
EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavík
(Guest Editors)

Volume 26 (2007), Number 3

QuadCover - Surface Parameterization

using Branched Coverings

Felix Kälberer† Matthias Nieser† Konrad Polthier†

Freie Universität Berlin

Abstract

We introduce an algorithm for the automatic computation of global parameterizations on arbitrary simplicial 2-

manifolds, whose parameter lines are guided by a given frame field, for example, by principal curvature frames.

The parameter lines are globally continuous and allow a remeshing of the surface into quadrilaterals.

The algorithm converts a given frame field into a single vector field on a branched covering of the 2-manifold

and generates an integrable vector field by a Hodge decomposition on the covering space. Except for an optional

smoothing and alignment of the initial frame field, the algorithm is fully automatic and generates high quality

quadrilateral meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling, Hierarchy and geometric transformations, Geometric algorithms, languages, and systems

1. Introduction

The idea of local charts belongs to the most fruitful concepts
in the differential geometry of smooth manifolds. Originally
invented by Riemann, each manifold is locally considered as
a distorted Euclidean space where charts provide the math-
ematical formalism to describe the relation, the deformation
and the differences to Euclidean space. For example, charts
on surfaces immediately provide a local coordinate system
which allows to transfer differential operators onto curved
surfaces.

The field of geometry processing investigates meshes,
simplicial surfaces where no a priori parameterization is
given. In order to reach a differential framework, beyond the
purely topological point of view, the field of discrete differ-
ential geometry was invented. For the first time it was then
possible to transfer differential operators onto simplicial sur-
faces and to work in a similar way like on smooth surfaces.
But considering the strong similarities between image and
geometry processing, we still encounter many algorithms
invented in image processing which do not have counterparts

† Supported by the DFG Research Center MATHEON ”Mathemat-
ics for key technologies” and mental images GmbH.

Figure 1: QuadCover generates high quality parameter

lines on simplicial surfaces. The automatic parameterization

is guided by a user-given frame field, such as principal cur-

vature directions, and is well suited for regular quadrilateral

remeshing.
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in the field of geometry processing yet. For example, the
efficient wavelet theory on images essentially requires a 2-
dimensional coordinate system which has not been available
on general simplicial surfaces yet. In fact, having natural co-
ordinates on a simplicial surface would pave the way for
transferring and adjusting many algorithms onto surfaces.

The present work focuses on the automatic construction
of a global surface parameterization. The parameterization
is guided by a user-defined frame field, for example, by a
field of principal curvature directions, or by any other frame
field arising in applications.

This paper is driven by a conceptual clarity of the under-
lying algorithm. Starting from a given frame field, the al-
gorithm first constructs a locally integrable field, and then
a globally integrable field taking the topology of the un-
derlying surface into account. The issue of branch points
of the frame field is resolved by branched covering spaces
on which the given frame field naturally simplifies to a sin-
gle vector field where standard Hodge decomposition tech-
niques are used to assure global integrability. The paper has
close contact to the fundamental paper of Ray, Lee, Levy,
Sheffer, and Alliez [RLL∗06] and extends their initial ideas
to a more general and automatic framework.

Finally, given a global parameterization on any simplicial
surface we will see a wealth of future applications. From tex-
ture mapping to extension of image processing algorithms,
from remeshing to the automatic construction of hierarchi-
cal subdivision surfaces, all applications using natural co-
ordinates will benefit from the added structure of a global
parameterization.

1.1. Previous work

The research area of surface parameterization has a long and
fruitful tradition. There already exists a wealth of different
previous approaches to surface parameterization and, more
general, the generation of quad and quad dominant meshes
from given triangle meshes.

One of the first impressive works is by Gu and Yau
[GY03] who construct global conformal parameterizations
of surfaces with arbitrary genus. The resulting parameter
lines minimize angle distortion but may have a rather large
metric distortion. Furthermore, the space of global confor-
mal parameterizations is too rigid to allow a local alignment
of the parameter lines at given surface features.

The method of Boier-Martin, Rushmeier, and Jin
[BMRJ04] clusters the surface into macropatches and pa-
rameterizes each surface patch. Kharevych, Springborn, and
Schröder [KSS06] find a conformal parameterization via
circle patterns. In contrast to Gu and Yau, they use cone-
singularities to increase the flexibility of purely conformal
mappings. Dong et al. [DBG∗06] compute the Morse-Smale
complex of eigenfunctions of the mesh Laplacian to com-

pute a patch layout. The nodes of the complex are then uti-
lized similarly to the cone singularities in [KSS06].

Early approaches for quadrangular remeshing guided
by principal curvature directions are from Alliez et al.
[ACSD∗03]. They were extended by Marinov and Kobbelt
[MK04], and base on the integration of curvature lines on the
surface. Dong, Kircher, and Garland [DKG05] presented an
algorithm which traces isolines in two conjugate harmonic
vector fields. Marinov and Kobbelt focus on creating coarse
quad-dominant meshes in [MK06] by approximating the sur-
face with very few patches, which are then individually sub-
divided into quads.

