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Abstract

We construct new examples of compact constant mean curvature surfaces
numerically. A conjugate surface method allows to explicitly construct
examples. We employ the numerical algorithm of Oberknapp and Polthier
based on discrete techniques to find area minimizers in the sphere S3 and to
conjugate them to surfaces of constant mean curvature in IR3. We compute
examples of genus 5 and 30 and discuss a further example of genus 3.
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1 Introduction

For a long time the sphere was the only known compact immersed surface of

constant mean curvature 1 (MC1). By the result of Alexandrov there is no

other embedded compact MC1 surface and by a theorem of Hopf the only way to

immerse the sphere with MC1 is the round sphere. Nevertheless Wente discovered

MC1 tori in 1986 [W] (see Figure 2 and 3) and his work became the starting point

for an intensive study of MC1 surfaces.

Pinkall and Sterling classified all tori [PS] by the genus of a hyperelliptic Rie-

mann surface. This genus should not be confused with the genus of the MC1 sur-

face, which is of course 1 for a torus. Bobenko then found explicit formulas

in terms of theta functions associated to the hyperelliptic Riemann surface [Bo,

Thm.6.1]. The two papers actually consider a larger class of MC1 surfaces con-

taining the tori. This class gives rise to a period problem for the subset of

tori. Algebraic conditions for the solvability of the period problem were stated

in [Bo], and Ercolani, Knörrer, Trubowitz [EKT] (also Jaggi [J]) proved that for

each genus there are hyperelliptic curves such that these conditions are satis-

fied. Hence there are MC1 tori for every hyperelliptic genus. Heil implemented

Bobenko’s formulas and can solve the period problem numerically [H].

Kapouleas constructed compact MC1 surfaces of every genus greater than two

by an implicit function argument [Kp1]. Each surface is based on a graph such

that the vertices relate to spheres and the edges to pieces of Delaunay surfaces.

Provided the graph is balanced, Kapouleas proves there exists a surface for a

suitable scaling of the graph. This means that the edges contain a possibly large

number of Delaunay ‘bubbles’; furthermore the Delaunay handles must be thin.

Since the number of bubbles as well as the thinness of the handles are the result of

delicate estimates it is almost impossible to decide for a given surface whether it

can be obtained by Kapouleas’ method. This situation is somewhat similar to the

tori for which it seems that the period problem is more likely to be solvable when

the surfaces are larger. On the other hand, once the handle size and Delaunay

piece length are known Kapouleas’ surfaces are very explicit in that they are

close to the union of the Delaunay pieces. In [Kp2] Kapouleas manages to glue

g ∈ IIN Wente tori together at a single lobe. This yields compact MC1 surfaces

of every genus, in particular the up to then open genus 2 case. The handles used

are fundamentally different from those of the Delaunay-like surfaces. Kapouleas’

Wente-like surfaces fuse tori with a large number of lobes; again the number is

practically unknown.

For the first time a conjugate surface method was used by Lawson 1970 [L] to
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prove existence of MC1 surfaces and later extended by Karcher [Ka] and one of the

authors [G]. They constructed a number of periodic MC1 surfaces and surfaces

with ends, as well as the Wente torus [G]. The conjugate surface method is more

explicit than Kapouleas’ method and works for sufficiently symmetric surfaces.

In the present work we use this method to construct numerically new compact

MC1 surfaces of higher genus. As candidates we take highly symmetric MC1 sur-

faces ‘close’ to a collection of spheres which are joint by small handles. Existence

of the Penta surface of genus 5 and the surface with icosahedral symmetry of

genus 30 is discussed in detail, while the numerics could not decide an example

of genus 3. With any of the methods mentioned before a hard problem is to solve

the period problem. In simpler cases it can be settled by an intermediate value

theorem [Ka] using a graph property, or by a degree argument [G]. Here we use

the numerical algorithm of Oberknapp and Polthier [O] [OP] to deal with the pe-

riod problem in more involved situations. The algorithm uses discrete techniques

generalizing an algorithm of Pinkall and Polthier [PP] for minimal surfaces.

