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Abstract

View-dependent rendering allows interactive visualization
of larger scenes. A well-known artifact is the popping
problem in animations resulting from temporal differences
in the level of detail between the view-dependent represen-
tations used in subsequent frames. We solve the popping
problem by computing view-dependent representations of
a scene only at everyn-th frame, and smoothly interpo-
late adjacent keyframe sections to obtain the representa-
tions for all in-between frames. Additionally, we acceler-
ate rendering at only minor accuracy costs since interpo-
lation is much faster than computing a view-dependent for
each displayed frame. We use scenes represented as tri-
angle hierarchies and fulfilling a special constraint allow-
ing for fast interpolation without remeshing. In contrast
to other approaches our method naturally extends to ani-
mated scenes whose geometry and mesh may adaptively
change in time.

Keywords: animation, shape interpolation, adaptive re-
finement, level-of-detail, multiresolutional representation,
view-dependence, morphing

1 Introduction

The visualization of large scenes at interactive frame rates
often uses view-dependent rendering. A well-known ar-
tifact is the popping problem in such animations and in-
teractive fly-throughs. This results from view-dependence
computations applied to the same region of a scene in sub-
sequent frames because the view-dependence criterium is
applied to a scene at a static moment and the criterium
assures no temporal coherence from one frame to a next.
There exist solutions to avoid the popping problem based
on a screen space tolerance, i.e. the geometry is only ren-
dered until the level of detail falls below the size of a pixel
[9][11][6][18]. Such a solution works with any level of
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detail geometry representation and requires no continu-
ous level transitions. A drawback is its dependence on
the quality of an image device which makes it hard to use
coarser level of detail representations.

Smooth level of detail representations exist e.g. for
vertex-based hierarchies [9], wavelet-based representa-
tion, and triangle-based hierarchies [7] [6], and such repre-
sentations may avoid popping if there is a temporal coher-
ence in the view-dependence criterium. Although view-
dependence techniques reduce the rendering time, they
still require more or less expensive view-dependence com-
putations.

In this paper we describe a different approach to avoid
popping, and simultaneously speed-up rendering by re-
ducing the number of necessary view-dependence compu-
tations. Additionally, we reduce the complexity of each
remaining view-dependence computation. The principal
idea of our approach is to compute a view-dependent rep-
resentation of a scene only at everyn-th frame, in the fol-
lowing referenced as keyframe representation of the scene,
and generate the in-between representations by smooth
interpolation of two adjacent keyframe representations.
Since it is seldom that adjacent keyframes have the same
mesh, see figure 1, our approach requires a fast interpo-
lation algorithm for differently refined meshes. We en-
sure this interpolation property by making use of the con-
cept on interpolating triangle hierarchies described [7],
and are able to define even higher order interpolation be-
tween keyframe hierarchies.

The idea of reducing the number of view-dependence
computations has been mentioned already in the paper by
Rohlf and Helman [15] as a possible choice for obtaining
high constant frames, and, more recently, Hoppe [10] has
included it in the vertex-based progressive mesh concept.
Our solution is defined on triangle-based hierarchies and
therefore has the advantage, that it naturally extends to an-
imated scenes whose geometry and mesh change adaptive
in time. This extension to animated scenes is original, and
is a direct consequence of the results of [7] combined with
this work.

We discuss a further problem occuring in interac-
tive situations where the current time lies between two
keyframes, and the camera position at the next keyframe is
not available yet. We discuss three approaches to extrapo-



late the current camera position by minimizing a temporal
error against a geometric error, respectively vice versa.

For an overview of keyframe animations we refer to
the book [13] and its detailed bibliography. A differ-
ent method avoiding popping artifacts is based on image
blending which softens the difference between two levels
of detail [15][5].

