
Oorange: A Virtual Laboratory forExperimental MathematicsC. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz
Summary. Oorange is a virtual laboratory for experimental mathematics. It con-sists of a set of infrastructure services supporting the creation, execution, and dis-semination of mathematical experiments. For each component of a traditional phys-ical experiment, there is a corresponding Oorange infrastructure feature:� Object of study: High level software classes� Laboratory equipment: Foundation software classes and function libraries� Con�guration of speci�c experiment: Computational network composed of ob-jects� Monitor and control: Object inspection; 2D and 3D viewers� Running the experiment: Animation objects� Recording the experiment: Archiving and scripting� Disseminating result: DocumentationA hybrid language scheme underlies the design: interpreted scripts in Tcl managetasks requiring high exibility, while a compiled object library in Objective C sup-ports the underlying mathematical algorithms. The resulting system is intended tobe accessible to wide range of expertise levels.Oorange is free software distributed according to a GNU-like license agreement.1. IntroductionExperimentation has a distinguished tradition in mathematical research. Ex-periments often play an important role in formulating new conjectures anddiscovering paths toward the proof of such conjectures and of other results.As computational resources have become more powerful in recent years, thisdomain of activity is growing into a mathematical �eld in its own right, calledexperimental mathematics. There is a perceived need for a standardizationso that experiments made by one researcher can be repeated or modi�ed byothers with minimal e�ort.The Oorange project is a response to this challenge. It is an initiative of theSonderforschungsbereich 288 of the Technical University Berlin, "Di�erentialGeometry and Quantum Physik". The project development commenced in



2 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. SchwarzSeptember 1994, the �rst beta version was release Christmas 1995, and Ver-sion 1.0 is slated for release in October 1996. We postpone an account ofprevious work until Section 11. in order �rst to introduce the terminology inwhich comparisons and historical inuences can be expressed.The key impulse behind the project is to create a framework for experi-mental mathematics that is appropriate to the contents of this science. Sincethe �eld of experimental mathematics is modeled on the traditional mod-els of physical sciences, we found it useful to maintain the correspondencesto that realm. With this in mind, the following seven-fold subdivision of amathematical experiment is helpful:� Object of study: High level software classes� Laboratory equipment: Foundation software classes and function libraries� Con�guration of speci�c experiment: Computational network composed ofobjects� Monitor and control: Object inspection; 2D and 3D viewers� Running the experiment: Animation objects� Recording the experiment: Archiving and scripting� Disseminating result: DocumentationThe correspondence to traditional experimental practice is only approx-imate; signi�cant di�erences arise from the non-physical nature of software.For example, there is a further level of design necessitated by the fact thatthere is no physical laboratory to hold all these components. Oorange is ac-cordingly organized as a virtual laboratory, which presents a uni�ed userinterface integrating all the above components.In order to motivate the detailed discussion of the components we �rstintroduce the virtual laboratory.2. Overview of the Oorange Virtual LaboratoryThis description will proceed without technical details to give an overview ofhow Oorange is used. Terms which are used without de�nition will be printedin italic font. They will be explained later on in the more detailed descriptionof each component.Refer to the screen snapshot of an Oorange session You should see fourwindows labeled: Network Manager, Inspector Manager, Scene Viewer, ScriptEditor.This image represents the view of Oorange upon loading the node �leCurveOnSurfacePick.nod. The upper right window displays a 3D scene fea-turing a parametric surface on which a curve has been overlaid.Begin by observing the Network Manager (see Section 4. and [12]) inlower right window of Figure 2.1. You see the graphical representation of thecomputational network which has been loaded. When Oorange is started, this



Oorange: A Virtual Laboratory for Experimental Mathematics 3

Fig. 2.1. A screen snapshot showing the major components of the Oorange frontendwindow is empty. Users can assemble networks by hand, node by node, usingthe tools in the network manager; or they can load prede�ned nodes, as inthis case.Each icon in the window represents a node; a node is a unit of compu-tation. Each node contains an object or sub-network. An edge joining thebottom on one icon to the top of another represents a dependency of the sec-ond on the �rst. Whenever any node lying above is changed, then all nodeswhich are below that object are updated to reect the changed status. Thisupdate process is one of the fundamental infrastructure services of Oorange.The Network Manager contains only the graphical representation of thenetwork; using other components the actual contents of nodes can be exam-ined and adjusted.At any time, the Network Manager has a current selection. In this case,it is the node labeled surface; its label is white. The script of the current



