obtained by an element bi-
section algorithm, rather than by vertex split/edge collapse meth-
ods, and impose the following two constraints: firstly, the bisection
scheme in each hierarchy follows the rules of Rivara [14] and, sec-
ondly, a certain correspondence between the root elements of all hi-
erarchies is required. These assumptions are rather weak, especially
since it is only the second constraint which requires an adjustment
between different hierarchies. After this initial adjustment, each
keyframe hierarchy may be locally refined and coarsened depend-
ing only on its own error criteria without any reference to the other
hierarchies of the family. The compatibility of different meshes
follows from the Rivara bisection method.

Instead of using the Rivara bisection method, one might try to
use a 4-1 split as subdivision rule. After a local refinement the 4-1
split must be accompanied by a process called conformal closure to
remove hanging vertices, e.g. by introducing so-called green edges
[1]. These green edges are responsible for case distinctions and
require further subdivisions when interpolating between different
hierarchies. These tasks can be handled, but the effort increases
when interpolating in multi-parameter families.

2 Review

Triangle mesh as a simplicial complex In computer graph-
ics and numerics a variety of different triangle meshes are used.
We restrict ourselves toconforming triangulations:a triangle is not
allowed to have a vertex of another triangle in the interior of one
of its edges. This avoids discontinuity problems in the shape and
so-calledhanging nodes, vertices which are required to lie on an
edge. It is not essential to constrain to conforming triangulations,
but it avoids a number of unwieldy distinctions related to hang-
ing nodes. Further, we restrict our discussion to piecewise linear
meshes although piecewise ”higher order” triangular meshes would
also work.

In our concept the interpolation property between two different
surfaces depends on their underlying topological simplicial com-
plexes rather than on the actual geometric shapes. It is important
to distinguish between the topology of the mesh, i.e. the combina-
torics, and the geometric position of the vertices. Such a distinction
is also essential in mesh optimization algorithms, see [10], where
the same shape is equipped with different topological meshes.

Formally, a triangular meshT has the topology of anabstract
simplicial complex Kcombined with a geometric realization. The
latter is uniquely determined by a set ofgeometric vertices V=
fv1; ::;vmg � R

3, and we can identifyT with the pair(K;V). The
simplicial complexK formally represents the connectivity of the
mesh. It is given by a finite set of abstract verticesV= fv1; ::;vmg
and a finite set of subsetsS, called simplices, representing the ver-
tices, edges, and triangles of the mesh. Further it is required that if
σ 2 S is a simplex, then every subsetτ� σ is also a simplexτ 2 S.

Each abstractn�simplex σ 2 S containing n + 1 abstract
vertices has atopological realizationjσj as the standard sim-
plex ∆(e1; ::;en+1) � R

n+1, the convex hull of the unit vectors
e1; ::;en+1 in Rn+1.



A geometric realizationof an abstract simplicial complex(K;V)
is uniquely given by the set of geometric verticesV and a setφV of
affine maps

φσ : jσj ! convexHull(vi1 ; ::;vin+1)� R
3

for each abstract simplexσ2Swith σ =
�
vi1; ::;vin+1

	
. In the same

way as in [10] we denote the geometric realization byφV to empha-
size that it is fully specified by the set of geometric verticesV.

If two, or more, abstract triangles share a common edge, they
are calledadjacentor neighbours. An edge belonging to only one
triangle is part of the boundary. The above material can be found
in any text book on algebraic topology, one source is the recent
introduction by Bloch [3].

Bisection method of Rivara Refinement and coarsening al-
gorithms have a long tradition in numerics and computer graphics,
and some can be used to generate hierarchical data representations
where each child triangle is combinatorially a subset of its parent.
Since we consider curved surfaces inR3, it is essential to maintain
the distinction between the simplicial combinatorics and the geo-
metric realization: if we bisect a triangle to obtain two children,
then combinatorially the two children are considered as subsets of
its parent, but in the geometric realization the children need not be
part of its parent triangle.

There exist different types of hierarchical triangulations, and a
good overview and formal concept are given in DeFloriani and
Puppo [6]. The concept of vertex-based hierarchies is described
in detail in Hoppe’s papers [8] and [9]. In numerics, it is essential
to ensure stability of a sequence of triangulations or a hierarchical
triangulation, i.e. to bound the angles inside all triangles uniformly
from below. In visualization, small angles may also disturb the vi-
sual perception since they sometimes allow, the element normals to
vary heavily in the neighbourhood of such a degenerate triangle.

