
Publication of Interactive Visualizations

with JavaView

Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

Technische Universität, Berlin

Abstract. JavaView is a 3D geometry viewer and a numerical software li-
brary written in Java which allows one to publish interactive geometries and
mathematical experiments in online web pages. Its numerical software library
provides solutions and tools for problems in differential geometry and math-
ematical visualization. This allows the creation of one’s own geometric ex-
periments, while always profiting from the advanced visualization capabilities
and the web integration. JavaView easily integrates with third-party software
like Mathematica and Maple, and enables direct publication of experimental
results online.

1 Introduction

JavaView [18] is a software package for doing geometry, numerical exper-
iments and scientific visualization online in a web browser as well as in
a local application. Students, teachers and researchers can use JavaView
to create and add experiments to electronic research publications or to
distant learning environments. The future of mathematical communica-
tion and publication is strongly related to the internet, and JavaView is
a tool to enhance classical textual descriptions not only with images and
videos but additionally with interactive geometries and online mathe-
matical experiments.

JavaView consists of a 3D geometry viewer and a numerical software
library written in Java. It allows one to add interactive 3D geometry to
any HTML document and to perform experiments and modelling online.
JavaView has been developed to solve the following tasks:

1. Visualization of 3D geometries and numerical experiments online.
2. Publication of mathematical experiments in online electronic jour-

nals.
3. Development of visualization and numerical algorithms in an open

class library
4. Specific algorithms and file formats to prepare geometry models for

online publication
5. Smooth integration into third-party software via the JavaView API.

The first version of JavaView was released in November 1999 after de-
velopment versions had been used in research projects at the Technische
Universität Berlin for over a year. JavaView is now used and extended
at different places world-wide. There exist a number of mathematical



2 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

Fig. 1. Classic textbook on differential geometry enhanced with an interactive
applet. On first sight, the applet appears like a static image. The interactivity
is hidden but available upon the user’s choosing.

demonstrations which show the range of new applications possible with
web-based experimental software.

The simplest use of JavaView is the online display of interactive ge-
ometry models, while a more complicated applet may be a full math-
ematical experiment solving a variational problem. JavaView provides
many tools and algorithms accessible from menus and dialogs without
programming, as well as elaborate Java class libraries with an open API
for programming custom mathematical experiments.

The frontend of JavaView is a 3D viewer with a number of control
panels to inspect a geometry, modify material properties, change the
camera and display settings, or drive an animation. A user has different
options, as listed below, to use JavaView where each requires different
levels of knowledge of JavaView or programming experience. JavaView
comes with a set of applets to show a precomputed geometry model
or do a number of mathematical experiments, like solving an ordinary
differential equation.

– Use applets and experiments included in JavaView or written by
third-party authors.

– Adjust existing applets, for example, to view one’s own precomputed
geometry model.

– Use sophisticated JavaView tools to analyse and modify geometry
models online.

– Develop one’s own experiments in Java using the open API of the
class library of JavaView.

– Attach or integrate the application version of JavaView to one’s own
software, to Mathematica, or to Maple.



Publication of Interactive Visualizations with JavaView 3

JavaView operates on 2D, 3D, and higher dimensional geometries,
and it implements distinguished algorithms from discrete differential ge-
ometry [19][20]. It offers a full web integration and an operating system
independence, and, in this sense, compares to the dynamic elementary
geometry software programs Cabri [13] and Cinderella [11]. Both of these
tools are also discussed in this book. JavaView’s visualization tools and
many of its algorithms compare to those found in visualization programs
like GeomView [17], Grape [22], Oorange [4], AVS and others. The major
difference to these visualization programs, and one of the initial reasons
for the development of JavaView, is the possibility to publish interac-
tive experiments written in JavaView directly in online research articles,
books, or educational course notes.

In this article we introduce some properties of JavaView and give a
number of examples of smooth integration of interactive experiments and
visualizations in publications. An online version of this article is available
at http://www.javaview.de/ and includes interactive versions of the
presented applets.

