Oorange: A Virtual Laboratory for
Experimental Mathematics

C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz

Summary. Oorange is a virtual laboratory for experimental mathematics. It con-
sists of a set of infrastructure services supporting the creation, execution, and dis-
semination of mathematical experiments. For each component of a traditional phys-
ical experiment, there is a corresponding Oorange infrastructure feature:

Object of study: High level software classes

Laboratory equipment: Foundation software classes and function libraries
Configuration of specific experiment: Computational network composed of ob-
jects

Monitor and control: Object inspection; 2D and 3D viewers

Running the experiment: Animation objects

Recording the experiment: Archiving and scripting

o Disseminating result: Documentation

A hybrid language scheme underlies the design: interpreted scripts in T'¢l manage
tasks requiring high flexibility, while a compiled object library in Objective C sup-
ports the underlying mathematical algorithms. The resulting system is intended to
be accessible to wide range of expertise levels.

Oorangeis free software distributed according to a GNU-like license agreement.

1. Introduction

Experimentation has a distinguished tradition in mathematical research. Ex-
periments often play an important role in formulating new conjectures and
discovering paths toward the proof of such conjectures and of other results.
As computational resources have become more powerful in recent years, this
domain of activity is growing into a mathematical field in its own right, called
ezperimental mathematics. There is a perceived need for a standardization
so that experiments made by one researcher can be repeated or modified by
others with minimal effort.

The Oorange project is a response to this challenge. It is an initiative of the
Sonderforschungsbereich 288 of the Technical University Berlin, ” Differential
Geometry and Quantum Physik”. The project development commenced in

2 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz

September 1994, the first beta version was release Christmas 1995, and Ver-
sion 1.0 is slated for release in October 1996. We postpone an account of
previous work until Section 11. in order first to introduce the terminology in
which comparisons and historical influences can be expressed.

The key impulse behind the project is to create a framework for experi-
mental mathematics that is appropriate to the contents of this science. Since
the field of experimental mathematics is modeled on the traditional mod-
els of physical sciences, we found it useful to maintain the correspondences
to that realm. With this in mind, the following seven-fold subdivision of a
mathematical experiment is helpful:

e Object of study: High level software classes

e Laboratory equipment: Foundation software classes and function libraries
Configuration of specific experiment: Computational network composed of
objects

Monitor and control: Object inspection; 2D and 3D viewers

Running the experiment: Animation objects

Recording the experiment: Archiving and scripting

Disseminating result: Documentation

The correspondence to traditional experimental practice is only approx-
imate; significant differences arise from the non-physical nature of software.
For example, there is a further level of design necessitated by the fact that
there is no physical laboratory to hold all these components. Oorange is ac-
cordingly organized as a virtual laboratory, which presents a unified user
interface integrating all the above components.

In order to motivate the detailed discussion of the components we first
introduce the virtual laboratory.

2. Overview of the Oorange Virtual Laboratory

This description will proceed without technical details to give an overview of
how Qorange is used. Terms which are used without definition will be printed
in #talic font. They will be explained later on in the more detailed description
of each component.

Refer to the screen snapshot of an Oorange session You should see four
windows labeled: Network Manager, Inspector Manager, Scene Viewer, Script
Editor.

This image represents the view of Oorange upon loading the node file
CurveOnSurfacePick.nod. The upper right window displays a 3D scene fea-
turing a parametric surface on which a curve has been overlaid.

Begin by observing the Network Manager (see Section 4. and [12]) in
lower right window of Figure 2.1. You see the graphical representation of the
computational network which has been loaded. When Oorange is started, this

Oorange: A Virtual Laboratory for Experimental Mathematics 3

“Goens Vi

TSpeetor Ma =i
Path tool: fly Action [\] ~ Help

| J
23| surtace. Hotlist [R [~ Path Help |5 thescene
CoDataGrid 00172 no_name theDataGrid

Dim 2
code [fif

volume 40000
Min:

Max: 3.000000 4./81131 4.780982

Sizes: |<|m |>‘<‘W‘>‘
Multi-indesx: | < |ﬁ | > ‘ < “ﬁ ‘ > ‘

Contents: [=3.000(

I point camera M0 fly camers M roll camera

= a—— —

R ‘ W
CurveOnSurfacePick File Color |~ Global Up Help [|[] surface Font Edit [\ — Help
self newlngr: [OoFunction class] : ingr0 |

self newIngr: [OoDataGrid class] : ingri
self newbep: [OoDataGrid elass] : depl

s2lf setobject: [OoDataGrid neworphan]

method nedeUpdate {} {

cbject equals: [ingr0 =self] appliedTo: [ingrl self]
1

send: construct append to: nothing

)

Fig. 2.1. A screen snapshot showing the major components of the Oorange frontend

window is empty. Users can assemble networks by hand, node by node, using
the tools in the network manager; or they can load predefined nodes, as in
this case.