The bisection algorithm of Rivara [14] addresses the problem of
how to locally refine a conforming triangulation to a new conform-
ing triangulation and, additionally, of how to ensure that all angles
in subsequently refined triangulations are greater than or equal to
half of the smallest angle in the original triangulation. The method
leads to nested triangulations and allows smooth transition between
different levels of detail. In his original formulation, Rivara bisects
a triangle exactly at the longest edge. B¨ansch [2] generalized the
method by introducing a formal refinement edge. In each triangle
a single edge is marked asrefinement edge,i.e. if the triangle is
refined, then it is refined by bisecting its refinement edge, and the
two child triangles inherit a refinement edge in the manner shown in
figure 1. In the simplicial complex an additional vertex is inserted
at the midpoint of the refinement edge.

Figure 1: The Rivara bisection method refines a triangle exactly at
its refinement edge. Each child inherits a refinement edge as shown.

Formally, the Rivara algorithm assumes that in a conforming tri-
angulationT each triangle has an arbitrary edge marked as refine-
ment edge. LetTk be a conforming triangulation with a subset of
trianglesS� T marked for refinement, usually according to some
local error criteria, then the method consists of the following steps:

Rivara Bisection Method (A)

1. All marked trianglesS are bisected according to the Rivara
bisection rule. This produces a (possibly empty) new set of
non-conforming triangles.

2. Mark all non-conforming triangles for refinement; the set is
again denoted withS.

3. If Sis not empty, then go to 1. Otherwise, there are no marked
triangles and the algorithm stops. The new triangulation is
Tk+1.

When the algorithm stops the new triangulation is conforming.
As shown in [2] the algorithm stops after a finite number of steps
since in one pass it inserts at most a single vertex on each edge.
This is a fairly rough upper estimate for theoretical purposes – and
one can construct such badly behaved examples – but, in practice,
the subdivision has only local influence on the triangulation, see
[2], [14]. The sequencefTkg is stable, i.e. all triangle angles are
bounded from below by half the minimum triangle edges of the first
triangulationT1.

Figure 2: Successive applications of the Rivara algorithm introduce
new vertices matching those retrieved by 4-1 splits.

The method using 4-1 splits, where each parent triangle is de-
composed into four similar children, leads to non-conforming ver-
tices if applied locally. Bank and Sherman [1] introduced so-called
green triangleswhich join a non-conforming vertex with the oppo-
site vertex of the non-conforming triangle, but this approach leads
to non-nested triangulations over the green triangles. Rheinbold
and Mesztenyi [13] work with non-conforming grids and, in order
to maintain the continuity of the surface over the non-conforming
points, they impose the condition that the geometric vertex over
each non-conforming point is equal to the values interpolated from
the nearby conforming points. However, the appearance of the non-
conforming vertices complicates further geometrical or numerical
computations because of the additional constraints.

k k+1TK TK+1

Figure 3: A single step of the Rivara bisection method with refine-
ment edges and marked triangles.

The Rivara method (A) is a formalized version of the rule ”bi-
sect a triangle at its longest edge,” where the method has its origin.
We will later use the algorithm to ensure the interpolation property
between hierarchies. Further, this algorithm bounds all triangle an-
gles away from zero and therefore it guarantees numerical stability.
We also note the following close connection: after applying the Ri-
vara bisection method twice the same vertices as in a 4-1 split of
triangles have been introduced (compare Figure 2). Therefore, the
Rivara method does not differ too much from the well-used 4-1 rule,
but merely eliminates the case distinctions occurring in connection
with the conformal closure.



2.1 Triangle Hierarchy

A triangle hierarchy is a hierarchical structure of triangular ele-
ments where each element has a reference to oneparent element,
to onechild, and to asibling. The sibling is a child of the same par-
ent and the children shall be produced by subdivision of the parent.
Elements with no parents are calledroot elements, and elements
with no children areleaf elements. We assume that the geomet-
ric vertices of a hierarchy are given in a global vertex array, and
each triangle is determined by three vertex indices. Vertices and el-
ements usually have color and material properties, or carry texture
coordinates. Elements may have references to neighbour elements.

Similar to the situation with meshes, it is essential to maintain
the distinction between the topological, i.e. combinatorial, struc-
ture of the hierarchy and the geometric shape. For example, when
bisecting a parent triangle, from the topological viewpoint we iden-
tify the two children with subsets of the parent triangle. But in the
geometric view, the additional geometric vertex introduced during
bisection (possibly as the midpoint of an edge) may deviate from
its original position on the parent edge after a further numerical
process.