2 Components of JavaView

The most visible component of JavaView is the 3D display included in
applets on web pages or appearing when JavaView is launched as an
application. By default, the other functions and user interface elements
are hidden from a first time user giving the impression that JavaView
mainly provides interactive images. In fact, JavaView provides the func-
tionality of displaying static in-text images along with fully interactive
documents.

In each display, the right mouse button shows a popup menu to select
different interaction modes for 3D-transformations, picking, or launch-
ing the control panel. The control panel of JavaView is the central place
providing a variable set of additional panels and menus to analyse and
modify the displayed data as well as to select and drive a complicated ex-
periment. For example, each experiment in JavaView has a panel specific
to the experiment to modify parameters and to drive the experiment.

A number of powerful tools, so-called workshops, are available from
the menu bar to operate on the current geometry in the display. The
functionality of these workshops ranges from the simple inversion of the
surface orientation to the curvature-based simplification of large geome-
tries.

2.1 Display Window

The display of JavaView provides most features of an advanced 3D viewer
as well as a variety of interaction tools to pick and modify the displayed
geometries.

Among these features are:



4 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

Fig. 2. JavaView display with inspector and animation panel.

– Rotation, translation, zoom, space ball camera control
– Picking and interactive modification of geometries
– Display of vertices, edges, faces, vector fields with variable sizes and

colors
– Animations, keyframe interpolation, auto-rotation
– Textured surfaces, z-buffered display, depth cueing
– Sending camera and pick events
– Coordinate axes and rulers
– Perspective, orthogonal and non-euclidean camera projections
– Import and export of geometries in multiple geometry file formats
– PostScript and image file export for inclusion into TEX and paper

publications
– Frontend for other applications, for example, to view Mathematica

or Maple graphics

The JavaView display naturally has a drawback in rendering speed
against native graphics libraries like OpenGL and DirectX. This speed
penalty is mainly located at the rendering stage since the current
browsers do not support native 3D rendering. Therefore, in situations
where the real-time visualization of really large data sets with millions
of triangles is required JavaView offers a simple export to third-party
programs and allows the integration of native viewers. In general, the
execution speed of Java code and of the algorithms implemented in
JavaView heavily depends on the type of the virtual machine. Modern
just-in-time compilers compile the Java byte during the loading process
and dramatically reduce the speed penalty against native methods.

2.2 Workshops and Projects

A project in JavaView is a full-fledged application and very similar to a
Java applet. For example, a project often provides the setup of a math-
ematical experiment including different Java classes, panels and dialogs,



Publication of Interactive Visualizations with JavaView 5

Fig. 3. Mathematical games on 3d-surfaces for educational purpose. Left:
Game of Life. Right: Game Minesweeper on a minimal surface of Costa.

and Html descriptions. The major difference between a JavaView project
and a Java applet is the fact that, a project is considered a module which
is not only invoked by an applet but may be invoked by other projects
too. This module character is hardly accomplished by using applets since
an applet derives from the specific class java.awt.applet.Applet which is
solely designed to run inside an Html page.

JavaView projects provide a more flexible functionality by deriving
from the separate superclass jv.project.PjProject. For example, an in-
stance of the project class may be created in an applet and configured
according to special needs. This allows one to create instances of the same
project class in different applets, each time the instance is configured dif-
ferently. Each project has a well-defined interface for its configuration.

For programmers, projects simplify the integration of modules with
the JavaView environment by providing an easy access to display win-
dows, animation support and handling of display and camera listeners.
Further, projects may be registered in the viewer manager and invoked
from a menu during runtime.

Projects are heavy-weight concepts when considering their function-
ality while a workshop is a light-weight class basically consisting of a
set of methods and a dialog for configuration. For example, the geodesic
surveyor to measure geodesic distances on polyhedral surfaces is a work-
shop consisting of sophisticated algorithms and a dialog, say, for entering
the two endpoints of a geodesic. Basically, the geometry is given to the
workshop, then the workshop optionally opens a dialog or immediately
starts its operation, and finally, the analysed or modified geometry is
returned. A workshop is like a service station for a car, you pass the car
to the station and get it back, hopefully renewed.