Each icon in the window represents a node; a node is a unit of compu-
tation. Each node contains an object or sub-network. An edge joining the
bottom on one icon to the top of another represents a dependency of the sec-
ond on the first. Whenever any node lying above is changed, then all nodes
which are below that object are updated to reflect the changed status. This
update process is one of the fundamental infrastructure services of Oorange.

The Network Manager contains only the graphical representation of the
network; using other components the actual contents of nodes can be exam-
ined and adjusted.

At any time, the Network Manager has a current selection. In this case,
it is the node labeled surface; its label is white. The script of the current

4 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz

selection is always displayed in the Script Editor (see Section 4.1 and [12]) to
the right of the Network Manager. This script contains a complete description
of the node and the state of its objects. These parts are generated automat-
ically as the network is assembled. This script is also the most common way
to customize the behavior of the node. For example, the nodeUpdate method
defines the commands which are invoked whenever the node is updated. Since
the language of the script is interpreted, the user can edit any part of the
script interactively and see the results immediately.

The current selection also appears in the Inspector Manager (see Section
5.) in the window above the Network Manager. In our example, the object
within the surface node is being inspected. By examining the Inspector
Manager window, you can see that it’s an object of class OoDataGrid, and
also can read off more information about its current state. Using this inspec-
tion panel you can edit the contents of the datagrid; the picture automatically
changes to display the updated data. That is, the various panels of the vir-
tual laboratory are synchronized so that changes made in one component are
propagated to others.

Finally, return to the Scene Viewer (see Section 5.2) in the upper right
window. It’s really also part of the inspection process, but it’s such a large
and self-sufficient part that it has been split off and given its own top-level
window. The viewer is an interactive 3D viewer [12]; on the right side of the
window are icons for choosing among the available interactive tools.

With this quick overview of how a running Oorange session appears, we
proceed to more detailed description of the underlying components.

3. Software ingredients

We begin with a sketch of the programming languages used in Oorange and
how they are related to one another.

3.1 Objective C

The primary language to represent mathematical objects (as ezperimental ob-
ject of study) is Objective C [1, 2]. The choice of an object-oriented language
can be justified by the fidelity with which these languages mirror the hier-
archical nature of mathematical structure. However the choice of the object-
oriented language is a subject of debate.

In contrast to its better known brother C++, Objective C offers a genuine
run-time system that allows new classes or new methods to be defined dur-
ing a running session [1]. This feature will be invoked often in the ensuing
discussion so that the wisdom of our decision will be hopefully established.

Oorange comes with over 200 Objective C classes. The majority of them
at this time are related to infrastructure functions. Many of these classes

Oorange: A Virtual Laboratory for Experimental Mathematics 5

will be introduced in the discussions of the specific components below. An
increasing number of more mathematically oriented classes are also in the
process of construction. See section 9. for a discussion of two of the most
useful foundation classes.

Objective C offers an alternative to subclassing via the use of protocols.
A protocol is a simply a set of method declarations; any class can choose to
implement any protocol. For example, Oorange uses protocols to define ani-
mation, archiving, inspection, and 3D geometry behavior. Participation in the
corresponding infrastructure service is then independent of class hierarchy.

There are also provided with Oorenge a wide set of C libraries of functions
supporting mathematical experiments. These are provided as functions rather
than objects in the interests of performance; some of these have object analogs
when ease of programming is more importance than raw performance.

3.2 Tcl

The other main language used in Oorange is Tcl [7, 14]. Roughly speaking, a
Tecllayer handles all user interaction. As an interpreted language, Tclis ide-
ally suited to rapid prototyping and flexible configuration. The coordination
of Tcland Objective C is, as described below, one of the strong points of the
design.