Tong, Alliez, Cohen-Steiner, and Desbrun [TACSD06]
use harmonic one-forms for surface parameterization. They
enlarge the space of harmonic one-forms by allowing ad-
ditional singular points on the surface. The extended cut
graph increases the homology group and thus the space of
harmonic one-forms on the surface. As a consequence, the
user-defined choice of placing the singular points and the
cut graph allows a controlled modeling of the harmonic one-
forms. Still, the approach is constrained by the global nature
of harmonic one-forms, in some sense, similar to the algo-
rithm of Gu and Yau [GY03].

Ray et al. [RLL∗06] parameterize surfaces of arbitrary
genus with periodic potential functions guided by two or-
thogonal input vector fields. This leads to a continuous pa-
rameterization except in the vicinity of singular points on
the surface. These singular regions are detected and repa-
rameterized afterwards. Our approach was strongly inspired
by their work.

1.2. Contributions

We derive an algorithm to compute a global continuous pa-
rameterization for an arbitrary given simplicial 2-manifold.
The algorithm runs automatically and the parameter lines
align optimally with a user-defined frame field, for example,
the principal curvature directions.

We introduce a theoretical framework for frame fields on
surfaces and their relation to branched covering spaces of
the surface. As a consequence, frame fields on the surface
simplify to vector fields on the covering space, so that the
problem of parameterizing with frame fields reduces to the
problem of finding a proper integrable vector field on the
covering surface.

The branch points of our covering space lie at the branch
points of the given frame field. They are conceptually sim-
ilar to the singular points with fractional index used by
[TACSD06] and [RVLL06].

Instead of restricting ourselves to harmonic frame fields,
we allow an additional divergence part and seek the opti-
mal parameterization in the larger space of locally integrable
frame fields, enabling the parameter lines to better align with
the given input field.

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 2: A perfectly regular knot (a) was irregularly retri-

angulated and disturbed by noise (b). Our parameterization

of the noisy model (c) provides a stable reconstruction (d).

2. Setting

We construct a parameterization of a 2-manifold, whose pa-
rameter lines divide the surface into quads. Akin to earlier
quad-dominant remeshing algorithms [ACSD∗03,RLL∗06],
a major aim of our method is to construct parameter lines
which are close to the principal curvature directions. In this
section we will introduce the underlying concepts.

2.1. Matchings

Smooth setting. Given a smooth 2-manifold M with charts
ϕi : Ui ⊂ M → Ωi ⊂ R

2. The parameter grid on M is the
preimage under ϕi of the unit grid lines Z×R and R×Z.
A local parameterization can be easily defined in each chart
by taking arbitrary map ϕi; the non-trivial task is to assure
global continuity of the parameter lines on the surface.

A globally continuous parameterization consists of a
set of charts {Ui,ϕi} for which the parameter lines coincide
in all regions where two charts Ui, U j overlap. The transition
functions between adjacent charts of a global parameteriza-
tion satisfy two conditions, see also [RLL∗06]:

First, the gradients of the parameterization functions have
to agree up to a rotation by multiples of π

2 , because u- and
v-lines should not be distinguished on the parameterized sur-

face. Thus, the Jacobians of the charts are related by

Dϕi(p) = J
ri j Dϕ j(p), J :=

(

0 1
−1 0

)

, p ∈Ui∩U j (1)

with a constant integer ri j ∈ {0,1,2,3} on the intersection
Ωi ∩Ω j. We call the values ri j matchings between charts Ui

and U j . See Figure 3 for nontrivial matchings.

Second, the parameter values may differ only by integer
values in the u and v coordinate, since the unit grid is invari-
ant under translations by integer values.

The transition functions ϕ j ◦ ϕ−1
i of a parameterization

fulfilling the two conditions above are automorphisms of the
unit grid. We call a linear function f : R

2 →R
2 which meets

f (z) = J
r
z+ t, r ∈ Z, t ∈ Z

2, z ∈ R
2 (2)

a grid automorphism.

Ui

U j

Ω0 Ω1

Ω2

U0 U1

U2

ϕi

Figure 3: Parameterization of two overlapping charts with

a matching of ri j = 3 (left), and of a cube with matchings

r01 = r12 = 0, r20 = 1 (right).

Discretization. Just as [RLL∗06], we consider each tri-
angle as a chart on discrete triangle meshes. The transition
function between two adjacent triangles is fully determined
by the matching and the translation vector associated to their
common edge.

The methods of [TACSD06] and [DBG∗06] divide the
surface into large scale quadrilateral patches. The patches
are used as charts and allow non-trivial matchings only at
patch boundaries. In contrast, triangle based charts allow to
choose matchings independently at every edge and permit
much more flexible topological structures of parameter lines.