Workshops are either invoked from the method menu of the JavaView
control panel to analyse or modify geometries, and to perform mathemat-
ical algorithms, or the workshop classes may be called by a programmer.
Note that, workshops do not derive from a specific superclass nor do they
implement a certain interface. They are a theoretical concept to enclose
functionality.



6 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

Fig. 4. Hodge-Helmholtz decomposition of a vector field for feature extrac-
tion. Left: original field, right: rotation and divergence free components with
potentials.

2.3 Class Libraries and JavaView Archives

JavaView is delivered as a set of Java archives which simply are com-
pressed collections of Java classes. The libraries are well documented,
thereby allowing the development of one’s own applets and applications
based on the high-level classes and methods available in JavaView. The
user’s guide provides an introduction to programming in Java and using
the classes of JavaView. The reference documentation provides detailed
comments for all classes and methods. It was automatically generated
from the JavaView source code with the javadoc utility [7].

The most important archive is javaview.jar which contains the basic
packages for the 3D display, the geometry classes, a selection of the
import and export loaders, the linear algebra classes, and some other
sub packages. This archive must be available to all programmers. The
optional archive jvx.jar provides extended geometry classes, a number of
powerful workshop classes, and additional loaders. The optional archive
vgpapp.jar contains a set of applications of JavaView and introductory
tutorials for programmers. For details, we refer to the online reference
documentation and the user’s guide of JavaView.

It is possible to generate an individual archive for each application of
JavaView which contains only those class files referenced and needed in
the applet. This would reduce the size of the required JavaView classes
even further. For example, many applets do not require some loaders
to parse special geometry files and will perform correctly even if these
loaders are not available in the Java archive.

Nevertheless, in general a programmer is not advised to create new
archives and we do not recommend recombining any of the JavaView
archives. The most important reason is that the application will hardly
be maintainable when future revisions and extensions are made to
JavaView. Any time new JavaView archives are available the applica-
tion programmer must rebuild his special purpose archives.

On the other hand, the JavaView distribution contains a special pur-
pose archive, namely, the jvLite.zip archive which is drastically optimized
for fast download. Its small size of less than 100kb is comparable to a
few gif images which appear frequently as beautifications on web pages.



Publication of Interactive Visualizations with JavaView 7

The tiny lite version is about 20% of the size of the original archive
javaview.jar. jvLite.zip was automatically generated using the JAX tool
[6] by a sophisticated analysis of the Java byte code and by removal of
all user interface classes from JavaView, i.e. panels, dialogs and menus.
Therefore, the jvLite package is ideal for the efficient inclusion of pre-
computed geometry in interactive images respectively applets in online
documents. Note, this lite version of JavaView is not useful for program-
ming purposes since all class, method and instance names are obfuscated
to very small names for data reduction. Further, many public methods,
which are unused for viewing of precomputed geometries, were automat-
ically removed.

Note, a browser must only download once either of the JavaView
archives since it keeps the archive in its cache until it encounters a newer
version of the JavaView archive.

2.4 JVX Geometry File Format

JavaView uses its own JVX file format for temporary and long term
archiving of singles geometries and full-featured scenes. In contrast to
the many other file formats supported by JavaView, the JVX format is
XML-based. XML is the new language for a diversity of data types used
in the internet. The specific format of JVX geometry files is specified in
the document type definition (DTD) jvx.dtd. The existence of a DTD
allows an automatic validation of the syntax and partially the semantics
of every given JVX data file.

For example, the JVX format is used as one of the master file formats
in the EG-Models server to a large extent because of its validation ability.
The JVX format is also used to exchange data between JavaView and
third-party software like Maple and Polymake. Each JVX geometry file
may optionally be equipped with author information and detailed infor-
mation about the mathematical properties of the model. This includes
free-form keywords and MSC classifications.

Currently, the datafiles of JavaView use the following extensions
where each of the formats is XML based and has an accompanying DTD:

JVX geometry file format for individual geometries and scenes with mul-
tiple geometries.

JVR configuration data of JavaView itself— like language support, win-
dow positions and menu contents.

JVD display and camera settings.