Oorange incorporates several T'cl packages or extensions to handle differ-
ent needs. Tk is used to create and update all GUI widgets. Other packages
are used to establish connections to the Objective Clayer. :Tcl, in conjunction
with Tk, is used to provide a class hierarchy of inspector panels that mirrors
the Objective C class hierarchy. libiclobjc [4] is a C library that allows Tel
interpreters to interact transparently with Objective C objects and vice-versa
[12]. Each Objective C class and instance appears as a command to the Tel
interpreter. Users can then issue class or instance method calls to the Tel
interpreter, which parses them and dispatches them directly through to the
Objective C runtime system. There is no need to register classes or methods
with interpreters; this information is obtained “for free” by querying the Ob-
jective C runtime system. Oorange extends this facility so that references to
classes which are not yet loaded will trigger dynamic loading of the required
library. This interplay between Objective C and Tecl (Figure 3.1) is one of
the most powerful features of Oorange and runs as a thread throughout the
following discussion.

Users are not expected to be proficient in Tcl; it is an advanced skill.

4. Computational network manager

Computation networks [6] are a popular programming paradigm for experi-
mental mathematics. The nodes of these networks each represent some com-
putational activity. For simplicity we call this the node’s action. Each node

6 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz

User Interface

Tk itcl inspectors

node scripts
el node interpeters

_. libtclobjc ‘

C libraries

Fig. 3.1. Schematic representation of relation of Tcl and Objective C in Oorange

may have a set of inputs and outputs; the inputs may be thought of as ar-
guments to the computation and the outputs as the results. Whenever the
inputs to a node change, then the node’s action is invoked to bring the out-
puts up to date.

The nodes are assembled into a directed graph by adding edges, each of
which connects an output of some node to an input. This establishes a depen-
dence of the second node on the first. Whenever the outputs of the first node
change, the second node’s action must be invoked. Implementations typically
provide an automatic algorithm which propagates such changes along the
edges of the graph and updates the nodes.

Cycles in the graph must be handled carefully by the update mechanism,
since they can easily lead to infinite loops. Most implementations have a
strategy to allow cycles; the computational action of some node is expected
to apply a conditional that terminates the loop in the update process. We
return to this below when discussing how Oorange handles this problem.

An important feature of any implementation of such computational net-
work is what exactly is passed from node to node. In data flow networks the
system manages the movement of data during the update process, typically
by copying the data along the edges from output to input. This model has
proved to be very successful when applied to a wide range of natural scientific
domains. The commercial packages AVS [13] and Explorer [3] are both based
on this model.

However the situation with respect to mathematical research is not sat-
isfactory. The disadvantages of existing data flow implementations for math-
ematical experiments are essentially twofold. First, there is a restricted set
of data types which can be moved along an edge. Most actual mathematical
structures do not fit into these simple types. Second the action of a given
node is typically difficult to modify. Update actions are typically written in
a compiled language such as C or Fortran; when it possible at all to mod-
ify them, such modifications require advanced programming skills, compilers,
and source code. In practice this restricts many researchers to using actions
which are not exactly what they want, or starting again from scratch and
creating a new one.

Oorange: A Virtual Laboratory for Experimental Mathematics 7

Oorange has maintained the essential update mechanism from the data
flow model but has replaced the fixed data types and fixed actions with more
flexible tissue. To begin with, Oorange concentrates on objects, rather than
data. The contents of the simplest Oorange nodes are Objective C objects.
Object pointers are passed from one node to the next along the edges of the
graph, freeing the user to pass arbitrary types of data between nodes.

Secondly, rather than having a compiled, relatively fixed update action ,
an QOorange node is provided with an editable Tclscript, the node script. This
typically consists of a sequence of Objective C statements (as explained above
in 3.2) directed at the contents or ingredients of the node. This script can be
modified, or new Objective C commands may be selectively executed before
adding them to the script. Node scripts combined with network nodes pro-
vide an elegant solution to simulating computational loops, such as iterated
convergence algorithms.

The Oorange network model, then, provides the flexibility and power that
the experimental mathematician needs to carry out his experiments.

How are Oorange networks constructed? They can be interactively assem-
bled in the Oorange Network Manager. This provides a visual “assembler”
for creating new nodes, loading existing subnetwork nodes, adding ports and
links, cutting and pasting, and a variety of other useful editing tasks.