4 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarzselection is always displayed in the Script Editor (see Section 4.1 and [12]) tothe right of the Network Manager. This script contains a complete descriptionof the node and the state of its objects. These parts are generated automat-ically as the network is assembled. This script is also the most common wayto customize the behavior of the node. For example, the nodeUpdatemethodde�nes the commands which are invoked whenever the node is updated. Sincethe language of the script is interpreted, the user can edit any part of thescript interactively and see the results immediately.The current selection also appears in the Inspector Manager (see Section5.) in the window above the Network Manager. In our example, the objectwithin the surface node is being inspected. By examining the InspectorManager window, you can see that it's an object of class OoDataGrid, andalso can read o� more information about its current state. Using this inspec-tion panel you can edit the contents of the datagrid; the picture automaticallychanges to display the updated data. That is, the various panels of the vir-tual laboratory are synchronized so that changes made in one component arepropagated to others.Finally, return to the Scene Viewer (see Section 5.2) in the upper rightwindow. It's really also part of the inspection process, but it's such a largeand self-su�cient part that it has been split o� and given its own top-levelwindow. The viewer is an interactive 3D viewer [12]; on the right side of thewindow are icons for choosing among the available interactive tools.With this quick overview of how a running Oorange session appears, weproceed to more detailed description of the underlying components.3. Software ingredientsWe begin with a sketch of the programming languages used in Oorange andhow they are related to one another.3.1 Objective CThe primary language to represent mathematical objects (as experimental ob-ject of study) is Objective C [1, 2]. The choice of an object-oriented languagecan be justi�ed by the �delity with which these languages mirror the hier-archical nature of mathematical structure. However the choice of the object-oriented language is a subject of debate.In contrast to its better known brother C++, Objective C o�ers a genuinerun-time system that allows new classes or new methods to be de�ned dur-ing a running session [1]. This feature will be invoked often in the ensuingdiscussion so that the wisdom of our decision will be hopefully established.Oorange comes with over 200 Objective C classes. The majority of themat this time are related to infrastructure functions. Many of these classes



Oorange: A Virtual Laboratory for Experimental Mathematics 5will be introduced in the discussions of the speci�c components below. Anincreasing number of more mathematically oriented classes are also in theprocess of construction. See section 9. for a discussion of two of the mostuseful foundation classes.Objective C o�ers an alternative to subclassing via the use of protocols.A protocol is a simply a set of method declarations; any class can choose toimplement any protocol. For example, Oorange uses protocols to de�ne ani-mation, archiving, inspection, and 3D geometry behavior. Participation in thecorresponding infrastructure service is then independent of class hierarchy.There are also provided with Oorange a wide set of C libraries of functionssupporting mathematical experiments. These are provided as functions ratherthan objects in the interests of performance; some of these have object analogswhen ease of programming is more importance than raw performance.3.2 TclThe other main language used in Oorange is Tcl [7, 14]. Roughly speaking, aTcl layer handles all user interaction. As an interpreted language, Tcl is ide-ally suited to rapid prototyping and exible con�guration. The coordinationof Tcl and Objective C is, as described below, one of the strong points of thedesign.Oorange incorporates several Tcl packages or extensions to handle di�er-ent needs. Tk is used to create and update all GUI widgets. Other packagesare used to establish connections to the Objective C layer. iTcl, in conjunctionwith Tk, is used to provide a class hierarchy of inspector panels that mirrorsthe Objective C class hierarchy. libtclobjc [4] is a C library that allows Tclinterpreters to interact transparently with Objective C objects and vice-versa[12]. Each Objective C class and instance appears as a command to the Tclinterpreter. Users can then issue class or instance method calls to the Tclinterpreter, which parses them and dispatches them directly through to theObjective C runtime system. There is no need to register classes or methodswith interpreters; this information is obtained \for free" by querying the Ob-jective C runtime system. Oorange extends this facility so that references toclasses which are not yet loaded will trigger dynamic loading of the requiredlibrary. This interplay between Objective C and Tcl (Figure 3.1) is one ofthe most powerful features of Oorange and runs as a thread throughout thefollowing discussion.Users are not expected to be pro�cient in Tcl; it is an advanced skill.4. Computational network managerComputation networks [6] are a popular programming paradigm for experi-mental mathematics. The nodes of these networks each represent some com-putational activity. For simplicity we call this the node's action. Each node