2.2. Branched covering spaces

First, recall some definitions about Riemann surfaces, see
[FK80], [Ful95], [Jos02].

Definition 1 Let M be a Riemann surface. A (branched)

covering M′ of M is a Riemann surface with a local homeo-
morphism π : M′ → M, where for each p′ ∈ M′ there exists
a neighborhood U ′ ∋ p′ with local coordinates z′ : U ′ → C,
z′(p′) = 0 and a neighborhood U ∋ π(p′) with local coordi-
nates z : U → C, z(π(p′)) = 0 and an integer np > 0, such
that π is given by z = (z′)np in terms of local coordinates.

c© The Eurographics Association and Blackwell Publishing 2007.
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If np > 1, then p is called a branch point of M′. The number
np is usually referred to as the ramification index of the point
p. If p ∈ M is no branch point, then there exists a neighbor-
hood V of p such that every connected component of π−1(V )
is mapped by π homeomorphically onto V .

Definition 2 A trivial covering of a connected set U ⊂ M is
a covering U ′ where every connected component of π−1(U)
is mapped by π homeomorphically onto U .
The components π−1(U) of a trivial covering are called lay-

ers. They will be denoted by U l ⊂U ′, l ∈ {0, . . . ,#layers−
1}. Let τl

U = (π|U l )−1 : U → U l be the inverse of the pro-
jection operator in the given layer l.

Here we consider coverings whose metric is induced from
the surface M by π−1. Thus, an n-sheeted trivial covering of
M can be seen as just n copies of M, cf. Figure 5, top left.

One way of constructing a covering on M is to take cov-
erings of its charts and glue them together at their intersec-
tion: For each two charts Ui, U j of M with Ui ∩U j 6= ∅, let

ρ : π−1
i (Ui ∩U j) → π−1

j (Ui ∩U j) be an isomorphism be-
tween trivial coverings of the charts. The patches can then
be merged together by identifying the corresponding points
of the two coverings, cf. Figure 5, top right.

The following construction shows, how the matchings ri j

of a manifold M canonically induce a covering of M. We
restrict to 4-sheeted coverings as they naturally appear in the
study of frame fields.

Definition 3 Let (U ′
i ,πi) be 4-sheeted trivial coverings of

the charts Ui. For two overlapping charts Ui, U j , the map

ρ : π−1
i (Ui ∩U j) → π−1

j (Ui ∩U j), which maps a point p ∈

τl
Ui

(Ui ∩U j) from layer l to τ
(ri j+l)mod 4
U j

◦ πU (p) into layer

(ri j + l)mod 4, is an isomorphism. Thus, by identifying the
two layers with ρ, the trivial coverings of the charts can be
glued together (Figure 5, top right). We call the resulting
covering M′ of the covering induced by r.

The covering M′ induced by the matchings has no branch
points. To enlarge the space of possible frame fields on the
manifold, the covering surface may possess single points p∈
M, whose covering locally looks like z→ zn, n∈Z. For these
points, there is no neighborhood U , for which π−1(U) is
manifold (see Figure 5, bottom right).

Discretization. In the discrete setting, branch points are
located at vertices. On a 4-sheeted covering they occur when
the (oriented) sum of all matchings of outgoing edges differs
from 0 (modulo 4). This means starting somewhere in the
neighborhood of v and walking around the vertex, ends on a
different layer in the covering than the start point. The fol-
lowing notion is used for describing different types of branch
points.

Definition 4 Let v be a vertex of M, T0, . . . ,Tn−1 the triangles
incident to v in counterclockwise order, Tn = T0 and ri,i+1 the
matching at the edge between adjacent triangles. The layer

Figure 4: A set of four vectors given in each point which

cannot be described with global vector fields. Left: On a

flat torus an integral line meets itself perpendicularly. Right:

Around the vertex of a cube exists no match of vectors.

shift around v is then given by:

ls(v) :=

(

n

∑
i=0

ri,i+1

)

mod 4 (3)

2.3. Frame fields

We now introduce globally defined frame fields, which are
the guiding geometric structure for our parameterizations.

Definition 5 Given a manifold M with charts Ui and match-
ings r. A frame field on M is a collection of four vector
fields Xi,0, Xi,1, Xi,2, Xi,3, in each chart Ui which satisfy in
all overlapping charts Ui ∩U j:

X j,k = Xi,(k−ri j)mod 4, k ∈ {0,1,2,3}.

This means that the vectors X j,k are cyclically permuted to
Xi,k by a shift of −ri j. If Xi,2 = −Xi,0, Xi,3 = −Xi,1 in all
domains Ωi, the frame field is called symmetric.

In the example of Figure 3 (left), Xi,1 coincides with X j,0,
corresponding to ri j = 3. Fig. 4 shows examples of a frame
field on a flat torus and a cube, which cannot be expressed in
terms of 4 global vector fields.