4.1 The Script Editor

The original impulse to use Tclin Oorange networks was to provide editable
update actions. This proved so effective that a much wider application of Tcl
within the network manager eventually took form. In fact, Te¢l scripts be-
came the archiving medium for Oorange networks. As users construct or edit
networks in the network manager, a Tcl script is generated which describes
the state of the network as a sequence of Objective C commands (using libt-
clobjc — see Section 3.2). Because these scripts play such an important role
in the experimental process, they have been separated out from the standard
inspection process and given their own top-level window, the Script Editor.

In the script editor the user can see a complete description of the currently
selected node and the state of its objects. For example, in the figure above,
the currently selected node is Surface; its script appears in the script editor
to the right of the network manager.

Among the statements generated automatically in the network editor are
those which describe the dependents and ingredients, the links, and the con-
tents of the node. Others are provided by the node developer, in the form
of Tclprocedures which provide customized node behavior. The nodeUpdate
method is probably the most important of the latter, but there are others
which are invoked, for example, in connection with animation, 3D picking,
and node documentation. These scripts provide a powerful prototyping facil-
ity where ideas and algorithms can be developed and tested.

8 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz

At the bottom of the script editor window is a shell where the user can
type commands directly to the Tclinterpreter associated to the node. These
commands are immediately executed.

It is important to note that it is possible to be a productive user of
Oorange without learning Tecl or using the script editor. There are many
predefined nodes and networks which can be hooked together without having
to edit the attached scripts at all. And the subset of Te¢l which is used in the
scripts is almost identical to Objective C.

5. Object inspection

All objects in an Oorange network are subject to inspection [12]. The network
editor maintains a current selection, and this node is always inspected in the
Oorange inspection manager. The inspected object is not always a node, as
the following discussion will make clear.

The inspection manager queries the inspected object for its inspection
command. This is expected to be a T¢l command which when executed will
yield a set of panels of Tk widgets that represent the state of the object. The
inspection manager then controls the display of these panels. In order to take
advantage of the object hierarchy, Oorange implements its object inspectors
using :T'cl package [5], an object-oriented version of Tecl. In this way, a class
hierarchy of inspectors is built which mirrors the class hierarchy of Objective
C.

Normally, exactly one panel is displayed at one time in the inspector
manager. If the user desires to have a particular panel persist, he can add
it to a “hot-list” which contains a list of commonly inspected panels. This
avoids the proliferation of panels that, like a littered laboratory bench, can
sabotage the experimental task.

The inspector for a class allows the user to inspect the state of the instance
variables for a given instance of the class, and when appropriate, to edit that
state. The inspection process depends on whether the instance variable is
itself an instance of an Objective C class (see Section 5.1).

Any editing performed on an object within the inspector manager will
trigger the network update mechanism. This feature can be temporarily dis-
abled if several edits are desired before update occurs. Editing commands
can be automatically appended to the script of the node if a record of the
edit is desired.

There is an Oorange protocol OoClassFields which frees the programmer
from writing his own inspectors. Classes which conform to the protocol will
receive a default inspector which they can customize as required.

Another feature of the Oorange inspection process allows developers of
complicated nodes to make the node appear like a simple node to the inspec-
tion process. This is achieved by so-called file cabinets which encapsulate in
a single flat list, all the interesting objects contained anywhere within the

Oorange: A Virtual Laboratory for Experimental Mathematics 9

sub-network lying inside the node. For example, Figure 5.1 shows the file
cabinet interface to the standard SceneViewer node. Developers who wish to
add this feature to a node are only required to define a fileCabinet method
in the node script.

S R
(:ﬂSceneViewer Hotlist @ E Path Help

OoNode G037 SceneViewer fileCabinet

backColors\/ lightd \/ light1 \/ light? \/ appear }
/ matter \/ camera \/ drawable \/ offscreen \)GorldShaEes
/ device \/ tool \/ selection \/ pickPoint }

OoDataGrid $0378 no_name theDataGrid
Dim f
code |ﬁTﬁ

volume]47

Fig. 5.1. File Cabinet of the standard SceneViewer node

It is also possible to create inspection panels directly in the node script
without basing them on a Objective C object. Such panels are called private
panels. For example, a Tcl variable rather than an Objective C object may be
used to control the behavior of a node. It is possible then to create an inspec-
tor panel which allows editing of the value of this variable by implementing
an inspect method for the node script.