In section 2 we review the technique of interpolating
triangle-based hierarchies for different, adaptive refined
meshes, which is the basis for the interpolation between
view-dependent scene with varying mesh representations.
In section 4 we discuss the extrapolation of camera posi-
tions in interactive situations to minimize temporal against
geometric errors

Figure 1:Left and right image show view-dependent represen-
tations of a sphere depending on the indicated camera position.
The middle image shows the sphere at an intermediate time. Its
rendered mesh has been obtained by interpolating the two view-
dependent meshes of the adjacent keyframes, thereby avoiding a
new view-dependence computation.

2 Review on Interpolating Trian-
gle Hierarchies

We consider interpolation between keyframe hierarchies
which are allowed to have different meshes. If there
is no coherence between the meshes then the interpola-
tion is usually a tedious task and often requires expensive
remeshing operations for the generation of the in-between
mesh. Therefore we introduced in Friedrich et al. [7] two
weak constraints that ensure smooth and higher-order in-
terpolation between two adaptive refined keyframe hierar-
chies in an animation. This concepts are essential for the
ideas in this paper and we use this section to review the
interpolation principle.

We consider hierarchies of triangles obtained by a trian-
gle bisection algorithm, rather than by vertex split/edge
collapse methods, and impose the following two con-
straints: firstly, the bisection scheme in each hierarchy
follows the rules of Rivara in definition 1 and, secondly,
a correspondence between the sets of root triangles of
all hierarchies is required. These assumptions are rather

weak, especially since only the second constraint requires
a correlation between different hierarchies. After an ini-
tial adjustment, each keyframe hierarchy may be arbitrar-
ily refined and coarsened locally depending only on its
own error criteria without spoiling the interpolation prop-
erty. This freedom for local refinement and coarsening
is the property allowing for interpolation between view-
dependent scenes with different meshes.

Instead of using the Rivara bisection method, one might
try to use a 4-1 split as subdivision rule. After a local
refinement the 4-1 split must be accompanied by a pro-
cess called conformal closure to remove hanging vertices,
e.g. by introducing so-called green edges [2]. These green
edges are responsible for case distinctions and require fur-
ther subdivisions when interpolating between different hi-
erarchies. Such tasks can be handled, but only at the cost
of complex remeshing operations which we try to avoid.

A triangulation is calledconformingif two adjacent tri-
angles either share exactly one common vertex or one
common edge. Conforming triangulations have no hang-
ing nodes, i.e. vertices which lie in the interior of an adja-
cent edge, and therefore avoid cracks when deformed.

2.1 Bisection method of Rivara

The bisection algorithm of Rivara [14] addresses the prob-
lem of how to locally refine a conforming triangulation to
a new conforming triangulation and, additionally, of how
to ensure that all angles in subsequently refined triangula-
tions are greater than or equal to half of the smallest angle
in the original triangulation. The method leads to nested
triangulations and allows smooth transition between dif-
ferent levels of detail. In his original formulation, Rivara
bisects a triangle exactly at the longest edge. B¨ansch [3]
generalized the method by introducing a formal refinement
edge. In each triangle a single edge is marked asrefine-
ment edge,i.e. if the triangle is refined, then it is refined by
bisecting its refinement edge, and the two child triangles
inherit a refinement edge in the manner shown in figure 2.
In the simplicial complex an additional vertex is inserted
at the midpoint of the refinement edge but the geometric
position of the new vertex may change in space, of course.

Figure 2:The Rivara bisection method refines a triangle exactly
at its refinement edge. Each child inherits a refinement edge as
shown.

Formally, the Rivara/B¨ansch algorithm assumes that in a



triangulationT each triangle has an arbitrary edge marked
as refinement edge. LetTk be a conforming triangula-
tion with a subset of trianglesS � T marked for refine-
ment, usually according to some local error criteria, then
the method consists of the following steps:

Definition 1 Rivara/Bänsch Bisection Method
1. All marked trianglesS are bisected according to the

Rivara bisection rule. This produces a (possibly empty)
new set of non-conforming triangles.