Remark. The direction fields introduced in [RVLL06] are
a special kind of frame fields, which require the vectors Xi,0
and Xi,1 to be perpendicular, and to have unit length. These
fields may have single points with a fractional index. In our
notion, singular points with fractional index n/4 can only oc-
cur at branch points of the covering with layer shift nmod4.
The integer part of the index is determined by the vector field
index on the covering.

A global parameterization ϕ can be represented in differ-
ential form by a global frame field on M using the following
two vector fields in each chart Ui:

Xi,0 := (Dϕi)
−1(e1), Xi,1 := (Dϕi)

−1(e2) (4)

with the unit vectors e1, e2 in R
2. With e3 :=−e1, e4 :=−e2

and Xi,2 := (Dϕi)
−1(e3),Xi,3 := (Dϕi)

−1(e4), we obtain in-
deed a frame field: for k ∈ {0,1,2,3}

X j,k = (Dϕ j)
−1(ek) = (D(Jri j ϕi))

−1(ek)

= (Dϕi)
−1(J−ri j ek) = Xi,(k−ri j)mod 4 (5)

c© The Eurographics Association and Blackwell Publishing 2007.
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U0

U1

τ0
U τ1

U

U

πU

πU
πV

U V

πU πV

U V

Figure 5: Top left: Trivial covering. Top right: Patching two

coverings together. Bottom left: A frame field lifted to a vec-

tor field on the covering. Bottom right: Branch point.

Discretization. The frame fields are discretized to be con-
stant on each triangle. For symmetric frame fields, only two
of the four vectors are stored. Together with the matchings,
this defines discrete symmetric frame fields uniquely.

Definition 6 A matching on a discrete manifold M is a map

r : {edges ei j |Ti ∩Tj = ei j} → {0,1,2,3},

which determines the matching ri j for two adjacent triangles
Ti and Tj. We denote the space of all those maps by RM .

2.4. Vector fields on covering spaces

In this section, we show how frame fields can be described
with vector fields on a covering surface. This result allows us
to apply the classical theory for vector fields to frame fields.

A frame field Xi,k on M with matchings r canonically lifts
to a vector field X on the covering: in each chart Ui, lift Xi,k

to a vector field X on a trivial 4-sheeted covering U ′
i of Ui

as follows: For p ∈ τl
U (U), set X(p) = Xi,l(πi(p)) (Figure 5,

bottom left). The result is a globally defined vector field X

on the covering M′ induced by the matchings r.

When the coverings of the charts are patched together as
described in Def. 3, X becomes a well defined vector field
on M′, since the layers of the covering are connected in the
same way as the vector fields permute when another chart is
chosen.

Definition 7 Let M be a manifold with matchings r and M′

the induced covering. A frame field lifted to a vector field X

on M′ is called a covering field of M.

Figure 6: Isolines of a symmetric scalar function at a branch

point with layer shift 1 (left), 2 (middle), 3 (right).

2.5. Scalar functions on covering spaces

Parameterization functions are scalar functions on the cover-
ing, which may be discontinuous: along the common edge of
two adjacent triangles the function may differ by a constant
value.

Definition 8 Given a surface M with matching r. Let G be a
cut graph of M, i. e., a set of edges in M, such that M \G is a
topological disk. We define the function space

Ŝr(M
′) := {piecewise linear functions on M

′

which are continuous except at G}

A function f ∈ Ŝr(M
′) is called a symmetric covering func-

tion, if for all charts U of M and p ∈ U , the values of f in
the preimages π−1(p) satisfy:

f (τ0
U (p)) = − f (τ2

U (p)), f (τ1
U (p)) = − f (τ3

U (p)).

Given a function ϕ′ ∈ Ŝr(M
′), its derivative ∇ϕ′ is

a piecewise constant and curl free vector field on M′

and each curl free vector field can be expressed as gra-
dient field of a function in Ŝr(M

′), thus ∇Ŝr(M
′) =

{curl free vector fields on M′}, see [PP03].

Parameterization function. A symmetric covering func-
tion can be projected to a function ϕ : M → R

2 by taking the
values of layer 0 and 1 in each point p ∈Ui:

ϕi(p) = (ϕ′(τ0
Ui

(p)),ϕ′(τ1
Ui

(p)))T =: (ui(p),vi(p))T . (6)

The components of this function ϕi at the intersection of two
adjacent maps Ui, U j then meet:

(ui,vi)
T = ϕi ◦ϕ−1

j (u j,v j)
T = J

−ri j (u j,v j)
T − ti j. (7)

with the constant translation vector ti j ∈ R
2.

If ϕ′ is continuous up to jumps by integer values, all tran-
sition functions of ϕi are grid automorphisms (see Equa-
tion 2) and therefore, the parameter lines are globally con-
tinuous. Thus, we seek for a function in the space

Sr(M
′) := {u ∈ Sr(M

′) |∀ adjacent Ti, Tj: ti j ∈ Z
2}.