3 Creating One’s Own Applets

3.1 A Hands-On Example

This hands-on example describes the necessary three steps to add the
JavaView display to a web page. Here we show a precomputed geometry
model in a JavaView window allowing interactive modifications.



8 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

1. Download the archive javaview.jar from the JavaView homepage.

2. Type the following web document myPage.html referring to a geom-
etry model brezel.obj.

3. Upload all three files to a web server.

The sample applet tag inside the document myPage.html looks as
follows:

<html><body><p>This is a JavaView applet on a web page.</p>

<applet

code=javaview.class

archive=’’javaview.jar’’

width=200 height=200>

<param name=model value=’’brezel.obj’’>

</applet>

</body></html>

This applet visualizes the geometry model inside a small window of
200*200 pixels on the web page. Note, in this example all three files reside
in the same directory. The geometry model must be a file on the server
which hosts the applet because of security restrictions in Java which
forces each applet to run in a so-called sandbox. If JavaView runs as an
application on a local machine outside a web browser then a geometry
file from any url on the web may be launched. Applications do not run
in a sandbox and have free access to system resources.

This example stresses the fact that the installation of the JavaView
software is no longer an issue compared to the installation process of
other software. The browser downloads the required Java archive when
it encounters the archive parameter inside the applet tag. The browser
also ensures that the archive is downloaded for the first request only, and
later reuses the version it has stored in the browser’s cache.

4 Sample Applications of JavaView

In this section we demonstrate a range of possible applications of
JavaView on a number of existing examples. The following examples
describe different aspects of the use of JavaView, among which are:

1. Visualization and evaluation of precomputed models which are
stored somewhere on the internet.

2. Interactive tutorials explaining simple numeric or geometric facts to
accompany classical lectures or online workshops.

3. Sophisticated numerical research projects which combine numerics
and advanced visualization.

4. Joint research of authors at different universities doing numerical
research experiments embedded into web pages.



Publication of Interactive Visualizations with JavaView 9

Fig. 5. Basic linear algebra applet created with 30 lines of new Java code.

4.1 Web-based Courses: Linear Algebra

Nowadays multimedia-enhanced undergraduate courses are developed
and used at different places world-wide. For example, the interactive
linear algebra course ILAW is one of the first successful projects, see the
article [1] in this book. Nevertheless, there are still a number of tech-
nical barriers to overcome, for example, at the present time even ren-
dering Mathematics in web pages is not settled in a satisfactory state.
The MathML specification is already established by the World-Wide-
Web consortium but still the major browsers do not support its render-
ing. In contrast, the technical problems for the inclusion of interactive
experiments and demonstrations in online web courses do not provide
conceptual problems and are presently solved apart from their rather
large development cost.

A Java applet often is similar to a full-featured software program
with a user interface, user documentation, and with a large program-
ming effort during its development. JavaView is designed to simplify
the development and maintenance of interactive applets as browsers de-
velop and as operating systems change. Therefore, it basically reduces
the development time of a new applet to the time needed for the new
functionality rather than for the technical setup. For example, the use of
JavaView’s high level classes reduces the size of the simple applet shown
in figure 5 to about thirty lines of new Java code.

4.2 Distant Learning: Interactive Experiments

Distant learning courses have been around for a long time as supple-
ments to the traditional educational system and to training courses in



10 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

Fig. 6. The solver for ordinary differential equations (left) and the root finder
applet (right) are online services.

industry. Distant learning projects must have well prepared course ma-
terials since there is less direct contact with students. These projects will
be among the first to include interactive experiments, and may be even
the driving forces for the development of whole packages of interactive
online experiments.

For example, nowadays one would expect online courses to be much
more interactive than classic textbooks on mathematics. In numerics,
different numerical methods for solving an ordinary differential equation
may be compared by a reader online following instructions in the written
text. In geometry, the curvature of surfaces may be interactively investi-
gated. In algebra, eigenvalues of a matrix may be interactively computed
and their eigenvectors displayed in an applet integrated in the text.