At first we review in Section 2 the conjugate surface construction for MC1 sur-

faces, in its standard C2 description as well as in the C1 form that is used for

the numerical algorithm. We also explain the period problem that makes our

examples unique (or isolated) for fixed symmetries. We then review the underly-

ing discrete numerical algorithm in Section 3. In Section 4 we discuss a class of

possible candidates, for which the necessary conditions of stability and balancing

are satisfied. Three specific examples and their numerics are described in Section

5 in greater detail. In a future paper we want to explore further examples [GP].

The algorithms and the graphics were implemented using the mathematical

programming environment Grape developed at the Sonderforschungsbereich 256

at the University of Bonn. Grape can be obtained on request via the second

author.

2 The conjugate surface construction

We illustrate the main ideas of this method. For details see [G].

It is helpful to explain the conjugate surface construction for minimal surfaces

in IR3 first. Let F be an immersion with normal N , metric g(v, w) = dF (v) ·
dF (w) and Weingarten map A given by g(Av, w) = dN(v) · dF (w). A surface

is determined by its metric g and Weingarten map A provided the integrability

conditions, the equations of Gauß and Codazzi, are satisfied.
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Figure 1: Surface Penta of genus 5. Small unduloidal handles connect the
five outer spheres which, in turn, are joint to a centre sphere with nodoidal
handles.

For a simply connected piece of an oriented minimal surface M there is another

surface M̃ , the conjugate surface, with geometric data g̃, Ã given by

g̃ = g and Ã = Rπ/2 ◦ A,(1)

where R±π/2 denotes rotation by ±π/2 with respect to the metric g. The inte-

grability conditions for M can be checked to imply those of M̃ .

Suppose we have an idea for the shape of a minimal surface with planar sym-

metries, and the surface modulo its symmetries gives a simply connected compact

fundamental patch. To prove existence of such a patch via the conjugate surface

construction it is essential that conjugation interchanges curvature and asymp-

tote lines, and that geodesics are preserved. This is useful since the fundamental

patch is bounded by planar, i.e. geodesic curvature lines, and hence relates to a

conjugate patch bounded by geodesic asymptote lines. These lines are geodesics

of the ambient space IR3, i.e. straight lines, and therefore the conjugate patch
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Figure 2: Wente torus with three lobes

is bounded by a polygon which has only finitely many parameters. We prove

the claimed property in case F (x) is a conformal curvature line parameterization

of M̃ . Let us write A in matrix form, A ∂
∂xi

= Aj
i

∂
∂xj

. According to (1)

Ã =

( −κ 0

0 κ

)
and A = R−π/2Ã =

(
0 1

−1 0

)( −κ 0

0 κ

)
=

(
0 κ

κ 0

)
(2)

i.e. the parametrization of M is in asymptote lines.

We now want to determine the polygon on M from the fundamental patch on

M̃ . Let the polygon on M̃ be bounded by n planar curvature arcs γ̃i. Then the

conjugate arcs make the same angles at the vertices on the isometric surface M .

Moreover, by definition of A we obtain quantitative information from (2): The

turning speed −κ of the normal along the planar curvature line γ̃i on M̃ equals

the rotation speed κ of the normal along the straight line γi of M . In particular,

by an integration of (2) the total turn τ̃i of the normal along the planar curvature

line γ̃i equals the total rotation ρi of the normal along the straight arc γi,

−τ̃i = ρi.

A closed polygon of straight arcs on M is not completely determined by the n

vertex angles and the n total rotations ρi (up to euclidean motions and scaling);

in general we are free to specify n − 3 lengths of the polygon. For a given patch
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Figure 3: A grid model of the same Wente torus. A fundamental domain
that generates the surface by planar reflection is highlighted.

bounded by planar symmetry curves this gives an n−3 parameter family of closed

polygonal candidates. Hence by taking solutions to Plateau’s problem for each

closed polygon we get an n − 3 parameter family of minimal patches M . Each

conjugate patch M̃ can be reflected by the assumed group of planar symmetries

to a complete branched immersed surface.