2. Mark all non-conforming triangles for refinement;
the set is again denoted withS.

3. If S is not empty, then go to 1. Otherwise, there
are no marked triangles and the algorithm stops. The new
triangulation isTk+1.

When the algorithm stops the new triangulation is con-
forming. As shown in [3] the algorithm stops after a finite
number of steps since in one pass it inserts at most a sin-
gle vertex on each edge. This is a fairly rough upper esti-
mate for theoretical purposes – and one can construct such
badly behaved examples – but, in practice, the subdivision
has only local influence on the triangulation, see [3], [14].
The sequencefTkg is stable, i.e. all triangle angles are
bounded from below by half the minimum triangle edges
of the first triangulationT1.

k k+1TK TK+1

Figure 3:A single step of the Rivara/B¨ansch bisection method
with refinement edges and marked triangles.

2.2 Interpolation Constraints

A triangle hierarchyis a hierarchical structure of triangles
where each triangle has a reference to oneparentelement,
to onechild, and to asibling. The sibling is a child of
the same parent, and all children are produced by subdi-
vision of the parent. Triangles with no parents are called
root triangles, and triangles with no children areleaf trian-
gles. We assume that the geometric vertices of a hierarchy
are given in a global vertex array, and each triangle is de-
termined by three vertex indices. Vertices and triangles
usually have color and material properties, or carry texture
coordinates. Triangles may have references to neighbour
triangles.

We now specify constraints on the key hierarchies that,
firstly, guarantee a smooth interpolation without the need
to remesh during the interpolation process, and, secondly,
ensure the freedom for local grid modifications separately
on each keyframe.

Definition 2 A family of triangle hierarchiesF must fulfill
the followingInterpolation Constraints:

1. The simplicial complex of the root triangles of each
hierarchy is the same for all hierarchies inF , i.e. for each
pair of hierarchiesG;H 2 F there exists a bijective sim-
plicial map�GH between the set of root triangles.

2. Each root triangle has a refinement edge, and the
simplicial map�GH maps each refinement edge to a re-
finement edge, i.e. the root triangles of all hierarchies are
marked in the same way.

3. Each hierarchy is refined using the Rivara/Bänsch
Algorithm 1.

The root triangles can be interpreted as charts of each
hierarchy, and condition 1. requires a bijective correspon-
dence between the charts of different hierarchies. It is im-
portant to note, that condition 1. does not ensure the inter-
polation property. It is essential to have conditions 2. and
3. satisfied additionally to ensure that hierarchies are au-
tomatically refined in a synchronized way. Each hierarchy
can be refined according to its own error criteria withouta
posteriori synchronization with the other key hierarchies
and without spoiling the interpolation property. Once one
has agreed to use the Rivara/B¨ansch bisection method, it
only remains to ensure properties 1. and 2. for the family
F in an initial synchronization step.

The following central theorem was proved in [7]:

Theorem 1 Let F = fH1; H2; ::g be a family of hierar-
chies which fulfill the interpolation constraints 2 and let
b = fb1; b2; ::g, bi 2 R, be a set of weights. Then there
exists an interpolated hierarchy

H(b) =
X

i

biHi

which depends smoothly onb, and its underlying simpli-
cial hierarchy is the union of the simplicial hierarchies
of eachHi. Further, the interpolated hierarchyH de-
pends smoothly onb and fulfills the same interpolation
constraints as the elements ofF .
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Figure 4:Two hierarchies fulfilling the interpolation constraints
of definition 2. are subsets of the same infinite hierarchy. The
interpolation hierarchyH is the union ofH1 andH2 .



The interpolation property of theorem 1 immediately al-
lows higher order interpolation in a keyframe animation.
Let Hi,..,Hi+n ben + 1 successive keyframe hierarchies
fulfilling the interpolation constraints of definition 2, then

H(t) =

nX

i=0

Bi;n(t)Hi (1)

is a polynomial hierarchy interpolant of degreen where
Bi;n(t) are the Bernstein polynomials.