Given a parameterization function ϕ′ ∈ Sr(M
′), the func-

tion values on any map Ui may be translated by an arbitrary
integer offset without changing the gradient field or the fi-
nal parameter lines. Thus, we assume w.l.o.g. that all ti j = 0
except for edges which lie on the given cut graph G.

c© The Eurographics Association and Blackwell Publishing 2007.
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Discretization. In our algorithm, the covering surface is
not explicitly computed. It is only represented by the match-
ings r. Symmetric scalar functions on the covering are stored
as the vector ϕ|T (p) = (uT,p,vT,p) from equation (6) in each
triangle T at each of its three corners p.

A cut graph can be obtained as the boundary of a span-
ning disk of M′, see Figure 8, middle. It is not of interest
for the algorithm, which cut graph is chosen or if it cuts the
surface into one or more connected components. The result-
ing parameter lines are independent of this choice except for
slightly different rounding results in Section 4.1.

Constructing a basis of Ŝr(M
′). We now construct a basis

of Sr(M
′) which describes all scalar functions and possible

choices of the translation values ti j . At edges of the cut graph
G, ti j cannot be chosen arbitrarily. At each vertex of M′, the
(oriented) sum of ti j at outgoing edges is always 0.

Let Sh(M
′) be the space of all continuous piecewise linear

functions on M′ with basis functions Φi and let P = {γi ⊂
G | i∈ {0, . . . ,np−1}} be a set of np cut paths with

⋃

γ∈P γ =
G. For a genus g surface without boundaries, these np = 2g

paths generate the homology group of M. If the surface has
nb > 0 boundary components, we additionally need paths,
which connect the boundaries, thus we have np = 2g+nb−1
paths.

For each path γi, let Φ̂i ∈ Ŝr(M
′) be the piecewise linear

function on M, which is 1 on the right side at all vertices
along the path, 0 on the left side and 0 at all other vertices of
the surface. This is a discontinuous function on M, however
∇Φ̂i is a curl free vector field.

Theorem 1 The functions {Φi}∪{Φ̂ j} are a basis of Ŝr(M
′).

Proof For each path γ j ∈ P, the gradient field of the cor-
responding basis function ∇Φ j has periods different from
0, i. e. the path integral

∫

δ 〈∇Φ̂i, δ̇ 〉ds along a path δ on M

which crosses γ j at exactly one point p ∈ δi is 1 or −1, de-
pending on the orientation of δ and γ j . Since the new basis
functions Φ̂i are linear independent, the space Ŝr(M

′) is of
dimension nv +np = nv +2g+max(b−1,0). This is exactly
the dimension of the space of curl∗ free vector fields. Fur-
ther, the gradients of all functions in Sh are curl∗ free, thus
∇Ŝh = {curl∗ free fields}. This is exactly the space of har-
monic vector fields plus gradient fields on M′.

Definition 9 For a given function f ∈ Ŝr(M
′), let λi( f ) and

µ j( f ) be the coefficients of f when written as linear combi-
nation of basis vectors, that is, f = ∑i λiΦi +∑ j µ jΦ̂ j.

We order the vertices of the covering, such that succes-
sive vertices v2i, v2i+1 are associated to another, i.e. π(v2i) =
π(v2i+1) and they differ by a layer shift of 2. For the algo-
rithm, we also require that the paths are symmetric on the
covering, i.e., for each path γ2 j the path γ2 j+1 differs only
by a layer shift of 2. How to find cut paths with this property
is described in Section 4.4. Thus, a function f ∈ Ŝr(M

′) is a

symmetric covering function if and only if for all i

λ2i = −λ2i+1, µ2 j = −µ2 j+1. (8)

Theorem 2 Let p be a branch point with layer shift ls(p) = 1
or ls(p) = 3 (according to Def. 4). Then the value of any
symmetric scalar function (u,v)∈ Sr(M

′) at p is either a grid
point (u(p),v(p)) ∈ Z

2 or a midpoint of a grid cell (u(p)+
1/2,v(p)+1/2) ∈ Z

2. If ls(p) = 2, then it is a grid point of
grid size 1/2: 2(u(p),v(p)) ∈ Z

2.
Let p be a vertex with ls(p) = 2. Then the value of any sym-
metric scalar function (u,v) ∈ Sh(M

′) at p is a grid point of
grid size 1/2: 2(u(p),v(p)) ∈ Z

2.

Proof Let T0, . . . ,Tn be the triangles incident to p in counter-
clockwise order. Looking at the values f = (u,v) at vertex p

in these triangles, they satisfy:

(uT1,v,vT1,v)
T ∈ J

−r01(uT1,v,vT1,v)
T +Z

2

(uT1,v,vT1,v)
T ∈ J

−r01−r12(uT1,v,vT1,v)
T +Z

2

...
(uT1,v,vT1,v)

T ∈ J
−ls(v)(uT1,v,vT1,v)

T +Z
2

⇒ (uT1,v,vT1,v)
T ∈ (Id − J

−ls(v))−1
Z

2

Calculating the inverse matrix and applying it to all integer
grid points leads to the claimed proposition.