The applets in figure 6 demonstrate the numerical solution of an
ordinary differential equation (left) and the search for zeros of a user
defined function (right). The root finder method subdivides the original
interval and uses Brent’s method to find the roots on each subinterval.
JavaView has Java implementations of several algorithms of the Numer-
ical Recipes library [21]. In all these examples, the user is assumed to
follow a description of the algorithm while simultaneously studying the
online example.

4.3 Numerics Online: Energy Minimizer

Java is a full-featured programming language allowing efficient devel-
opment of numerics algorithms and visualization tools. Although it has
some structural speed limitations, since by design it is an interpreted lan-
guage, the language itself is based on modern programming paradigms.
But this drawback is negligible in many applications since modern just-
in-time compilers are able to provide an efficient compilation process on
the fly while loading a Java program. Currently, Java may not be a lan-
guage of choice for high-performance computing but it is already used
in a large section of numerics. Among the two great benefits of Java
are, first, its machine and operating system independence, and, equally



Publication of Interactive Visualizations with JavaView 11

Fig. 7. First eigenfunction of the second variation of surface area (left) and
applet for energy minimization (right).

important, the possibility to run interactive experiments online in web
browsers.

Research applications like the eigenvalue computations in figure 7
demonstrate that numerical computations and scientific visualization are
efficiently performed with JavaView. Further, the coherent interface of
Java applets immediately makes these experiments accessible from loca-
tions world-wide as well as their inclusion in digital research publications.

4.4 Online Mathematics Services: Geodesic Surveyor

Nowadays, software basically relies on the paradigm of a local installa-
tion, but at the horizon we see the software industry already developing
server based software. There is important potential in application ser-
vice providers which offer computation and software resources over the
internet, thereby freeing a user from doing a local installation and, even
worse, keeping the local version updated over time. For example, Math-
ematica will soon release the product webMathematica which allows one
to use a server based Mathematica kernel over the internet from a remote
location.

The JavaView web site already hosts a few online services for doing
mathematics. Some services like the AlgebraicSolver and the MathTyper
invoke server side computations requiring a user to be online, while other
services like the OdeSolver, RootFinder and GeodesicSurveyor are built
into JavaView and rely purely on client side computations. All these ser-
vices make use of the JavaView class library. The application program-
ming interface of the class library is open and well-documented, enabling
a rapid integration of third-party tools with the JavaView display and
user interface.

For example, the Algebraic Solver computes algebraic surfaces in R
3

based on user input. The user enters an equation, specifies various pa-
rameters, and starts the evaluation. The computation is done on the



12 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

Fig. 8. Mathematical Online Services. Left: Algebraic Surface Solver, Right:
Geodesic Surveyor.

web server which returns the computed surface to the user’s JavaView
applet. The surface is then easily studied and post-processed with stan-
dard JavaView tools, for example, the fine mesh is coarsened or artifacts
removed. This service uses the server version of the Liverpool Surface
Modelling Package [15] by Richard Morris with JavaView attached as
interface for user input and frontend for 3D display of the computed
surfaces.

The Geodesic Surveyor uses built-in methods of the extension pack-
age jvx.jar of JavaView to study discrete geodesics on any piecewise
linear surface. The applet has two modes: either it computes locally
shortest curves that connect two given points on the surface, or it com-
putes the straightest curve which starts from a given point in a given
tangential direction along the surface. Both methods work solely on the
user’s computer in contrast to the previous service on algebraic surfaces.

4.5 Archiving Interactive Documents in a Library

The project Dissertation Online funded by the Deutsche Forschungs-
gemeinschaft (DFG) is a cooperation of the Humbolt-Universität
Berlin, Gerhard-Mercator-Universität Duisburg, Universität Erlangen-
Nürnberg, Carl von Ossietzky-Universität Oldenburg, and of the main
libraries in Germany. The main task of the project is the specification
of criteria and guidelines for the digital publication of dissertations in
Germany.

JavaView was selected by the project Dissertation Online of the Ger-
man science foundation DFG to produce a reference online dissertation
http://www.javaview.de/applications/dissOnline.html in mathe-
matics including interactive visualizations and experiments. Figure 9
shows two sample pages of the dissertation of T. Hoffmann, which was
enhanced with interactive experiments using JavaView and jDvi, see the
article [5] in this book.