The main value of this distinction for interpolation different hier-
archies is the existence of a unique relationship between each addi-
tional geometric vertex and a topological point in the parent triangle
(as given explicitly by the level maps below).

For our interpolation property of a sequence of key hierarchies,
it is essential that each hierarchy is generated using the Rivara bi-
section algorithm (A). In the implementation, we use a fixed num-
bering of the three vertex indices of each of the two child triangles
(consider figure 4). If the parent∆p is determined by three indices
fi; j ;kg which refer to the verticesv[i], v[ j ], andv[k] in the global
vertex arrayv, then we assume the two child triangles to reference
verticesfl ;k; ig andfl ; i; jg in this specific order, wherev[l ] is the
new vertex inserted during bisection. The specific ordering of the
vertices in the children simplifies the location of each child trian-
gle within its parent in the topological mesh. Additionally, the re-
finement edge of the children is always opposite to the first vertex
and, therefore, the information is implicitly given by the vertex or-
dering. The refinement rule is then reformulated to ’refine a leaf
triangle at the edge opposite to its first vertex’. Further, the second
and third vertex refer to parent vertices and are therefore implicitly
given and do not need to be explicitly referenced. Both observa-
tions save memory, but the latter requires recursive calls to obtain
the two vertex indices from one of its ancestral triangles. Only the
root elements must have references to three vertices in the global
vertex array.
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Figure 4: The refinement edge used in the Rivara bisection method
can be implicitly stored to be opposite to vertex 1.

For smooth level-of-detail interpolation, it is important to ob-
serve that the new geometric vertex on a refined edge can be
uniquely associated with the topological midpoint of the original
edge in the simplicial complex. Let∆p be a parent triangle with
two children,∆1 and ∆2, generated by Rivara bisection. Let us
work with barycentric coordinates and represent each pointp of a
triangle by its barycentric coordinate(b1;b2;b3) with respect to the

triangle verticesfv1;v2;v3g. Explicitly, if p= b1v1+b2v2+b3v3;

we use the notationpb = (b1;b2;b3) for its barycentric represen-
tation. Then we can describe the parent-child relationship by two
linear mapsfi : ∆i ! ∆p given by

f1(b1;b2;b3) =

0
@

0 1 0
1
2 0 1
1
2 0 0

1
A
0
@

b1
b2
b3

1
A (1)

and

f2(b1;b2;b3) =

0
@

0 0 1
1
2 0 0
1
2 1 0

1
A
0
@

b1
b2
b3

1
A

which relate every point in a child triangle to a point in its parent.
This relationship is only on the combinatorial level of the hierarchy
connectivity, and it does not mean that, for a geometric pointp2∆i ,
we havefi (p) = p.

We observe that we can now relate each triangle∆n of the hier-
archy on leveln with a subset of one of the root elements∆1 by
a recursive application of level functionsf , namely f (n�1) (∆n) :=
f � :::� f (∆n)� ∆1. The computational cost is reduced when using
barycentric coordinates - since only division by two and addition
are used in each composition. When the composite level function
f (i) (∆n) has been computed, it is applied to the geometric(x;y;z)
coordinate representation of points. The level maps are also used in
the computation of the local texture coordinate of a triangle, which
are implicitly given via the texture coordinates of the root triangles.

3 Interpolating Different Hierarchies

Animation in computer graphics can be classified by image-
based, see Stekettee and Badler [15], and geometry-based meth-
ods. Geometry-based methods split further into keyframe anima-
tions and into functional (resp. algorithmic) animations. For an
overview we refer to the book [11] and its detailed bibliography.

We concentrate on the problem of interpolation between
keyframe geometries and propose (in section 3.2) some constraints
on the geometries. The constraints guarantee a smooth interpola-
tion without the need to remesh during the interpolation process,
and then further ensure the freedom for local grid modifications
separately on each keyframe. This means that the refinement and
coarsening process can be applied to a single keyframe without dis-
turbing the interpolation property.

Finally, our constraints efficiently allow higher order spline in-
terpolation and interpolation in a multi-parameter family of geome-
tries shown in section 4.1 and 4.2.

3.1 Review of Keyframe Interpolation

The keyframe technique is a common and old technique in anima-
tion. The animator specifies, sayn, key geometriesGi at certain
time stepsti , i 2 f1; :::;ng. If there exists an interpolation method
between each two successive pairsGi andGi+1; then a smooth an-
imation is obtained by generating the geometry at timet 2 [ti ;ti+1]
on the fly by interpolating between key geometriesGi andGi+1.