6 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz
6666666666666666666666666666
6666666666666666666666666666
6666666666666666666666666666
6666666666666666666666666666
6666666666666666666666666666
6666666666666666666666666666
6666666666666666666666666666
6666666666666666666666666666
6666666666666666666666666666
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111

User Interface
Tk itcl inspectors

Objective-C
nodes
node contents

C libraries

TCL node scripts
node interpeters

libtclobjcFig. 3.1. Schematic representation of relation of Tcl and Objective C in Oorangemay have a set of inputs and outputs; the inputs may be thought of as ar-guments to the computation and the outputs as the results. Whenever theinputs to a node change, then the node's action is invoked to bring the out-puts up to date.The nodes are assembled into a directed graph by adding edges, each ofwhich connects an output of some node to an input. This establishes a depen-dence of the second node on the �rst. Whenever the outputs of the �rst nodechange, the second node's action must be invoked. Implementations typicallyprovide an automatic algorithm which propagates such changes along theedges of the graph and updates the nodes.Cycles in the graph must be handled carefully by the update mechanism,since they can easily lead to in�nite loops. Most implementations have astrategy to allow cycles; the computational action of some node is expectedto apply a conditional that terminates the loop in the update process. Wereturn to this below when discussing how Oorange handles this problem.An important feature of any implementation of such computational net-work is what exactly is passed from node to node. In data ow networks thesystem manages the movement of data during the update process, typicallyby copying the data along the edges from output to input. This model hasproved to be very successful when applied to a wide range of natural scienti�cdomains. The commercial packages AVS [13] and Explorer [3] are both basedon this model.However the situation with respect to mathematical research is not sat-isfactory. The disadvantages of existing data ow implementations for math-ematical experiments are essentially twofold. First, there is a restricted setof data types which can be moved along an edge. Most actual mathematicalstructures do not �t into these simple types. Second the action of a givennode is typically di�cult to modify. Update actions are typically written ina compiled language such as C or Fortran; when it possible at all to mod-ify them, such modi�cations require advanced programming skills, compilers,and source code. In practice this restricts many researchers to using actionswhich are not exactly what they want, or starting again from scratch andcreating a new one.



Oorange: A Virtual Laboratory for Experimental Mathematics 7Oorange has maintained the essential update mechanism from the dataow model but has replaced the �xed data types and �xed actions with moreexible tissue. To begin with, Oorange concentrates on objects, rather thandata. The contents of the simplest Oorange nodes are Objective C objects.Object pointers are passed from one node to the next along the edges of thegraph, freeing the user to pass arbitrary types of data between nodes.Secondly, rather than having a compiled, relatively �xed update action ,an Oorange node is provided with an editable Tcl script, the node script. Thistypically consists of a sequence of Objective C statements (as explained abovein 3.2) directed at the contents or ingredients of the node. This script can bemodi�ed, or new Objective C commands may be selectively executed beforeadding them to the script. Node scripts combined with network nodes pro-vide an elegant solution to simulating computational loops, such as iteratedconvergence algorithms.The Oorange network model, then, provides the exibility and power thatthe experimental mathematician needs to carry out his experiments.How are Oorange networks constructed? They can be interactively assem-bled in the Oorange Network Manager. This provides a visual \assembler"for creating new nodes, loading existing subnetwork nodes, adding ports andlinks, cutting and pasting, and a variety of other useful editing tasks.4.1 The Script EditorThe original impulse to use Tcl in Oorange networks was to provide editableupdate actions. This proved so e�ective that a much wider application of Tclwithin the network manager eventually took form. In fact, Tcl scripts be-came the archiving medium for Oorange networks. As users construct or editnetworks in the network manager, a Tcl script is generated which describesthe state of the network as a sequence of Objective C commands (using libt-clobjc { see Section 3.2). Because these scripts play such an important rolein the experimental process, they have been separated out from the standardinspection process and given their own top-level window, the Script Editor.In the script editor the user can see a complete description of the currentlyselected node and the state of its objects. For example, in the �gure above,the currently selected node is Surface; its script appears in the script editorto the right of the network manager.Among the statements generated automatically in the network editor arethose which describe the dependents and ingredients, the links, and the con-tents of the node. Others are provided by the node developer, in the formof Tcl procedures which provide customized node behavior. The nodeUpdatemethod is probably the most important of the latter, but there are otherswhich are invoked, for example, in connection with animation, 3D picking,and node documentation. These scripts provide a powerful prototyping facil-ity where ideas and algorithms can be developed and tested.