In particular, this theorem holds for the resulting parame-
terization map, since it is a symmetric scalar function on M′.
It follows, that all branch points get mapped to either a grid
point or to the middle of a grid cell. Branch points with layer
shift 2 may also lie at the midpoint of an edge.

Remark. If a branch point is mapped to the middle of a
grid cell, this cell may become a triangle, pentagon or a poly-
gon of higher degree. If the parameterization should gener-
ate a pure quad mesh, all branch points should be located
at grid points. According to Theorem 2, this can be assured
by parameterizing the surface half as fine (multiply all input
vectors with 1/2) and multiply the resulting parameteriza-
tion function ϕ with 2.

3. Algorithm

Choice of input frame field. The user input to our method
is a matching r ∈ RM and a symmetric frame field Ki,k, or,
equivalently, a symmetric covering field on a simplicial sur-
face. This field acts as a guidance field for the final parame-
terization.

There are different ways of constructing such an input
field. It is up to the user, if he specifies the matchings r or
if he just provides two vectors per triangle (and their neg-
atives). In the latter case, matchings can be automatically
generated by associating the four vectors in each triangle to
those in adjacent triangles. It is reasonable to identify the
vectors with the smallest angle to each other in order to get
straight parameter lines.

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 7: The Costa surface parameterized with different

input fields. Middle: Input frames align with the edges of the

input mesh (left). Right: Input frames align with principal

curvature directions.

Constructing from curvatures. In most cases, we used
the principal curvature directions as input. In general, it is
not possible to assemble the principal curvature directions
globally in four separate vector fields. But locally in each
chart and away from umbilics, one can define four vector
fields whose vectors have unit length and point into the four
principal curvature directions, sorted in a counterclockwise
order. In regions where two charts Ui, U j overlap, these vec-
tor fields then only differ by a cyclic permutation of the four
vectors. This shift is the matching −ri j .

The resulting frame field could also be extended to the
umbilic regions of the surface, where no principal curvature
directions are defined. In general, this is not possible with-
out getting some branch points in the umbilic region. Fur-
thermore, the calculation of principal curvature directions
in umbilic regions leads to vectors pointing in arbitrary di-
rections in practice. Thus, we use a preprocessing step to
smooth the given frame field in umbilic regions, such that
they align with the curvature directions in their neighbor-
hood (see Section 4.3).

Discrete principal curvature directions and values can be
calculated as proposed in [CSM03] or [HP04]. Note that we
deal with curvatures given on triangles, not on vertices.

3.1. Algorithm overview

The algorithm is split into two parts, the preprocessing part
and the main algorithm. In the preprocessing part, the guid-
ance frame field for the parameter lines is generated. The
methods applied there control the construction and improve-
ment of the frame field.

In the main part, a global parameterization function will
be generated. First, the given input frame field is approxi-
mated by the gradient of a scalar function. Second, the pa-
rameterization will be adapted to make the parameter lines
globally continuous. The output is the function ϕ : M → R

2,
which can be used as a texture map to visualize the parame-
ter grid or for quad mesh generation.

Preprocessing steps

1. Calculate principal curvature directions K (required).
2. Smooth principal curvature field, see Sect. 4.3 (opt.).

3. Define the topology of the covering surface by calculat-
ing matchings at the edges (required).

4. Optimize the topological structure, see Sect. 4.2 (opt.).

Main steps

1. Find a potential function ϕ̃, whose gradient field opti-
mally aligns with the given input frames.

2. Add the harmonic scalar function ψ with minimal L2

norm such that the parameterization ϕ = ϕ̃ + ψ is glob-
ally closed.

Steps 1 and 2 are detailed in the following section.

4. Implementation details

Computing the potential function. The final parameteriza-
tion should align with the given input field as well as possi-
ble, i. e., the parameterization ϕ̃ should minimize the energy

E(ϕ) =
∫

M′

‖∇ϕ−K‖2
dA (9)

in the space ϕ ∈ Ŝr(M
′), with fixed matchings r.

Recall, that K is a symmetric covering field and the cov-
ering surface is symmetric due to a cyclic permutation of
the layers by 2. Since the energy has a unique minimum, the
solution ϕ̃ is also symmetric.

In the smooth setting, this algorithm can also be formu-
lated using covering fields instead of the scalar function ϕ.
The Hodge-Helmholtz decomposition of a vector field K on
a manifold M′ is a unique description of K as

K = PK +CK +HK (10)

with a gradient field PK , a cogradient field CK and a har-
monic field HK . Discarding the second term leads to a curl
free field X̃ := PK + HK whose integral is the minimizer of
Energy (9). For the Hodge decomposition of discrete vector
fields see [PP03].

The Hodge decomposition does not need a cut graph of
the surface, so the gradient of the optimal solution ∇ϕ in
Equation (9) must also be independent of the cut graph.