Lawson generalized this approach to CMC surfaces [L]. He found a one to

one correspondence between MC1 surfaces in IR3 and minimal surfaces in S3.

Theorem 1 If M is a simply connected minimal surface in S3 with data g, A,

then there exists a CMC surface M̃ ⊂ IR3 with

g̃ = g and Ã = id + Rπ/2 ◦ A.(3)

In place of (2) we now have

A =

(
0 κ

κ 0

)
and Ã = id + Rπ/2 ◦ A =

(
1 − κ 0

0 1 + κ

)
(4)

and this shows that M̃ is a MC1 immersion.
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We can make the same construction as in the minimal case, because γi ⊂ S3 is

ambient geodesic, or a great circle arc, if and only if γ̃i ⊂ IR3 is a planar curvature

arc. Again we integrate 1−κ resp. κ along the boundary arcs to the total turn τ̃i

of the normal along an arc γ̃i of the MC1 patch and the total rotation ρi along

the spherical arc γi of the respective minimal patch. This gives

|γi| − τ̃i = ρi(5)

where |γi| is the length of γi. Although the lengths in (5) make it more compli-

cated we can find an n − 3 parameter family of closed spherical polygons with

great circle arcs as before. We take Morrey’s solution M to the Plateau problem

for such a polygon and conjugate back to a branched MC1 surface M̃ ⊂ IR3.

We are usually interested in further properties of M̃ . For instance if we rule

out branch points at the vertices then the complete MC1 surface turns out to be

smooth. Moreover we want to specify τi as a real number; but both τi and τi

plus integer multiples of 2π give rise to the same polygon. The standard way to

deal with these problems is to embed the spherical boundary polygon into the

boundary of a mean convex set.

2.1 A C1-description of conjugation

The description explained before is disadvantageous for numerical considerations

since a number of different numerical algorithms must be applied successively – all

incorporating additional numerical inaccuracies: The spherical surface M is the

result of an area minimization process, this surface has to be differentiated twice,

and finally the obtained geometric data must be integrated to the MC1 surface

M̃ . The discrete algorithm is based on a C1 description which in the smooth case

requires only one differentiation and integration. This description can be given

for both minimal and MC1 surfaces. For details see [OP].

For the minimal surface case let Ω be a Riemann surface and F : Ω → IR3

be a minimal immersion of Ω with normal vector field N . Then the conjugate

surface F̃ : Ω → IR3 is given by the differential system

dF̃ = dF ◦ Rπ/2

Ñ = N.

In a similar way the conjugate MC1 surfaces can be obtained from a spherical

minimal surface. Take the Lie group representation of S3 and identify S3 with
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Figure 4: A translational fundamental domain of the triply periodic
MC1 surface O,C-TO (we use A. Schoen’s notation for a similar minimal
surface). The domain is inscribed in a cube and has all its symmetries.
The handle considered in the next figure sits in the middle of each face of
the cube.

the unitary quaternions such that for x ∈ S3 we have x = x0 + x1i + x2j + x3k.

We identify IR3 with the imaginary quaternions, Imx = (x1, x2, x3). With x̄ =

x0−x1i−x2j−x3k the quaternion product is x̄y := (〈x, y〉IR4 , x0 Im y−y0 Im x−
Im x × Im y).