8 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. SchwarzAt the bottom of the script editor window is a shell where the user cantype commands directly to the Tcl interpreter associated to the node. Thesecommands are immediately executed.It is important to note that it is possible to be a productive user ofOorange without learning Tcl or using the script editor. There are manyprede�ned nodes and networks which can be hooked together without havingto edit the attached scripts at all. And the subset of Tcl which is used in thescripts is almost identical to Objective C.5. Object inspectionAll objects in an Oorange network are subject to inspection [12]. The networkeditor maintains a current selection, and this node is always inspected in theOorange inspection manager. The inspected object is not always a node, asthe following discussion will make clear.The inspection manager queries the inspected object for its inspectioncommand. This is expected to be a Tcl command which when executed willyield a set of panels of Tk widgets that represent the state of the object. Theinspection manager then controls the display of these panels. In order to takeadvantage of the object hierarchy, Oorange implements its object inspectorsusing iTcl package [5], an object-oriented version of Tcl. In this way, a classhierarchy of inspectors is built which mirrors the class hierarchy of ObjectiveC. Normally, exactly one panel is displayed at one time in the inspectormanager. If the user desires to have a particular panel persist, he can addit to a \hot-list" which contains a list of commonly inspected panels. Thisavoids the proliferation of panels that, like a littered laboratory bench, cansabotage the experimental task.The inspector for a class allows the user to inspect the state of the instancevariables for a given instance of the class, and when appropriate, to edit thatstate. The inspection process depends on whether the instance variable isitself an instance of an Objective C class (see Section 5.1).Any editing performed on an object within the inspector manager willtrigger the network update mechanism. This feature can be temporarily dis-abled if several edits are desired before update occurs. Editing commandscan be automatically appended to the script of the node if a record of theedit is desired.There is an Oorange protocol OoClassFields which frees the programmerfrom writing his own inspectors. Classes which conform to the protocol willreceive a default inspector which they can customize as required.Another feature of the Oorange inspection process allows developers ofcomplicated nodes to make the node appear like a simple node to the inspec-tion process. This is achieved by so-called �le cabinets which encapsulate ina single at list, all the interesting objects contained anywhere within the



Oorange: A Virtual Laboratory for Experimental Mathematics 9sub-network lying inside the node. For example, Figure 5.1 shows the �lecabinet interface to the standard SceneViewer node. Developers who wish toadd this feature to a node are only required to de�ne a fileCabinetmethodin the node script.
Fig. 5.1. File Cabinet of the standard SceneViewer nodeIt is also possible to create inspection panels directly in the node scriptwithout basing them on a Objective C object. Such panels are called privatepanels. For example, a Tcl variable rather than an Objective C object may beused to control the behavior of a node. It is possible then to create an inspec-tor panel which allows editing of the value of this variable by implementingan inspect method for the node script.5.1 Navigation in the inspection managerOnce the current node is inspected, it is possible to navigate within theinspector manager in three main ways:� down: Inspect a sub-object� lateral: Go to a di�erent panel of the same object� up: Return from inspection of a sub-objectThe inspector manager maintains two menus to perform this navigation. The�rst presents a list of down and lateral options available from the currentobject. The second keeps a record of the sequence of sub-objects chosen withthe down option, so that the user can pop back up to any desired level atany time.5.2 ViewersOne further form of inspection is provided by Oorange which deserves men-tion. Objects which consist of 2-D (3-D) data can be inspected with a 2-D(3-D) viewer provided with Oorange. These viewers share a common pro-tocol, OoToolProtocol, which describes an tool interface for handling mousedown/drag/up events.