5.1 Navigation in the inspection manager

Once the current node is inspected, it is possible to navigate within the
inspector manager in three main ways:

e down: Inspect a sub-object
e lateral: Go to a different panel of the same object
e up: Return from inspection of a sub-object

The inspector manager maintains two menus to perform this navigation. The
first presents a list of down and laterel options available from the current
object. The second keeps a record of the sequence of sub-objects chosen with
the down option, so that the user can pop back up to any desired level at
any time.

5.2 Viewers

One further form of inspection is provided by Oorange which deserves men-
tion. Objects which consist of 2-D (3-D) data can be inspected with a 2-D
(3-D) viewer provided with Oorange. These viewers share a common pro-
tocol, OoToolProtocol, which describes an tool interface for handling mouse
down/drag/up events.

10 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz

The 2-D viewer [12] supports a wide variety of operations on 2-D images,
including arbitrary resizing and translation, and reading and writing a wide
variety of file formats. The underlying object is the general OoDataGrid class
(see Section 9.).

The 3-D viewer [12] is supported by a large class library in major features
similar on the Inventor class library originally from SGI. There is a device-
dependent core which currently supports OpenGL (immediate and offscreen
modes) and mentalray (a commercial ray tracer). Point sets can be either
3 or 4 dimensional, of float or double type. There are classes for cameras,
lights, appearances, materials, fog, textures, drawables, bounds, pick actions,
and transforms. Every viewer must contain a scene, which is the root of a
scene graph describing the scene. Scenes contain a drawable, a camera, a
device, and several stacks. There are a variety of shape related classes. The
base class is shape group, which has a list of children. Shape kits have ad-
ditionally a transform, an appearance, a material, a texture, and a texture
transform. Shape instances have a list of transforms. Finally, there are geo-
metric types including indexed face sets, quadrilateral meshes, indexed line
sets, triangulations, and cube/cone/sphere/tori classes.

Interaction in the 3-D viewer is provided through a variety of standard
tools, which can be used to select a particular shape and rotate/translate/scale
it; or to move the camera. There is a wild card tool which distributes the cur-
rent pick information to the scene graph. A user can create a customized tool
at a node simply by adding mouseDown, mouseDrag, and/or mouseUp proce-
dures to the script (analogous to the nodeUpdate method). For example, in
the node shown in Figure 2.1, a mouseDrag procedure allows the user to drag
the curve by its center around on the surface. More sophisticated uses are
easy to imagine and implement.

6. Time

One of the essential elements present in the physical laboratory which must
be re-created for the virtual laboratory under discussion here, is time. Its
importance in the overall design can hardly be overstated. Every experiment
runs its course in the river of time. Experiments are described, controlled,
and recorded in terms of the passage of time. In order to provide a convincing
simulacrum of the real thing, time has a special status within the Oorange
design [12].

Time has its own distribution system based on a tree of time managers.
Each time manager is attached to a specific node and is responsible for all
animated objects in the node or its children. Compare [9] for a similar time
concept.

Objects can participate in the flow of time by conforming to one of several
animation protocols, (each of which is a prerequisite of the next):

Oorange: A Virtual Laboratory for Experimental Mathematics 11

e OoAnimated defines methods that apply to any object that is interested in
time.

o OoValueAnimated extends the OoAnimated protocol for objects that have
values that depend on time.

o OoKeyAnimated extends the OoAnimated protocol by allowing manipula-
tion of key frames.

When a new instance of an animated object is created, it has the respon-
sibility to register itself with the time manager of its containing node. Time
managers relay animated methods to the animated objects registered with
them.

The current Oorange class library includes animated classes for numbers
(floats and doubles), vectors, colors, and linear transformations. The vectors
can be elements of the classical spaces E3, H3, S$3 or P® (euclidean, hyper-
bolic, spherical, or projective 3-space). Euclidean similarities are decomposed
into appropriate factors which are then interpolated. All interpolation cur-
rently is linear.

The design philosophy of Oorange is to avoid using animated variables as
instance variables of objects; instead, use ordinary variables (floats, vectors,
etc) as instance variables and use networks to connect animated variables
to these variables. This simplifies the code of objects and lets the network
update mechanism take care of keeping all variables synchronized to the
current time.