Lemma 2 Let F : Ω → S3 be a minimal immersion, then the solution F̃ : Ω →
IR3 of the differential system

dF̃ = Im(FdF · Rπ/2)

Ñ = Im(FN)

is the conjugate MC1 surface in IR3.
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2.2 The period problem

The period problem (compare Figures 4, 5) arises for compact MC1 surfaces ex-

cept for the sphere. Suppose we want two planar symmetry arcs of a fundamental

MC1 domain to be contained in the same plane. This is usually the case when

an arc with total turn of the normal τ̃i = ±π is present. In general the n − 3

parameter family of conjugate surfaces obtained from the spherical Plateau solu-

tions leaves a nonzero translation, or period, between the two planes, and only a

surface with a zero translation can generate a compact surface. If the periods can

be closed at all, we expect that each period reduces the number of free parameters

by one. The periods make our examples isolated (probably unique) in the class of

surfaces we consider, i.e. with given symmetries: All examples in Section 5 have

n = 5 boundary arcs and give rise to two period problems, whereas the Wente

torus with n = 4 poses only one period problem.

In the easiest case of a one-parameter family the period problem is solved by

an intermediate value argument [Ka] [G]: Two parameters with opposite periods

are known, hence there is a surface with a vanishing period in between. Naturally,

to apply the intermediate value theorem requires continuity of the surfaces in the

parameter. This holds if the fundamental patch is a graph over a convex domain

(see [Ka]). In [G] a different argument is applied to the Wente torus; a continuous

family is selected by a mapping degree argument.

3 Numerical algorithm for discrete MC1 sur-

faces

Fundamental pieces of MC1 surfaces are rarely stable if they are considered as

a solution to a free boundary value problem (cf. Section 4.2). Hence a direct

numerical approach to the minimization of area under a volume constraint works

only under very restrictive hypotheses, for instance for graphs in tetrahedra, see

Anderson [ADNS]. Alternatively, integrals like
∫
(H − 1)2 could be minimized,

e.g. using Brakke’s evolver [Br].

Unlike the previous approaches the algorithm of Oberknapp and Polthier uses

the technique of discrete geometric surfaces and discrete descriptions of their

properties. Before, this was applied by Pinkall and Polthier [PP] to compute

minimal surfaces and their conjugates. The discrete technique does not try to

approximate the smooth problem as it is for instance the goal of the finite ele-

ment theory. Instead it reformulates the problem on a discrete level and uses a
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Figure 5: We demonstrate the period problem for O,C-TO. This surface
can be generated by building an additional handle into the middle of each
face of an I-WP MC1 surface. This handle on the left side of the first image
is too small (negative period, say), correctly sized in the second image (0
period), and too big (positive period) on the last image.

description which is exact on this level. The advantage of the discrete approach

comes from the fact that one tries to approximate a smooth situation only once,

namely in the last step when the discretization goes to zero.

Let us review the algorithm of Oberknapp and Polthier. For a detailed de-

scription we refer to [O] [OP]. The algorithm consists of two parts. The first part

is a method to compute the Plateau solution as a discrete minimal surface in S3.

The second part consists of a conjugation procedure to compute the MC1 sur-

face in euclidean space from the above Plateau solution. Before sketching the

minimization part let us clarify some terms:

Definition 3 (i) A discrete surface in S3 is a simplicial complex in IR4 consisting

of triangles whose vertices are restricted to S3 ⊂ IR4; the triangles may degenerate

to line segments or points. The surface is discrete minimal if variations of vertices

constrained to S3 do not decrease the area of the simplicial complex in IR4.

(ii) If two discrete surfaces M1, M2 have the same abstract triangulation then

a simplicial map f : M1 → M2 maps the corresponding vertices onto each other

and is linear on each triangle.
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For a simplicial map we define the Dirichlet energy by

E(f) =
1

2

∫
M1

|∇f |2 =
1

4

∑
edges ai

(cotαi + cotβi) |ai|2 ,

where |ai| denotes the length of the edge on the image surface and αi, βi are the

angles opposite to the edge ai in the two triangles containing ai in the domain.

To obtain such a simple formula it is crucial to use linearity for the simplicial

map in IR4 rather than considering maps constrained to S3. Starting with a

discrete initial surface M0 we define inductively simplicial surfaces Mk+1 to be

the images of the minimum energy maps f : Mk → X, where X runs through all

simplicial complexes with the correct boundary conditions. It can be shown that

the sequence Mk converges to a discrete minimal surface provided no triangles

degenerate.