10 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. SchwarzThe 2-D viewer [12] supports a wide variety of operations on 2-D images,including arbitrary resizing and translation, and reading and writing a widevariety of �le formats. The underlying object is the general OoDataGrid class(see Section 9.).The 3-D viewer [12] is supported by a large class library in major featuressimilar on the Inventor class library originally from SGI. There is a device-dependent core which currently supports OpenGL (immediate and o�screenmodes) and mentalray (a commercial ray tracer). Point sets can be either3 or 4 dimensional, of oat or double type. There are classes for cameras,lights, appearances, materials, fog, textures, drawables, bounds, pick actions,and transforms. Every viewer must contain a scene, which is the root of ascene graph describing the scene. Scenes contain a drawable, a camera, adevice, and several stacks. There are a variety of shape related classes. Thebase class is shape group, which has a list of children. Shape kits have ad-ditionally a transform, an appearance, a material, a texture, and a texturetransform. Shape instances have a list of transforms. Finally, there are geo-metric types including indexed face sets, quadrilateral meshes, indexed linesets, triangulations, and cube/cone/sphere/tori classes.Interaction in the 3-D viewer is provided through a variety of standardtools, which can be used to select a particular shape and rotate/translate/scaleit; or to move the camera. There is a wild card tool which distributes the cur-rent pick information to the scene graph. A user can create a customized toolat a node simply by adding mouseDown, mouseDrag, and/or mouseUp proce-dures to the script (analogous to the nodeUpdate method). For example, inthe node shown in Figure 2.1, a mouseDrag procedure allows the user to dragthe curve by its center around on the surface. More sophisticated uses areeasy to imagine and implement.6. TimeOne of the essential elements present in the physical laboratory which mustbe re-created for the virtual laboratory under discussion here, is time. Itsimportance in the overall design can hardly be overstated. Every experimentruns its course in the river of time. Experiments are described, controlled,and recorded in terms of the passage of time. In order to provide a convincingsimulacrum of the real thing, time has a special status within the Oorangedesign [12].Time has its own distribution system based on a tree of time managers.Each time manager is attached to a speci�c node and is responsible for allanimated objects in the node or its children. Compare [9] for a similar timeconcept.Objects can participate in the ow of time by conforming to one of severalanimation protocols, (each of which is a prerequisite of the next):



Oorange: A Virtual Laboratory for Experimental Mathematics 11� OoAnimated de�nes methods that apply to any object that is interested intime.� OoValueAnimated extends the OoAnimated protocol for objects that havevalues that depend on time.� OoKeyAnimated extends the OoAnimated protocol by allowing manipula-tion of key frames.When a new instance of an animated object is created, it has the respon-sibility to register itself with the time manager of its containing node. Timemanagers relay animated methods to the animated objects registered withthem.The current Oorange class library includes animated classes for numbers(oats and doubles), vectors, colors, and linear transformations. The vectorscan be elements of the classical spaces E3, H3, S3 or P 3 (euclidean, hyper-bolic, spherical, or projective 3-space). Euclidean similarities are decomposedinto appropriate factors which are then interpolated. All interpolation cur-rently is linear.The design philosophy of Oorange is to avoid using animated variables asinstance variables of objects; instead, use ordinary variables (oats, vectors,etc) as instance variables and use networks to connect animated variablesto these variables. This simpli�es the code of objects and lets the networkupdate mechanism take care of keeping all variables synchronized to thecurrent time.6.1 The hierarchy of time managersTime managers themselves are animated objects and register with the timemanager of their \father" node. This results in the creation of a shadowhierarchy of time managers. There are no lateral connections between timemanagers. On �rst sight, this profusion of time managers might seem to be anextravagance of questionable value. However, the advantages of the hierarchyhave become clear as Oorange has matured:local time Time can be dilated and translated for a given sub-tree of thehierarchy. Or, time related actions can be restricted to a sub-tree byconcentrating attention on the time manager based at that sub-tree. Keyframes can be restricted to a sub-tree, or animations can be played backonly for it.nested time This is analogous to the minute and second hands of a watch.In many computational processes there are actually such nested forms oftime. For example, a surface may be built of a curve swept across space.The second hand, sitting in a time manager within a sub-network, wouldcontrol the generation of one curve, while the minute hand, sitting in thetime manager of the \father" node, would control the accumulation ofsuccessive curves into one surface.