6.1 The hierarchy of time managers

Time managers themselves are animated objects and register with the time
manager of their “father” node. This results in the creation of a shadow
hierarchy of time managers. There are no lateral connections between time
managers. On first sight, this profusion of time managers might seem to be an
extravagance of questionable value. However, the advantages of the hierarchy
have become clear as Oorange has matured:

local time Time can be dilated and translated for a given sub-tree of the
hierarchy. Or, time related actions can be restricted to a sub-tree by
concentrating attention on the time manager based at that sub-tree. Key
frames can be restricted to a sub-tree, or animations can be played back
only for it.

nested time This is analogous to the minute and second hands of a watch.
In many computational processes there are actually such nested forms of
time. For example, a surface may be built of a curve swept across space.
The second hand, sitting in a time manager within a sub-network, would
control the generation of one curve, while the minute hand, sitting in the
time manager of the “father” node, would control the accumulation of
successive curves into one surface.

12 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz

6.2 Tcl scripts and time

Nodes can participate in the time flow even if there are no Objective C an-
imated objects within the node. It is possible to force the time manager to
be created and activated. Then, the update script of the node can query the
time manager as to the state of the animation and take appropriate action.
For example, this is how movies are recorded from the output of the viewers.
If there is special actions to be taken at the beginning or end of an anima-
tion, then the node should provide procedures named beginAnimation and
endAnimation to perform these actions.

7. Archiving

One of the goals of Oorange development was to avoid creating another file
format if possible. This goal has been partially reached, in the following sense:
Instances of Oorange objects archive themselves as Tel scripts containing
Objective C method calls (see Section 3.2). That is, the format of the archive
is mplicit in the definition of the object rather than being imposed from
outside.

To be exact, the sequence of the archiving method calls is governed by
the OoClassFields protocol. This protocol was mentioned in 5. above with
respect to inspection. As there, the situation here requires that a class pro-
vide a description of its instance variables. In this case, the protocol provides
information from which the set/get methods for all public, “archivable” in-
stance variables, can be generated. Then, for each such pair, the get method
is invoked by the Tclinterpreter and yields a string which is then appended
to the set method name to yield an Objective C statement which is appended
to the archive file. Here we skip over various subtleties described in more
detail in the protocol documentation.

The resulting archive is in ASCII form, so that experiments can be edited
and exchanged in a human readable form.

The possibility of including predefined network nodes within a larger net-
work presents a serious challenge for the archiving process, since users need
to be able to save changes to an included node without losing the reference
to that node. Oorange provides a solution to this problem by recording a set
of change commands along with the reference to the included node.

8. Documentation

Clear and ubiquitous documentation is central to the Oorange philosophy. To
begin with, all Oorange documentation exists in HTML format, and is directly
accessible from within Oorange. There are several levels of documentation
available:

Oorange: A Virtual Laboratory for Experimental Mathematics 13

e Tutorials: There are currently nine tutorials describing various aspects of
the Oorange system. These are intended for new users and cover the topics
of overview, network editor, the Tcl/Objective C connection, 3D viewing,
2D viewing, animation, inspection, datagrids and functions, and adding
new classes to Oorange. These can be loaded from Oorange into an HTML
browser.

e Class documentation: Oorange provides a documentation extraction system
“Objective-Doc” [12], which acts on class interface files and source files
to generate INTpX or HTML files containing documentation including the
following features:

— automatic generation of class hierarchy above this class with links
— class description

class and instance method names

— instance variables

insertion of links to other classes or methods
Protocols and categories are handled similarly. The resulting documents
are available through a Web-based class browser (Figure 8.1).

e Node documentation: annotete methods (analogous to the nodeUpdate
method) can be attached to any node script to provide node customized
documentation for the node. This can be as simple as a character string
to be displayed above the node icon, or an arbitrary HTML document can
be loaded into the browser of your choice.

e Search capability: The Web-based documentation is equipped with a gen-
eral search capability.

etscape: Qorange Documentation

Location: ‘ http:/Aww-sfh2B8.math. tu-ber1in.de/oorange/Norangeloc . hitm] ‘
A
Class Na.me:‘ OoMPEG ‘ load
[Class Tyee] [Dorange Horne' ¥
Oorange OoMPEG =
Documentation Inherits from: — |
... CoObject : Object =
. Declared In:
® Getting started objc/OoMPEG.h =
Author:
o Nerwork Manager era Felvrars
s 2D Turorial Class Description
» 3D Tutorial 00MPEG is an interface to an external MPEG - encoding
, program. It uses zpeg written by Andy Hung, Stanford
s Adding new University. The input images get converted to senarated
lesis YUV format and ar= =