3 View-Dependent Keyframes

For simplicity we assume a scene with a single geometry.
The geometry is either given by a static triangle-based hi-
erarchy obtained by Rivara/B¨ansch bisection and only the
camera is animated in the scene, e.g. a fly-through of a
terrain. Or the scene consists of an animated geometry
whose shape and mesh might change in time additional to
the camera flight. In the second case the geometry must
be given by a set of keyframe hierarchies which satisfy the
interpolation constraints 2 and therefore allow a smooth
interpolation by theorem 1.

Let t be the time in an interactive fly-through or of
an animation of the geometry. We perform the view-
dependent extraction of the geometry only at certain dis-
crete timestepsft1; t2; :::g of the time interval which are
(by a factor of, say 10) less than the number of actual
shown frames. A frame generated at timet, where t
lies in an open interval(ti; ti+1) between two timesteps,
renders the geometry obtained by interpolating the view-
dependent keyframe sections at timesti andti+1. Theo-
rem 1 ensures that the interpolation is continuous over the
whole time line since the view-dependent extraction of a
subhierarchy at each timestep is the same as a coarsening
step of the hierarchy. Such local modifications on a single
key hierarchy are allowed by the assumption of the theo-
rem. They do not spoil the original interpolation property.
In practice, the proportion of the number of frames to the
number of timesteps is between 5 and 10, and it depends
on the amount of camera movement. Figure 1 gives a good
impression for timesteps further apart. Nevertheless, the
interpolation property holds for each choice.

In view-dependent computations, at each frame each
vertex or triangle of the hierarchy is assigned a level of
detail error. If this level of detail error depends continu-
ously on the position of the camera and the geometry then
it is possible to generate a section which is continuous in
time.

It is important to note that computing the interpola-
tion between the two hierarchy levels above and below
the current view-dependence threshold can be avoid in our
method. This leads to a further essential speed-up for the
view-dependence computation. In our method we acceler-
ated view-dependence computation of the keyframe sub-
hierarchies by using the floating point view threshold as

a boolean value: if the threshold is between the error val-
ues of two levels then we simply take the upper level and
do not interpolate between the upper and next lower level.
Such interpolation is the basis in the continuous level of
detail concept but can be avoid here. Therefore, we do not
employ the continuity feature with respect to the level of
detail in the hierarchy when generating a view-dependent
keyframe. In fact, this introduces a minor error term, but
it leads to a significant acceleration of the view-dependent
extractions since no interpolation between level of details
must be computed, triangles are just assigned a visibility
flag.

This acceleration introduced in the above paragraph
might sound like introducing discontinuities, but the conti-
nuity returns when we interpolate between different view-
dependent sections, i.e. two keyframes. Here it does not
matter that both keyframes did not interpolate between
their levels.

In practice, we mark at each keyframeti those trian-
gles with a visibility error above a certain threshold with
a separate flag, sayi, and do not compute any in-between
vertices as usually done in continuous level of detail rep-
resentations. Triangles which are also visible in the next
keyframe carry an additional flagi+1. In case we use lin-
ear interpolation between keyframe hierarchies a ternary
flag suffices.

The interpolation hierarchy between two keyframe sec-
tions atti andti+1 consists of those triangles marked ei-
ther i or i + 1. Its triangle tree is therefore encoded as a
subtree of the triangle tree of the full hierarchy by theorem
1. There is no need to store the interpolation hierarchy ex-
plicitly. It requires only an additional vertex array for those
interpolated vertices referenced by triangles from only one
of the two keyframe sections. Therefore in practice, we
work with just one hierarchy but have an additional vertex
array for the interpolated vertices.

It is important to note that the work-load of the
computer is higher at the timestepsti, where a view-
dependence computation must be performed, than at the
intermediate frames between timesteps, where only inter-
polation is required. The handling of such temporal vari-
ations of the load balance occurs in many other occasions
and is a delicate problem when achieving constant frames
rates [15][12][4][8].