12 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz6.2 Tcl scripts and timeNodes can participate in the time ow even if there are no Objective C an-imated objects within the node. It is possible to force the time manager tobe created and activated. Then, the update script of the node can query thetime manager as to the state of the animation and take appropriate action.For example, this is how movies are recorded from the output of the viewers.If there is special actions to be taken at the beginning or end of an anima-tion, then the node should provide procedures named beginAnimation andendAnimation to perform these actions.7. ArchivingOne of the goals of Oorange development was to avoid creating another �leformat if possible. This goal has been partially reached, in the following sense:Instances of Oorange objects archive themselves as Tcl scripts containingObjective C method calls (see Section 3.2). That is, the format of the archiveis implicit in the de�nition of the object rather than being imposed fromoutside.To be exact, the sequence of the archiving method calls is governed bythe OoClassFields protocol. This protocol was mentioned in 5. above withrespect to inspection. As there, the situation here requires that a class pro-vide a description of its instance variables. In this case, the protocol providesinformation from which the set/get methods for all public, \archivable" in-stance variables, can be generated. Then, for each such pair, the get methodis invoked by the Tcl interpreter and yields a string which is then appendedto the set method name to yield an Objective C statement which is appendedto the archive �le. Here we skip over various subtleties described in moredetail in the protocol documentation.The resulting archive is in ASCII form, so that experiments can be editedand exchanged in a human readable form.The possibility of including prede�ned network nodes within a larger net-work presents a serious challenge for the archiving process, since users needto be able to save changes to an included node without losing the referenceto that node. Oorange provides a solution to this problem by recording a setof change commands along with the reference to the included node.8. DocumentationClear and ubiquitous documentation is central to the Oorange philosophy. Tobegin with, allOorange documentation exists in HTML format, and is directlyaccessible from within Oorange. There are several levels of documentationavailable:



Oorange: A Virtual Laboratory for Experimental Mathematics 13� Tutorials: There are currently nine tutorials describing various aspects ofthe Oorange system. These are intended for new users and cover the topicsof overview, network editor, the Tcl/Objective C connection, 3D viewing,2D viewing, animation, inspection, datagrids and functions, and addingnew classes to Oorange. These can be loaded from Oorange into an HTMLbrowser.� Class documentation: Oorange provides a documentation extraction system\Objective-Doc" [12], which acts on class interface �les and source �lesto generate LaTEX or HTML �les containing documentation including thefollowing features:{ automatic generation of class hierarchy above this class with links{ class description{ class and instance method names{ instance variables{ insertion of links to other classes or methodsProtocols and categories are handled similarly. The resulting documentsare available through a Web-based class browser (Figure 8.1).� Node documentation: annotate methods (analogous to the nodeUpdatemethod) can be attached to any node script to provide node customizeddocumentation for the node. This can be as simple as a character stringto be displayed above the node icon, or an arbitrary HTML document canbe loaded into the browser of your choice.� Search capability: The Web-based documentation is equipped with a gen-eral search capability.
Fig. 8.1. The class browser of the Oorange Online documentaion