Any geometry mesh can be used in a keyframe animation if there
exists an interpolation method, see Burtnyk and Wein [4], [5] for
general shape interpolation techniques. In the simplest case, all key
geometries have the same combinatorial mesh and differ only in
their vertices. In this case the interpolation object at timet uses the
same topological mesh and has verticesvj (t) 2 R3, j 2 f1; :::;mg.
They are given by linear combinations

vj (t) = (1� t)vi
j + tvi+1

j (2)



wherevi
j is the j-th vertex ofGi . Here, one can include more key

geometries in the interpolation scheme and use polynomial interpo-
lation of higher order int.

In many applications the animated geometry varies heavily in
time, and one would like to make local adaptions of the mesh on
each keyframe geometry based on some local error criteria. But
this spoils the simple interpolation technique above.

In [12], Polthier and Rumpf require at each time stepti two topo-
logical meshes whose geometric realizations are of the same geo-
metric shape. One connectivity is used to interpolate with the previ-
ous keyframe, and the other connectivity for interpolation with the
next keyframe. In effect, they associate one connectivity per time
interval[ti ;ti+1], and require two geometric realizations at each time
step. Besides the additional storage requirement of two geometric
realizations, this approach does not allow further modifications of
keyframes since both geometric realizations must be modified in
the identical way.

H1 H(t)=(1-t) H1 + t H2 H2

Figure 5: A simple example where the green elements in a 4-1 split
require further subdivision if one interpolates between two key hi-
erarchiesH1 andH2.

3.2 Interpolation Constraints for Hierarchies

We now specify constraints on the key hierarchies that, firstly, guar-
antee a smooth interpolation without the need to remesh during the
interpolation process, and, secondly, ensure the freedom for local
grid modifications separately on each keyframe.

A family of triangle hierarchies F must fulfill the

Interpolation Constraints (B)

1. The simplicial complex of the root triangles of each hierarchy
is the same for all hierarchies inF , i.e. for each pair of hier-
archiesG;H 2 F there exists a bijective simplicial mapφGH
between the set of root triangles.

2. Each root triangle has a refinement edge, and the simplicial
map φGH maps each refinement edge to a refinement edge,
i.e. the root triangles of all hierarchies are marked in the same
way.

3. Each hierarchy is refined using the Rivara Algorithm (A).

The root triangles can be interpreted as charts of each hierarchy,
and condition 1. requires a bijective correspondence between the
charts of different hierarchies. Conditions 2. and 3. ensure that hi-
erarchies are automatically refined in a synchronized way without
further restricting the refinement process in each hierarchy. Each
hierarchy can be refined according to its own error criteria without
a posteriorisynchronization with the other key hierarchies. Once
one has agreed to use the Rivara bisection method, it only remains
to ensure properties 1. and 2. for the familyF in an initial synchro-
nization step.

The Rivara bisection algorithm depends only on the initial choice
of the refinement edges in the root elements. The subsequent posi-
tion of the refinement edge in each child and further descendants is
predetermined by the algorithm. Therefore we have

Theorem 1 If two hierarchies G and H fulfill the interpolation
constraints (B) then both of their topological simplicial complexes
are a subcomplex of the same infinite complex obtained by infinitely
refining the simplicial complex of the root triangles, see figure 6.

Of course, the geometric representations ofG andH are usually
not identical since their geometric vertices differ.

In scientific computing a close connection between numeri-
cal computations and visualization is desirable. Since the Rivara
method is a suitable tool in both fields, hierarchies generated with
the Rivara bisection method allow smooth transition of data be-
tween numerical and visualization methods.

T T

T

L

L

H1 H2

H

C

Figure 6: Two hierarchies fulfilling the interpolation constraints (B)
are subsets of the same infinite hierarchy. The interpolation hierar-
chyH is the union ofH1 andH2.

3.3 Interpolating between Hierarchies

We prove the interpolation property between hierarchies fulfilling
the interpolation constraints (B) in a general form which, includes
standard keyframe animation with a time parametert described in
section 3.1. Additionally, it covers higher order spline interpolation
and interpolation in a multi-parameter family of hierarchies which
we will apply in section 4.1 and 4.2.