4 View-point Extrapolation

4.1 Finding the Next Keyframe

A problem occurs from the fact, that in an interactive fly-
through we do not know in advance the next keyframe. If
we are at timet 2 (ti; ti+1) then the keyframe section at
time ti+1 has not been computed yet. We experimented
with three solutions which employ three types of errors.
Here we assume to know the exact current, and previous,
position of the camera, which might not be the case in ap-



plications, e.g. when tracking head mounted displays dis-
cussed in [17][1] [16]

We set the view-dependent sectionSview(t) at timet as
the optimal geometry since it is the geometry shown in a
usual view-dependent rendering.

1. We allow a delay in the rendering, i.e. at current time
t 2 (ti; ti+1) we render the geometry corresponding to a
delayed timetd 2 (ti�1; ti) with

td = ti�1 +
t� ti

ti+1 � ti
(ti � ti�1) ;

and use the transformation matrixM(td) at timet. When
interactively steering the camera this approach leads to
a slight delay in all actions. The delay obtained from
showing the interpolated sectionSinter(td) at some later
time t > td is only recognizable by the ”pilot” of the
fly-through. Beside the delay and the necessity to cache
all transformation matrices in the interval(td; t), we only
have aninterpolation error

errinter(td) = jSview(td)� Sinter(td)j

between the view-dependent sectionSview(td) of the
scene at timetd and the interpolated sceneSinter(td). The
error is measured with respect to some surface norm.

2. The delayt � td can be avoided if we render the
interpolated sceneSinter(td) with the current transforma-
tion matrixM(t). Here we accept a slight view-dependent
error in the representation additional to the interpolation
error since we show the view-dependent interpolated scene
Sinter(td) with the current transformation matrix at time
t. Theview-dependent error

errview(t; td) = jSview(t)� Sview(td)j

is determined by the view-dependent sectionsSview(td)
andSview(t) at two different timestd andt.

3. In the third approach the camera position at time
ti+1 is extrapolated from previous positions, and the view-
dependent keyframe at timeti+1 is computed with respect
to the extrapolated matrixMextra(ti+1). This allows to
compute the interpolated geometrySinter(t) at the current
time t with the current transformation matrixM(t). Here
we have no delay in the rendering, but we have included
an additionalextrapolation error given by

errextra(ti+1) = jSview(ti+1)� Sextra(ti+1)j

at a keyframe positionti+1 between the extrapolated and
actual sections.

Our approaches balance between these three errors.
In approach 1, we have at timet an interpolation error
errinter(td) and a delay ofjt� tdj, i.e.

err1(t) = errinter(td) + delay(t; td):

In approach 2, we avoid the delay by adding an additional
view-dependent error, i.e.

err2(t) = errinter(td) + errview(t; td):

Approach 3 avoids the view-dependent error at the cost of
an extrapolation error at timeti+1, i.e.

err3(t) = errinter(t) + errextra(ti+1):

5 Summary and Future Work

We increase the performance of animations by interpo-
lating between view-dependent representations which re-
stricts view-dependence computations to only everyn-th
frame and avoids popping artifact. To ensure a cheap in-
terpolation property between different keyframe meshes
we employ the interpolation constraints for triangle hierar-
chies defined in [7]. The method not only applies to static
scenes where the camera moves, but, without change, ap-
plies to animated scenes whose geometry and meshes vary
in time.

It is worth to discretize the time line adaptive depending
on the amount of camera movement and a visual respec-
tive screen space error following ideas by Lindstrom et al.
[11]. Although we use a screen based error for the def-
inition of the view-dependent keyframes, our errors used
above should also include a screen based distance.

Figure 5:Interpolation between view-dependent keyframe rep-
resentations H(t1) and H(t2) at times t1 resp. t2 of an animated
scene. Since the view-dependence computation has been per-
formed on the keyframe representations, the interpolated repre-
sentation H(t) can be rendered directly. This approach avoids the
view-dependence computations at every frame.
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