14 C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz9. Workhorse classes: OoDataGrid and OoFunctionRather than try to describe the class hierarchy provided by Oorange, we limitour discussion to two foundation classes which are part of many Oorange net-works [12]. The �rst, OoDataGrid, represents arbitrary multiple dimensionalarrays with an arbitrary \�ber" of data at each entry. This �ber is repre-sented as a character string (adopted from Objective C) with one characterfor each entry. For example, \ddd" represents a chunk of data consistingof three double precision numbers, while \difz" represents a sequence of adouble, integer, oat, and complex packed together.The datagrid class is the class underlying images and shapes. The cur-rently selected node in the Oorange session image contains an instance of thisclass; the inspector for the instance is highlighted in the inspector managerabove the network editor. There are a wide range of operations de�ned onOoDataGrid, such as resize, convolution, �ber re-mapping, �ber conversion,grid reformatting, and contraction. Datagrids can be combined by binaryarithmetic operations, tensor product, or appending; or extracted by slicing.Closely coupled with datagrids is OoFunction. This is an object wrap-per for a C-function with arbitrary input and output, which can be edited,compiled and dynamically linked into a running Oorange session. In this wayusers can usually adapt existing C code to run in Oorange without havingto learn or create any Objective C code. In particular, the full power of stan-dard C libraries can be harnessed within Oorange. Functions can be appliedto datagrids to yield an image datagrid.10. Connectivity to other programsUsing the Tcl expect package it is possible to establish dialogs withinOorange,with other running programs. This package facilitates sending commands toremote programs and returning results. The program must accept some sortof interactive command stream. This has been succesfully done with Mathe-matica [16], and re�ned to the point that arrays generated in Mathematicacan be converted to OoDataGrid's, and vice-versa, surfaces generated in Oor-ange can be shipped to Mathematica to generate Postscript output. This is avery good example, since the strengths and weaknesses of the two productsare well-matched: Oorange provides an articulated object-oriented structurethat Mathematica lacks, while Mathematica can be invoked for symbolic com-putation. A �tting image of the relationship is that Oorange is a sturdy treeand Mathematica a fruitful vine climbing upon it.11. Previous workOorange has borrowed and/or inherited features from a variety of softwareproducts, each of which addressed in some way the challenge of the virtual



Oorange: A Virtual Laboratory for Experimental Mathematics 15laboratory. One of these inuences is GRAPE [11], a mathematical program-ming environment of the SFB 256 at the University of Bonn. GRAPE pi-oneered an object oriented approach similar to Objective C in connectionwith mathematical visualization. The focus on data objects was extended inOorange to the concept of a dependency graph of programmable objects.Geomview [8], a 3D visualization tool from the Geometry Center, featuresthe concept of an external module, an independent computational unit whichfeeds geometric information to the viewer and vice-verse. This concept issimilar to the node in Oorange. geomview lacks however the ability to createnetwork graphs from nodes; the default graph is a star with the viewer atthe center and external modules on the periphery. AVS, as described above(Section 4.), is a ancestor of Oorange and much of the network design was aresponse to its perceived shortcomings.Open Inventor [15] had a strong inuence on the design of the 3D classes.However, Oorange chose a more exible node model than Open Inventor's,in which the node and its contents are more separated. New node contentsin Inventor is achieved typically by subclassing the node class. VTK [10]deserves mention here even though it has no inuence on Oorange, since itwas developed simultaneously and independently. It o�ers a Tcl interface to alarge C++ class library focused on 3D visualization tasks. There are AVS-likedata ow classes.The inspection component of Oorange is, to our knowledge, more sophis-ticated than the analogous services o�ered in other existing systems. Theintegration of the animation component with the network update mechanismappears to be an original contribution.12. Future directionsThere remain some unresolved design issues. The connection of Tcl and Ob-jective C layers has been a theme throughout the development process. Theprimary challenge is knowing exactly how to subdivide the tasks betweenthe two languages. The dividing line cannot be hard and fast; some tasksprototyped in Tcl will naturally migrate to Objective C after they have beenproven. But even after this has been factored out it is not always clear whereto make the division. threads, garbage collection, error handlingSome unsolved problems arise from the extremely loose coupling betweenOorange nodes and their contents. This is a source of strength, but also makesit hard sometimes to be e�cient. In Open Inventor for example dependenciesbetween objects are registered and so dependent objects can be easily identi-�ed; while in Oorange dependencies may be de�ned in node scripts and mayinuence only some of the instance variables of the dependent object, mak-ing this identi�cation di�cult if not impossible. As a result, dependencies inthe network graph are not consistently enforced in the inspection manager.That is, users are allowed to edit objects which in reality are controlled by