In S3 the minimization routine needs an initial triangulation which is already

quite dense. This is a result of the fact that the polygonal boundary in IR4 of

the triangulation does only approximate the geodesic boundary in S3. For the

surface an area defect results from the small caps between the triangulation in IR4

and its projection to S3. Now, if the triangulation is very coarse, then the defect

becomes dominant. The effect which occurs is simliar to the following situation:

When minimizing the area of a triangle with vertices restricted to a given cirle,

then two vertices will move together. There are workarounds for this problem,

but at the moment there is nothing known which works consistently with the

conjugation algorithm other than our method above. This is an area of future

research.

In a minimum M the following equation is satisfied at every vertex p of the

triangulation

∂

∂p
E(id)|p =

1

2

∑
vertices qi

adjacent to p

(cot αi + cot βi)tanp(p − qi) = 0(6)

Here tanp : TpIR
4 → TpS

3 gives the tangential part of the vector p−qi. This allows

the discrete definition of conjugation. Geometrically (6) means that the weighted

tangential parts of the edges emanating from p in M add up to zero. Hence they

can be arranged as a closed polygon in the tangent space. This polygon is defined

to be the dual cell at the point p and can be understood as the integration of

∗dF := dF ◦ Rπ/2. Left translation moves the dual cell to the identity TidS
3,

where all cells are then reassembled (i.e. integration of the discrete data takes

place) to a discrete MC1 surface in IR3. If we take an Mk, k 6= 0, in place of the
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minimum, conjugation is defined as above and the MC1 surface is approximated.

The complete numerical algorithm consists of the following steps:

• Read vertex angles and the total turning angles τ̃i of the normal vector

along each edge γi of the fundamental patch for a euclidean MC1 candidate.

Guess edge lengths li. Fix n−3 lengths and take the remaining three lengths

as an initial condition for a rootfinder. By an adjustment of these three

lengths the rootfinder generates a polygonal contour Γ in S3 with the given

vertex angles and rotation of normal equal to ρi = li − τ̃i.

• Solve the Plateau problem for Γ. In our examples the Gauß curvature varies

considerably within a patch. Therefore interactive local refinement of the

triangulation in regions of high curvature is necessary.

• The conjugation algorithm transforms a discrete minimal surface in S3 into

a euclidean MC1 surface.

• Check periods of the resulting MC1 surface and repeat all steps with a

different set of n − 3 fixed initial lengths.

In practice we apply the algorithm to a one-parameter family of lengths at a time.

In principle, degeneracies can occur: The length of an edge can degenerate

to 0 and also different arcs of the contour can intersect and give rise to two non-

connected minimal patches which do not fulfill the original specification. Since

the trigonometric formulae for the edge lengths are involved we use a numerical

algorithm, a rootfinder, to compute the exact values. In practise we are ‘far away’

from these degeneracies.

4 Candidates and necessary conditions

Basically we follow Kapouleas’ idea to obtain candidates of MC1 surfaces. We

start with a graph with almost, but not exactly, integer edge lengths. In the

simplest case the edge length is always close to 2. Our MC1 surfaces are close to

spheres of radius 1 about the vertices of this graph. They are joint by handles

whenever the respective vertices on the graph are joint by edges, and the graph

is a topological retract of the MC1 surface. However, unlike Kapouleas, we do

not admit scalings of the graph. Instead, for a given graph we check for existence
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Figure 6: Delaunay surfaces: An embedded unduloid on the left, and on
the right a nodoid cut open to display its self-intersections.

of the respective MC1 surface. There are necessary conditions for the graph and

the types of handles we can use, that we want to describe in this section.