The category dissertation serves as a good playground for testing
various technical issues related with the publication and archiving of



Publication of Interactive Visualizations with JavaView 13

Fig. 9. Online dissertation with interactive JavaView applets.

scientific research documents. Among the many open problems of the
project are:

– Different document structures for different scientific disciplines.
– Designated meta information for retrieval.
– Copyright and other legal aspects.
– Authentication and unchangeableness must be guaranteed.
– Inclusion of multimedia capabilities in digital publications

JavaView enables the inclusion of interactive experiments and vi-
sualizations in online documents while it respects the special needs of
libraries. An important aspect for libraries are the maintenance costs
for providing documents with interactive experiments online on a server.
For example, the classic distribution of software is the delivery of binary
programs. These binaries heavily depend on the operating system and
the binary format often changes between operating system versions. A li-
brary usually cannot afford to maintain such a software. Therefore, such
a dissertation would require a link to the original author for supplying
new versions - a need which is even worse in the eyes of a librarian.

The use of Java applets completely simplifies the archiving and main-
tenance problems of multimedia documents:

1. The author of a dissertation uses a Java archive file, say, the
JavaView archive file for display of 3D geometries, or he writes in-
teractive experiments directly in Java. Then he references the Java
based experiments in his article, say, by including an applet tag in
an Html document which refers to the archive file. Now the full in-
teractive online publication consists of the text documents, possibly
some images and videos, and the Java archive files required for the



14 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

experiments. All these documents are bundled by the author and
submitted to the library for archiving.

2. The library puts all documents of the publication in a web directory
and provides public access. Note that beside indexing and archiv-
ing of the documents, the library has no additional task or mainte-
nance duty, compared to non-multimedia documents. In particular,
the library need not provide any special software for running the
experiments.

3. A user of the library accesses the online publication with a web
browser. By default, the web browser is Java enabled and therefore
able to run the experiments. The browser automatically downloads
the text documents as well as the Java archives referenced in the
documents, and provides interactive access to the experiments. Note
that even the user has no additional task beside finding the docu-
ment. In fact, the user need not install any special software beside
the web browser.

Summarizing, we have the following responsibilities for interactive
experiments in publications:

Author: Create Java based experiment and upload
Library: Provide web space, no software installation
Reader: Java enabled web browser.

First, the author can store all experiments compactly in a Java
archive file, which is independent of the operating system, and, second,
the web browser of the user comes with a full Java installation by de-
fault. The library just stores the digital documents without any need of
maintaining software packages required by publications.

The main reason for the simple deployment of Java programs lies in
the fact that the operating system is responsible for providing a virtual
machine in which Java programs run. Since the virtual machine is system
dependent, any Java program can be system independent.

4.6 Making Textbooks Interactive

A large number of classical textbooks for students are available in the
market as print versions. Often it requires minor efforts to create an in-
teractive online version if one replaces static images and diagrams with
interactive Java applets. Figure 1 shows a JavaView applet inside an
online version of the textbook Introduction to Differential Geometry by
Wolfgang Kühnel [12]. Here the static image of a helicoid in the print
version of the book was replaced with a JavaView applet. Not only does
the applet allow the reader to view the geometry from different perspec-
tives, it also allows one to show the whole transformation of the helicoid
to the catenoid as an animation. The book Algebra Interactive by Ar-
jeh Cohen et. al. [2] is among the first convincing examples of this new
generation of educational resources.



Publication of Interactive Visualizations with JavaView 15

Fig. 10. The Boy surface is an immersion of the projective plane (left, poly-
hedral model by U. Brehm). Line integral convolution for flow visualization.

An applet may include exercises for students, or explain aspects of
mathematical concepts. For example, the above transformation shows
the associate family of minimal surfaces where all surfaces are minimal
and isometric, and further, the surface normal vector at each vertex
remains constant during the transformation. This latter property is easily
viewed by students with default features of JavaView:

– Open the material panel and enable display of vertex normals (press
’ctrl-m’ in the display)

– Optionally, mark a few vertices of the surface (while ’m’ is pressed
drag a small rectangle in the display)

– Optionally, color, length, and thickness of normal vectors may be
adjusted in the material panel.