16upstream objects. The result is that node update will overwrite the user'sediting.Finally, one of the original but not-yet-implemented goals of Oorange isto use the \distributed objects" feature of Objective C to instantiate nodes ona network. The node design of Oorange should make this easy to do, as longas developers observe the convention that a node represents an independentunit of computation.13. ConclusionWith Oorange we have endeavored to create a virtual laboratory for conduct-ing mathematical experiments. Our strategy was to design and implementinfrastructure services that correspond to the component elements of the ex-perimental process, and then to assemble these components into a seamlesswhole. We have con�rmed the essential features of the design. We considerthe following features to be particularly important advances on the existingsolutions:� Synergy of Tcl and Objective C layers allowing easy prototyping and grad-ual learning curve without sacri�cing high performance.� Object{ rather than action{based network model.� Ubiquitous presence of time in the model.� Easy integration of existing resources (either as C{code or as co{executable).With the distribution of Version 1.0 to the general public we hope thata wider user community will �nd its way to join the development outlinedabove.14. AcknowledgementsOther members of the Oorange development team, both current and past,include David Oliver, Axel Friedrich, Pat McDonough, and Markus Schmies.Appendix: AvailabilityOn the level of hardware, Oorange currently runs on SGI machines and Linux-based PC's. In the near future we plan to port to Solaris platforms also. Oor-ange is free software distributed according to a GNU-like license agreement.A binary version may be obtained from one of several anonymous ftp sites.Up-to-date information about Oorange and its distribution is availableat the World Wide Web server of the Sonderforschungsbereich Di�erentialGeometry and Quantum Physics: http://www-sfb288.math.tu-berlin.de



Appendix: Availability 17101. Addison-Wesley Publishing Company, Reading, Massachusetts. NeXTSTEPObject Oriented Programming and the Objective C Language, 1993. ISBN 0-201-63251-9.2. B. J. Cox and A. J. Novobilski. Object Oriented Programming: An EvolutionaryApproach. Addison-Wesley Publishing Company, Reading, Massachusetts, 1991.ISBN 0-201-54834-8.3. M.-A. Halse. IRIS Explorer User's Guide. Silicon Graphics Inc., MountainView, California, 1993.4. R. A. McCallum. Libtclobjc, 1994.5. M. J. McLennan. [incr Tcl]: Object-oriented programming in tcl. Technicalreport, University of California at Berkeley, 1993.6. A. Ortmann. Modellierung von Abh�angigkeitsgraphen, Feb 1996.7. J. K. Ousterhout. Tcl and the Tk Toolkit. Professional Computing Series.Addison Wesley, 1994.8. M. Phillips. The Geomview User's Manual. The Geometry Center, 1993.9. K. Polthier and M. Rumpf. A concept for time-dependent processes. InM. G�obel, H. M�uller, and B. Urban, editors, Visualization in Scienti�c Com-puting. Springer Verlag, 1995.10. W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, AnObject-Oriented Approach To 3D Graphics. Prentice Hall, 1996.11. Sonderforschungsbereich 256, University of Bonn. grape Manual, Sept. 1995.Online information http://www-sfb256.iam.uni-bonn.de/grape/main.html.12. Sonderforschungsbereich Di�erential Geometry and Quantum Physics, Techni-cal University Berlin. Oorange Online Manual, Sept. 1995. URL http://www-sfb288.math.tu-berlin.de/oorange/OorangeDoc.html.13. C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gur-witz, and A. van Dam. The application visualisation system: A computationalenvironment for scienti�c visualisation. IEEE Computer Graphics and Applica-tions, 9:30{42, 1989.14. B. Welch. Practical Programming in Tcl and Tk. Prentice Hall, 1995.15. J. Wernecke. The Inventor Mentor. Addison Wesley, 1994.16. S. Wolfram. Mathematica. Addison Wesley, 1991.