4.1. Global continuity

If we took the solution ϕ̃ from the previous paragraph as pa-
rameterization map, the parameter lines would not be contin-
uous everywhere on the surface. They may have a mismatch
at the cut graph G. With the representation of ϕ̃ with basis
functions (see Def. 9), the parameter lines are globally con-
tinuous if and only if all µ j(ϕ̃) ∈ Z.

In order to adapt ϕ to fulfill the global continuity con-
dition, we add another scalar covering function ψ to ϕ̃ such
that ϕ := ϕ̃+ψ satisfies µ j(ϕ)∈Z. We determine ψ by spec-
ifying the coefficients µ j(ψ) := [µ j(ϕ̃)]− µ j(ϕ̃), and calcu-
late all other coefficients such that △ψ = 0. That means,
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Figure 8: Parameterized minimal surfaces: Trinoid (left),

Schwarz P-surface with its cut graph, and the Hyperboloid

parameterized using non-orthogonal frames.

that ∇ψ is required to be a harmonic vector field, because
these are the smallest vector fields with given periods in L2

norm, so the distortion of the parameterization will be mini-
mal. The Laplace equation can be written as a linear system
of equations for the unknown coefficients λi(ϕ) and solved
efficiently.

Generating quads. If the function values at all branch
points are integers, and all triangles are positively oriented
in R

2, then the parameterization produces only quads. Ac-
cording to Theorem 2, if ϕ ∈ Sr(M

′), then it may happen,
that a branch point lies in the middle of a grid cell. As a
result, the parameterization would contain triangles or other
polygons. A pure quad grid is guaranteed if

µ j(ϕ) ∈ 2Z. (11)

Thus, rounding all µ j(ϕ) coefficients to values in 2Z instead
of Z leads to a parameterization consisting of quads only.
The rounding of the coefficients depends on whether a pure
quad grid is required.

Optimal solution. The minimal energy solution from
Section 4 is not necessarily optimal, since the values µ j(ϕ)
might not be rounded optimally. This is the only part in the
algorithm, where the parameterization results depend on the
cut graph. The exact solution of the optimization problem
described below would lead to parameter lines which are in-
dependent of the cut graph.

Let (h j) j=1...#paths ∈ Ŝr(M
′) be a basis of the harmonic

functions on M′, with µk(h j) = 1, if k = j and µk(h j) = 0, if
k 6= j. Let H := ∑ j c jh j, c j ∈ R according to Def. 9. Consid-
ering Condition (8), finding the symmetric harmonic field H

with minimal L2 norm is equivalent to finding the λi, which
minimize

vAv
T , such that λ j +q j(X) ∈ Z, (12)

with v = (λ0,−λ0 . . . ,λn,−λn), Ai j =
∫

M 〈hi,h j 〉dA.

This is a quadratic discrete optimization problem. The
exact optimum is hard to obtain. For the generation of
the matrix A, one has to compute a set of covering fields,
which are a basis of the harmonic fields (consisting of 2 ·
genus(M)) + #singularities many minimization problems).
Then, the quadratic integer problem has to be solved. Our

heuristic with just rounding the values µ j as described in this
section is in general not optimal but leads to good results.

4.2. Branch point optimization

As branch points often reduce the straightness of parameter
lines, we employ a simple heuristic to find nearby branch
points, whose layer shifts add up to zero. Those points can be
merged by changing the matching at the edges in-between,
resulting in a locally trivial covering.

Let Cb be a cost function on vertices, which is 1 for branch
points and 0 for all other vertices, thus Cb penalizes the oc-
currence of branchings. Let another cost function

Ci j = ∠(Xi,k, X j,(k+ri j) mod 4)

on the edges of the mesh represent the parallelism between
vectors in the incident triangles Ti,Tj.

If we change the matching consistently along an edge path
between two vertices, the layer shift of all but the two end
points of the path remain constant. If one of the endpoints
is a branch point, we can always change the matching along
that path so the layer shift for one of the vertices becomes 0,
possibly for both of them.

We use a greedy search strategy that finds paths between
singularities, such that a change of the matching along the
whole path reduces the total cost C = λCb +∑i j Ci j. Here, λ

weights branch point reduction vs. vector field straightness.

4.3. Aligning the frame fields

To smooth the frame field, and to extend the principal curva-
ture directions into umbilic regions, we adapted the smooth-
ing method in [HZ00].

The frame Xi in each triangle Ti is rotated by an angle αi,
such that adjacent frames align best with respect to the fol-
lowing smoothing energy. The energy operates on the angles
between frames of pairs of adjacent elements.

Esmooth = ∑
i> j

area(Ti)+ area(Tj)

3
cos
(

4(θi j +αi −α j)
)

,

where θi j is the initial angle between the frames of triangles i

and j. Measuring angles between frames is not unique, since
there are four vectors in each frame. However, since vectors
resulting from principal curvature directions differ by mul-
tiples of π

2 , this is irrelevant, due to the periodicity of the
cosine.