Theorem 2 Let F = fH1;H2; ::g be a family of hierarchies which
fulfill the interpolation constraints (B) and let b= fb1;b2; ::g, bi 2
R, be a set of weights. Then there exists an interpolated hierarchy

H(b) = ∑
i

biHi (3)

which depends smoothly on b, and its underlying simplicial hierar-
chy is the union of the simplicial hierarchies of each Hi. Further,
the interpolated hierarchy H depends smoothly on b and fulfills the
same interpolation constraints as the elements of F.

Proof: For the proof we restrict ourselves to two hierarchiesH1
andH2 and show how to interpolate between both. First we recall
the existence of a bijective simplicial mapφ between the two sim-
plicial complexes formed by the root elements. Sinceφ extends to
a bijective map between the refinement edges of the root triangles,
the Rivara algorithm ensures that the different simplicial hierarchi-
cal complexes ofH1 and H2 are subcomplexes of a theoretically
infinite hierarchy which is obtained by infinitely refining the sim-
plicial complex of the root triangles, see theorem 1 and figure 6.

It follows that interpolation between the common hierarchical
subcomplexC of H1 andH2 can be done by simply interpolating
corresponding geometric vertices.

Now assumeH1 is locally more refined thanH2. Then there
exists a situation, as shown in figure 7, where a topological leaf
triangleT of the common subhierarchyC is a leaf triangle of the



complex ofH2 but not a leaf triangle ofH1 (sinceH1 is more re-
fined). Of course,T has different geometric realizations inH1 and
H2.

T∈H1 T∈H T∈H2

v2

v1

L

Figure 7: The central step when interpolating between two hierar-
chies.

All children and further descendants ofT in H1 are associated
with a unique position inT via the level maps defined in equation 1.
The topological subtree generated byT in H1 can be projected via
the level maps ontoT and then associated with geometric positions
of T in H2. Here we make essential use of the distinction between
topological and geometric realizations. The level maps operate on
the topological realization and give for each geometric vertexv1
in a leaf triangleL in H1 the topological, i.e. barycentric, position
b2 in T. From the barycentric coordinatesb2, with respect to the
vertices ofT in H2, one can immediately compute the geometric
positionv2.�

For the practical interpolation between a geometric leaf trian-
gle L of H1 and the corresponding subset of the geometric realiza-
tion of T in H2, we need to compute the barycentric coordinates of
each vertex ofL with respect toT. Let v1 be one vertex ofL with
barycentric coordinatesb1 in L. Then we compose a level mapf
for the transition ofL to T and usef to compute the barycentric
coordinatesb2 of v1 with respect toT:

b2 = f (b1):

By weighting the three vertices of the geometric realization of the
triangleT in H2 with b2, we obtain the geometric position ofv2.
Now we can interpolate betweenv1 2 H1 andv2 2H2

v(t) = (1� t)v1+ tv2:

Applying the same procedure to the other two vertices ofL gives
the interpolation forL.

It is remarkable that the interpolation hierarchy is not more re-
fined than the union of its keyframe hierarchies.

The interpolation hierarchy fulfills the same interpolation con-
straints as the keyframes. This is relevant in the following section
for higher order interpolation and for further numerical or graphi-
cal processing, e.g. the interpolation hierarchy can immediately be
used as a new keyframe. Additionally, each subhierarchy of a hier-
archy inF fulfills the interpolation constraints (B) as soon as its leaf
triangles form a conforming triangulation. This allows for smooth
level-of-detail transitions within a single hierarchy and, by theorem
2, between different levels-of-detail of different hierarchies ofF .

4 Applications

4.1 Higher Order Spline Interpolation

The interpolation property of theorem 2 immediately allows higher
order interpolation in a keyframe animation. LetHi ,..,Hi+n be

n+ 1 successive keyframe hierarchies fulfilling the interpolation
constraints (B), then

H(t) =
n

∑
i=0

Bi;n(t)Hi (4)

is a polynomial hierarchy interpolant of degreen whereBi;n(t) are
the Bernstein polynomials.

4.2 Multi-Parameter Families of Hierarchies

The idea of smooth interpolation in a set of hierarchies can be pur-
sued to the interpolation in a two- or multi-parameter family of hi-
erarchies (as shown in figures 8 and 9 in the appendix). The ver-
tices of the discretized parameter domain, a square with four trian-
gles and five vertices, represent five keyframe hierarchies at differ-
ent resolutions and are shown in the lower part: an icosahedron, a
bone, a cushion, a star, and a sphere in the midpoint of the domain.
Each vertex of the domain represents a key hierarchy, and the set
of keyframe hierarchies fulfills the interpolation property (B). This
allows a barycentric interpolation in each domain triangle between
the three key hierarchies at the vertices of each triangle. LetH1,
H2, andH3 denote the key hierarchies at the vertices of a domain
triangle, and letb= (b1;b2;b3) be the barycentric coordinate of the
point in the domain triangle. Then the interpolation hierarchy is
given by

H(b) = b1H1+b2H2+b3H3: (5)

Similar to the 1-dimensional case, with time parametert, the com-
binatorial structure of the interpolation hierarchyH(b) is the topo-
logical union of all its three key hierarchies.