The prototypes of the handles we use are given by the Delaunay surfaces: We

will construct unduloidal handles that look like those of the embedded unduloids,

and, if small, resemble catenoids, and nodoidal handles that are close to the

merely immersed nodoids (see Figure 6). Compared to a chain of spheres the

period of the unduloids is bigger whereas the period of the nodoids is smaller. It

is therefore reasonable to take unduloidal handles on the edges with length bigger

than 2 and nodoidal handles on edges smaller than 2.

For the conjugate surface construction the type of handle we use is encoded

in the data of the boundary polygon. A graph with planar symmetries and

prescribed types of handles determines the vertex angles and total rotation of the

boundary polygon, but not its lengths. In particular the two types of handles

are distinguished by different values for the total turn of the normal τi. This

can be seen for the Delaunay surfaces: On the meridian of an unduloid the

interior normal has 0 total turn from one sphere to another, or almost +π in a

neighbourhood of a small neck; on the meridian of a nodoid the total turn is −2π

between two spheres, or −π in a neighbourhood of a small neck (cf. Figure 6).

However different ‘sizes’ of the handles are not distinguished by a different turn

of the normal but by a different weight, and therefore a different arc length, see

the next subsection.

Kapouleas used these two types of handles. Other handles are possible,

though: In [G] n spheres are joint directly with each other. We believe these

handles arise for compact MC1 surfaces too, see Figure 12 and 13. In this case

the graph contains edges with length close to 1, and the trinoidal handle is placed
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at the middle vertex .

4.1 The balancing formula

The balancing formula is due to Rob Kusner (see e.g. [KKMS, p.16ff]). To formu-

late the balancing formula we associate weights wi to each edge (or handle) of the

underlying graph of a MC1 surface. For each handle this weight is determined as

the integral of the conormal of a homological 1-cycle minus the integral over the

normal of a homological 2-cycle which is bounded by the 1-cycle. Suppose the

surface has a symmetry plane across a handle. We can take the 1-cycle γ to be the

planar curvature line in the symmetry plane winding once around a handle and

bounding a disk D in the symmetry plane. Then w = length(γ)− 2 area(D) > 0

for an unduloidal handle and w = −length(γ) − 2 area(D) < 0 for a nodoidal

handle.

For each edge we let ei be the unit vector pointing away from the vertex in

the direction of the edge and wi the weight of the corresponding handle. The

balancing formula requires that the weighted directions sum up to zero,

∑
wiei = 0,(7)

with the sum running over all edges emanating from the vertex. For a given graph

we can check that the distribution of unduloidal and nodoidal handles (reflected

in lengths bigger and less than 2) is consistent with the balancing formula, i.e. we

consider the signs in (7) only. In particular, if all vectors ei point into a half-

space as they do on the outermost vertices of a compact MC1 surface, then there

must be both positive and negative weights, or unduloidal and nodoidal handles.

The precise weights are assigned to the edges by the numerical algorithm for a

surface with zero periods. Hence (7) can be viewed as a necessary condition for

the periods to close.

4.2 Stability

Stability imposes limits on the ‘size’ of a fundamental domain we can deal with:

Since we use (both theoretically and numerically) the area minimizer to span a

given spherical contour, we require that the spherical minimal patch M is stable

with respect to a fixed boundary. This means that the second variation of area

of M in S3 is non-negative, or

0 ≤ δ2
uNarea(M) =

∫
M
|∇u|2 −

(
2 + |A|2

)
u2(8)
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holds for all compactly supported u (see e.g. [S]). On the other hand a MC1 sur-

face is a critical point of the functional [area − Hvol]. It is called stable if the

second variation of this functional is non-negative, or

0 ≤ δ2
uN(area(M̃) − Hvol(M̃)) =

∫
M̃
|∇u|2 − |Ã|2u2,(9)

see e.g. [BdC, L.2.8]. Provided the boundaries are fixed the stability of the eu-

clidean MC1 surface is equivalent to the stability of the conjugate minimal sur-

face, that is: conjugation respects stability. We thank Rob Kusner who suggested

the following lemma.