The above energy will align all frames with each other,
but will not retain the directions of principal curvature. We
desire a balanced smoothing step, which fixes angles where
the curvature directions are very pronounced, but which also
aligns frames in umbilic areas to the fixed frames. For that
purpose, we blend the smoothing energy with an alignment
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Figure 9: Parameterization of the hand model. Branch

points are marked red.

term, which measures the distance to the original field.

E = λEsmooth +(1−λ)Ealign, where

Ealign = ∑
i

area(Ti)ωiα
2
i .

The weights ωi indicate the stability of the principal curva-
ture directions in the current triangle. As a heuristic, we use

ωi := |κ1 −κ2|/
√

κ2
1 +κ2

2

and set ωi = 0 if κ2
1 + κ2

2 = 0. Here, κ1 and κ2 are the prin-
cipal curvature values in the current triangle.

Minimization of E then yields a smooth vector field which
is roughly aligned to the features of the mesh. The user-set
factor λ determines if there is more emphasis on smoothing
(λ ≈ 1) or on principal curvature alignment (λ ≈ 0).

4.4. Generation of symmetric cut paths

This section deals with the problem of finding paths γ′i on
a 4-sheeted symmetric covering π : M′ → M of a given dis-
crete manifold M, such that M′ \{γ′i} is cut open to a topo-
logical disk. This is done by first cutting M open and then
lifting the paths to the covering. By comparing the Euler
characteristic of M and M′, one notices that the number of
paths p′ which are necessary on M′ can be calculated from
the number of paths p on M:

p
′ = 4p−3.

Our method constructs 4p paths on M′, thus we get 3 paths
more than needed, so the covering gets cut into 4 simply
connected components.

First, construct some paths γi on M, which cut M

open. If the surface has boundaries, there are n = 2g +
numBoundaries − 1 paths necessary. Choose one branch
point of layer shift 1 as origin p0 of all paths, so all paths
begin and end at p0. This could be done by extracting all
circles of a cut graph of M.

Figure 10: Comparison of the remeshed hand model with

[TACSD06] (top). Bottom: constructed with QuadCover. The

hand model is courtesy of Pierre Alliez. Except from setting

preprocessing parameters, no interaction was involved.

If there is no such branch point, one could also take any
other point on the manifold, but has to catch some special
cases in the following construction process. In practice, al-
most all meshes have branch points of layer shift 1.

Now, for each branch point pi 6= p0, compute a cycle γn+i

starting at p0, going around pi and ending at p0 again.

Each of these paths γi can now be lifted to 4 paths γ
j
i ,

j = {0,1,2,3} on M′. If some of the lifted paths are not
closed on M′ (since start and end point are on different lay-
ers), extend them by walking around the root vertex p0 until
the path gets closed (walking around the root vertex once
performs a layer shift of 1). The collection of paths γ′ ob-
tained by this construction cuts the covering manifold open.

5. Results and conclusion

Our algorithm delivered pleasing parameterizations on a
wide range of models, as shown in Figures 1, 9, 11, and
10. Comparisons to state-of-the-art show that QuadCover

[RLL∗06] [TACSD06] [DBG∗06] QuadCover
vertices 6355 6576 7202 6535
irreg. vert. 314 34 26 37
RSD edge 25.0% 28.3% 30.8% 18.2%
RSD angle 10.7% 12.6% 7.8% 14.8%

Table 1: The number of total and irregular vertices of the

models shown in Figure 11, as well as the relative standard

deviation of their edge lengths and vertex angles.
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Figure 11: Comparison of remeshing results of the Stanford

bunny. Models were produced by [RLL∗06] and [TACSD06]

(top), [DBG∗06] and our algorithm (bottom). The upper his-

togram next to each model shows the distribution of edge

lengths, the lower histogram represents angle distribution.

produces very competitive results, see Fig. 11. As the fig-
ure illustrates, we roughly share the curvature alignment
of [RLL∗06], but managed to drastically reduce the oc-
currence of irregular points, and we restricted ourselves to
quadrilaterals. In contrast to the methods of [TACSD06] and
[DBG∗06], our algorithm is suited to handle arbitrary loca-
tions of branch points, as we do not restrict the branch points
to be the corners of some coarse meta mesh.

Table 1 shows that QuadCover exhibits the smallest edge
length variation, at the cost of higher angular deviation.
Discarding the curvature alignment term during smoothing
significantly reduces angular deviation, but generally, more
wrinkles in the final quad mesh are introduced where param-
eter lines don’t follow high curvature.

We have identified frame fields with vector fields on
branched coverings. This theoretical foundation reduces the
parameterization problem to well studied problems of vector
field decompositions, once the set of branch points is fixed.
We hope that this simplifying concept will give rise to further
fruitful ideas for surface parameterization and remeshing.
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