Fig. 8.1. The class browser of the Oorange Online documentaion

14 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz

9. Workhorse classes: OoDataGrid and QoFunction

Rather than try to describe the class hierarchy provided by Oorange, we limit
our discussion to two foundation classes which are part of many Oorange net-
works [12]. The first, OoDataGrid, represents arbitrary multiple dimensional
arrays with an arbitrary “fiber” of data at each entry. This fiber is repre-
sented as a character string (adopted from Objective C) with one character
for each entry. For example, “ddd” represents a chunk of data consisting
of three double precision numbers, while “difz” represents a sequence of a
double, integer, float, and complex packed together.

The datagrid class is the class underlying images and shapes. The cur-
rently selected node in the Oorange session image contains an instance of this
class; the inspector for the instance is highlighted in the inspector manager
above the network editor. There are a wide range of operations defined on
OoDataGrid, such as resize, convolution, fiber re-mapping, fiber conversion,
grid reformatting, and contraction. Datagrids can be combined by binary
arithmetic operations, tensor product, or appending; or extracted by slicing.

Closely coupled with datagrids is OoFunction. This is an object wrap-
per for a C-function with arbitrary input and output, which can be edited,
compiled and dynamically linked into a running Oorange session. In this way
users can usually adapt existing C code to run in Oorange without having
to learn or create any Objective C code. In particular, the full power of stan-
dard C libraries can be harnessed within Oorange. Functions can be applied
to datagrids to yield an image datagrid.

10. Connectivity to other programs

Using the Tcl ezpect package it is possible to establish dialogs within Oorange,
with other running programs. This package facilitates sending commands to
remote programs and returning results. The program must accept some sort
of interactive command stream. This has been succesfully done with Mathe-
matica [16], and refined to the point that arrays generated in Mathematica
can be converted to OoDataGrid’s, and vice-versa, surfaces generated in Oor-
ange can be shipped to Mathematica to generate Postscript output. This is a
very good example, since the strengths and weaknesses of the two products
are well-matched: Oorange provides an articulated object-oriented structure
that Mathematica lacks, while Mathematica can be invoked for symbolic com-
putation. A fitting image of the relationship is that Oorange is a sturdy tree
and Mathematica a fruitful vine climbing upon it.

11. Previous work

Oorange has borrowed and/or inherited features from a variety of software
products, each of which addressed in some way the challenge of the virtual

Oorange: A Virtual Laboratory for Experimental Mathematics 15

laboratory. One of these influences is GRAPE [11], a mathematical program-
ming environment of the SFB 256 at the University of Bonn. GRAPE pi-
oneered an object oriented approach similar to Objective C in connection
with mathematical visualization. The focus on data objects was extended in
Oorange to the concept of a dependency graph of programmable objects.

Geomuiew [8], a 3D visualization tool from the Geometry Center, features
the concept of an ezternal module, an independent computational unit which
feeds geometric information to the viewer and vice-verse. This concept is
similar to the node in Oorange. geomview lacks however the ability to create
network graphs from nodes; the default graph is a star with the viewer at
the center and external modules on the periphery. AVS, as described above
(Section 4.), is a ancestor of Oorange and much of the network design was a
response to its perceived shortcomings.

Open Inventor [15] had a strong influence on the design of the 3D classes.
However, Oorange chose a more flexible node model than Open Inventor’s,
in which the node and its contents are more separated. New node contents
in Inventor is achieved typically by subclassing the node class. VTK [10]
deserves mention here even though it has no influence on Oorange, since it
was developed simultaneously and independently. It offers a Tclinterface to a
large C++ class library focused on 3D visualization tasks. There are AVS-like
data flow classes.

The inspection component of Oorange is, to our knowledge, more sophis-
ticated than the analogous services offered in other existing systems. The
integration of the animation component with the network update mechanism
appears to be an original contribution.