Multiparameter families of hierarchies occur frequently in geo-
metrical and numerical problems depending on more than one pa-
rameter. But even when studying one-parameter families, the in-
clusion of a view-dependent rendering may be considered to be a
2-parameter family.

5 Hierarchy Generation

In practice, hierarchies are generated by two different approaches:
One starts with a high resolution data set and iteratively coarsens the
geometry to produce a hierarchy. This ’bottom up‘ approach is suc-
cessfully used by Hoppe [8], [9] in the progressive mesh concept
to obtain a vertex-based hierarchy by successive vertex-split and
edge-collapse steps. As shown by Hoppe, different sections of one
hierarchy can be interpolated, so-called geomorphs. The handling
of arbitrary initial data sets is flexible, but this restricts the compat-
ibility of two hierarchies obtained from similar initial geometries
and reduces the possibility of interpolating between different hier-
archies.

Generating a hierarchy ’top down‘ from a given coarse triangu-
lation is ideal for element based approaches. One sets the triangles
of the initial triangulation as root elements of a hierarchy, and suc-
cessively refines according to some error criteria. For example, in
the numerics of a boundary value problem for a partial differential
equation one starts with a rough approximation of the solution and
then refines/coarsens the geometry depending on a local numerical
error.

Eck et al. [7] produce, from a given fine resolution mesh, a
new element-based hierarchy for usage in multiresolution analysis.
Their approach should also apply in generating hierarchies based
on the Rivara bisection method since they already solved the major
task of distributing vertices equidistantly on the surface.



6 Summary and Future Work

We have imposed some weak interpolation constraints (B) on a fam-
ily of triangle hierarchies to allow interpolation while maintaining
the freedom to locally refine each key hierarchy. The interpolation
hierarchy, is combinatorially the union of its keyframe hierarchies
and it therefore has the simplest structure possible without loosing
information.

We introduced the Rivara bisection method as an alternative to
the 4-1 split of triangles. Together with our constraints (B), the
Rivara method ensures the interpolation property. Additionally, the
Rivara method avoids a number of case distinctions occurring with
hanging vertices in the 4-1 split approach. On the other hand, the
Rivara method is similar to the 4-1 split since it inserts the same
vertices after successive refinements.

For numerical purposes the interpretation of the parameter do-
main of a, say, two-parameter family as a triangulation has signifi-
cant further implications. Similar to the approximation of a smooth
surface by a triangulation, the triangulated domain may approxi-
mate a smooth family of surfaces. One may use an adaptive re-
finement of the parameter domain, i.e. an automatic process which
inserts a new key hierarchy in the domain, if the interpolation hier-
archy does not satisfy a given error threshold.
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Appendix: Space Requirements

Model # # # Mem. Mem. size of
root leaf vertices (MB) (MB) non-hier.

nodes nodes opt. rep.

bunny1 400 127000 63520 17 13 5
bunny2 400 611340 305690 80 60 24
sphere 20 204800 102420 27 20 8
brezel 144 128280 64120 17 13 5

This table shows the memory requirements for some models us-
ing the principal hierarchical structures and a slightly optimized im-
plementation in contrast to a non-hierarchical representation of the
triangulation on the finest level. The non-hierarchical representa-
tion stores for each vertex the coordinates, the normals, and for each
element the vertex indices, neighbour indices and the vertex texture
coordinates. For the optimized hierarchical representation we used
a data-structure which allowed us to store vertex information only
once per refined root node.



Figure 8: Interpolation between a two-dimensional set of keyframe hierarchies. The vertices of the parameter domain represent the four
hierarchies on the bottom right and a sphere at the midpoint. All hierarchies have a different combinatorics, but fulfill the interpolation
constraints mentioned in the paper. This allows for a continuous interpolation when varying the position in the parameter domain.



Figure 9: Interpolation between three keyframe hierarchies (a bone, the Stanford Bunny, and a sphere). The three models have different
connectivities adjusted to their curvature.