Lemma 4 Suppose M ⊂ S3 is a simply connected minimal surface and M̃ ⊂ IR3

is its conjugate MC1 surface. Then M is stable if and only if its conjugate M̃ is

stable.

Proof: We compare (8) and (9). If A =
(

λ κ
κ−λ

)
then |A|2 = 2λ2 + 2κ2. As in (4)

we get for a conformal metric Ã =
(

1−κ λ
λ 1+κ

)
and therefore |Ã|2 = 2+2λ2 +2κ2 =

2 + |A|2. 2

The notion of stability our construction yields for the MC1 patches seems to

be weaker than the sense of stability that arises from considering the MC1 patches

as critical points of area for fixed enclosed volume, and with boundary constrained

to the symmetry planes. E.g. a quarter of an unduloid bubble (or of an entire

unduloid) is stable for our construction, and this was necessary for us to compute

Figure ??; nevertheless a soap film experiment in a little cube cannot reproduce

any unduloid patch except for the cylindrical one (or part of the degenerate

sphere). Indeed it was shown in [A] that no unduloid patch is stable; for a

discussion of different notions of MC1 stability see [G].

A hemisphere and any subset of it is stable, whereas any superset is not

stable. Now our examples of MC1 surfaces are close to unions of spheres and

stability persists over small deformations. In our examples the stability of the

fundamental MC1 patches is not hard to believe (but not proved): the patches

consist of a quarter bubble of an outer sphere as well as some spherical triangle

on the central sphere (see e.g. Figure 8); for the icosahedral surface it is only a

tenth of the outer bubble (Figure 11). In general we expect that we can obtain

fundamental MC1 patches with no half-bubbles in a straightforward way with

our algorithm; if there are half-bubbles we are on the edge, and for fundamental

domains containing more than half-bubbles there we have no chance to construct

them.
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5 The examples and their numerics

To show how the conjugate surface method applies to compact surfaces we com-

puted three examples. We explain the Penta surface of genus 5 in detail and will

be more sketchy with the genus 30 and 3 surfaces.

The genus 5 surface Penta consists of 6 bubbles in fivefold symmetry, see Fig-

ure 1. Its graph looks like a Chrysler star. Suppose the radial edges have length

slightly less than 2. Then the six unit spheres about the vertices relate as fol-

lows: Each outer sphere intersects the central sphere, but the outer spheres leave

some space in between each other. Accordingly we place positive weights, i.e. un-

duloidal handles, on the pentagonal edges, and negative weights, i.e. nodoidal

handles, on the spokes.

When the handle size of the fundamental MC1 patch tends to 0 (i.e. its pa-

rameters are on the δ-axis in Figure 8) the fundamental patches degenerate: The

fundamental spherical patch degenerates to a two-gon with angle π/2 and a spher-

ical triangle with edge lengths π/5, π/2, π/2. The corresponding MC1 patches

degenerate to two touching spherical patches, again a two-gon and a triangle; its

periods are given by the deviation of the lengths of the underlying graph from 2.

.1

.2

.3

.4

.5

1.6 1.8 2.0 2.2 2.4

γ

δ

p

q

c

Figure 7: Numerical solution to the period problem for the Penta surface.
The curve c with winding number 1 contains the solution with zero periods
(at the empty circle) in its interior. The curve is plotted in terms of the
lengths of two curves of the closed boundary polygon, see the table above.
The fundamental patch displaying the periods at the points p and q is
given in Figure 8.
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Figure 8: Fundamental domains of two Penta surfaces with non-vanishing
periods. Top: Two different projections of the same fundamental domain
at the point p on the curve c, see Figure 7. The two different periods
are given by the distance between the pairs of horizontal boundary lines
in each projection. Bottom: Same for fundamental domain at q. At this
point both periods have the other sign compared to p.