12. Future directions

There remain some unresolved design issues. The connection of Te¢l and Ob-
jective C layers has been a theme throughout the development process. The
primary challenge is knowing exactly how to subdivide the tasks between
the two languages. The dividing line cannot be hard and fast; some tasks
prototyped in Tecl will naturally migrate to Objective C after they have been
proven. But even after this has been factored out it is not always clear where
to make the division. threads, garbage collection, error handling

Some unsolved problems arise from the extremely loose coupling between
Oorange nodes and their contents. This is a source of strength, but also makes
it hard sometimes to be efficient. In Open Inventor for example dependencies
between objects are registered and so dependent objects can be easily identi-
fied; while in Oorange dependencies may be defined in node scripts and may
influence only some of the instance variables of the dependent object, mak-
ing this identification difficult if not impossible. As a result, dependencies in
the network graph are not consistently enforced in the inspection manager.
That is, users are allowed to edit objects which in reality are controlled by

16

upstream objects. The result is that node update will overwrite the user’s
editing.

Finally, one of the original but not-yet-implemented goals of Oorange is
to use the “distributed objects” feature of Objective C to instantiate nodes on
a network. The node design of Oorange should make this easy to do, as long
as developers observe the convention that a node represents an independent
unit of computation.

13. Conclusion

With Oorange we have endeavored to create a virtual laboratory for conduct-
ing mathematical experiments. Our strategy was to design and implement
infrastructure services that correspond to the component elements of the ex-
perimental process, and then to assemble these components into a seamless
whole. We have confirmed the essential features of the design. We consider
the following features to be particularly important advances on the existing
solutions:

e Synergy of Tcland Objective C layers allowing easy prototyping and grad-
ual learning curve without sacrificing high performance.

e Object— rather than action—based network model.

e Ubiquitous presence of time in the model.

e Easy integration of existing resources (either as C—code or as co—executable).

With the distribution of Version 1.0 to the general public we hope that
a wider user community will find its way to join the development outlined
above.

14. Acknowledgements

Other members of the Oorange development team, both current and past,
include David Oliver, Axel Friedrich, Pat McDonough, and Markus Schmies.

Appendix: Availability

On the level of hardware, Oorange currently runs on SGI machines and Linux-
based PC’s. In the near future we plan to port to Solaris platforms also. Qor-
ange is free software distributed according to a GNU-like license agreement.
A binary version may be obtained from one of several anonymous fip sites.
Up-to-date information about Oorange and its distribution is available
at the World Wide Web server of the Sonderforschungsbereich Differential
Geometry and Quantum Physics: http://www-sfb288.math.tu-berlin.de

Appendix: Availability 17

10

10.

11.

12.

13.

14
15
16

. Addison-Wesley Publishing Company, Reading, Massachusetts. NeXTSTEP

Object Oriented Programming and the Objective C Language, 1993. ISBN 0-
201-63251-9.

. B.J. Cox and A. J. Novobilski. Object Oriented Programming: An Evolutionary

Approach. Addison-Wesley Publishing Company, Reading, Massachusetts, 1991.
ISBN 0-201-54834-8.

. M.-A. Halse. IRIS Ezplorer User’s Guide. Silicon Graphics Inc., Mountain

View, California, 1993.
R. A. McCallum. Libtclobjc, 1994.

. M. J. McLennan. [incr Tcl]: Object-oriented programming in tcl. Technical

report, University of California at Berkeley, 1993.

A. Ortmann. Modellierung von Abhangigkeitsgraphen, Feb 19986.

J. K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series.
Addison Wesley, 1994.

M. Phillips. The Geomview User’s Manual. The Geometry Center, 1993.

. K. Polthier and M. Rumpf. A concept for time-dependent processes. In

M. Gobel, H. Miller, and B. Urban, editors, Visualization in Scientific Com-
puting. Springer Verlag, 1995.

W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, An
Object-Oriented Approach To 3D Graphics. Prentice Hall, 1996.
Sonderforschungsbereich 256, University of Bonn. GRAPE Manual, Sept. 1995.
Online information http://www-sfb256.iam.uni-bonn.de/grape/main.html.
Sonderforschungsbereich Differential Geometry and Quantum Physics, Techni-
cal University Berlin. OORANGE Online Manual, Sept. 1995. URL http://www-
sfb288.math.tu-berlin.de/oorange/OorangeDoc.html.

C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Guz-
witz, and A. van Dam. The application visualisation system: A computational
environment for scientific visualisation. IEEE Computer Graphics and Applica-
tions, 9:30—42, 1989.

. B. Welch. Practical Programming in Tcl and Tk. Prentice Hall, 1995.

. J. Wernecke. The Inventor Mentor. Addison Wesley, 1994.

. 5. Wolfram. Mathematica. Addison Wesley, 1991.