In the following table we summarize the data for the surface. The second

row is the unduloidal handle curve, the last row the long curve containing the

nodoidal meridian.

arc (see total turn edge angle at length in length of patch

Fig.7) of normal τi end of arc degenerate patch with closed periods

δ −π/5 π/2 2.20 2.05

γ −π π/2 0 0.08

π π/2 1.57 1.72

−π/2 π/5 1.57 1.63

−5π/2 π/2 4.71 4.67

The periods give rise to a map f from the two-dimensional moduli space of
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Figure 9: Surface of genus 30 with the symmetry of an icosahedron with
unduloidal handles between the outer spheres and nodoidal handles joining
each outer sphere with the centre sphere.

the Penta surface (with non-closed periods) into the two-dimensional space of

periods. To locally parameterize the Penta surfaces we choose two lengths of the

boundary polygon, namely those of γ and δ in the table given above. We found a

closed curve c in the moduli space displayed in Figure 7 whose image under f has

winding number 1 around the origin in the period plane. The curve c must enclose

a surface with zero period which occurs at the parameter values corresponding

to the empty circle in Figure 7. More specifically, on each of the four arcs on c

one period changes sign whereas the other period keeps its sign. Numerically, we

computed the surfaces corresponding to the curve c. As an example we give the

fundamental patch for two points p, q on c in Figure 8.

For the genus 30 surface the balanced graph is an icosahedron with one extra

vertex in the midpoint and 12 more edges joining the midpoint to the vertices.

Take these edges of length slightly less than 2 and consider unit spheres about

each vertex as a starting surface. Then the centre sphere intersects the 12 outer

18



Figure 10: Fundamental domain for the icosahedral surface stereograph-
ically projected from S3 to IR3. The small arc at the bottom left is the
arc going half round the unduloidal handle, compare next figure. In the
degenerate situation this arc has 0 length; the patch is then disconnected
and conists of a two-gon with angle π/5 on the left and a spherical triangle
on the right.

Figure 11: Icosahedral surface: One of the 12 outer bubbles that are at-
tached to the centre-sphere with a nodoidal handle. A fundamental do-
main, conjugate to the spherical patch depicted in Figure 10 is highlighted.
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spheres, but these spheres do not touch each other. This is obvious from the fact

that in the less symmetric regular sphere packing each sphere touches 12 spheres.

Hence in the most symmetric packing some space must be left in between the

spheres. Accordingly we take nodoidal handles on the radial edges and unduloidal

handles on the icosahedral edges. This surface was suggested by U. Abresch and

is depicted in Figure 9.

The degenerate patch has two connected pieces: A spherical two-gon with

angle π/5 (compare left hand side of Figure 10) and a spherical triangle with

angles π/2, π/5, π/3 that is fundamental on S2 for the symmetry group of the

an icosahedron (see right hand side of the same figure). Again we summarize

the data in a table. The table runs through the arcs in the anti-clockwise sense

starting at the top left arc on Figure 10 or 11. The data in column 1 and 3 can

be computed using trigonometric formulas.

total turn edge angle at length in length of patch

of normal τi end of arc degenerate patch with closed periods

−0.554 π/2 1.94 1.74

−π π/2 0 0.10

−π π/2 1.57 1.77

−0.365 π/3 0.55 0.36

−6.94 π/5 3.79 3.59

The underlying graph of the genus 3 surface is an equilateral triangle with

three more edges from its midpoint to the triangle vertices. We take these spokes

of length slightly bigger than 1. The degenerate surface consists of three spheres.

These are joint by a trinoidal centre and nodoidal handles between each other.

The numerical evidence for this surface is not conclusive: A small period re-

mained, see Figure 14. In the forthcoming paper [GP] we discuss why it is

reasonable, though, to believe that this surface exists.
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Figure 12: A genus 3 MC1 surface. The existence of this surface is not
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Figure 14 and Section 5.
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Figure 14: One bubble of the genus 3 MC1 surface displays the remaining
period.
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