– Open the animation panel from menu Windows->Animation or by
pressing ’ctrl-a’, and start the transformation.

The mathematical properties of normal vectors are intuitively demon-
strated by following the marked vertices during the animation.

Note that it is a smooth transition from a static classical book to a
first version of an interactive book. Enhancing classic books with useful
multimedia features requires much less technology on the authoring side
than is widely assumed. Also, there is no need for a technological revo-
lution on the reader’s side since at first sight the multimedia book will
look the same as a print version of the same book. The revolution is of
a technical nature and resides inside the online software hidden to the
reader, and often to the author as well.

4.7 Electronic Archive of Geometry Models

The EG-Models archive [10][9][8] at http://www.eg-models.de is a dig-
ital journal for the publication of refereed geometry models and experi-
mental data sets. Each published model consists of a data set describing
the shape of the model and of a full textual description of the mathemat-
ical properties of the model, the experimental computation, keywords,



16 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

authors, references, and other information. Additionally, each model is
accompanied with an interactive preview applet which enables a reader
to interactively investigate the shape of the geometry model.

The EG-Models archive uses JavaView as the geometry viewer in the
preview applets and it uses JavaView’s JVX geometry file format as a
possible choice of the master models. The JVX file format is an XML
format which allows the automatic validation of the syntax, and a partial
validation of the semantics of submitted geometry models.

Similar to the use of JavaView applets in the Dissertation Online
project, the managers of the EG-Models archive have little maintenance
overhead when offering such a high level interactive preview facility. The
two necessary steps are to copy the JavaView lite archive jvLite.zip to
the EG-Models server and to include an applet tag referring to jvLite.zip
in each preview Html page. New versions of JavaView are easily up-
graded by simply replacing the single JavaView archive. In practice, the
rendering of pre-computed geometries is one of the most basic tasks in
JavaView, making an update to newer versions a rather rare occasion.

Note further, the time required for downloading a preview model of-
ten is a factor of 3-10 times larger than downloading a JavaView archive
because of the file size of geometry models. The preview models on the
EG-Models server are already simplified versions of the master mod-
els to reduce the download time and to enable preview even on smaller
computers. But still, for example, the preview model of the Penta sur-
face http://www.eg-models.de/2000.09.039/ is 381kb compared to
the size of about 100kb of the JavaView lite archive. A further reduc-
tion in size is possible since JavaView is able to read zip and gnu-zip
compressed geometry files. JavaView also offers a curvature controlled
simplification tool to reduce the number of triangles of a geometry while
keeping essential detail information. For example, the preview model of
the Penta surface was obtained from the 5,325kb large master model.

4.8 Online Research Cooperation and Experiments

Cooperating researchers who are located at different places nowadays
easily communicate via email and other electronic media. But performing
a joint experiment still requires the exchange of newly developed software
modules and their local installation. Here we encounter one of the major
benefits of Java: first, the platform and operating system independence,
and second, the invisible installation of Java software via automatic web-
based mechanisms.

Biologists in South Africa use a JavaView based applet to com-
pute shortest curves in a beehive to get information on the distance
of the queen to selected worker bees, see http://www.javaview.de/

applications/. Here the biologists load a model of the beehive into the
geodesic applet, select the positions of two bees, and invoke the geodesics
algorithm of JavaView’s jvx package to obtain the shortest curve con-
necting both positions [16].



Publication of Interactive Visualizations with JavaView 17

This experiment has been automatically invoked on a data base of
about 65000 pairs of queen/worker positions. Since the applet is web-
based this service can be provided online without any software instal-
lation on the client side beside the automatic download of the ap-
plet through the web browser. The beehive applet is available on the
JavaView web site because of the easy access to the server. The experi-
ments are performed by the biologists from South Africa and the actual
computations are done in the web browser of their client computers.

Another example for online research cooperation was the compu-
tation of the second variation of area of unstable minimal and constant
mean curvature surfaces in a joint project with Wayne Rossman in Kobe
in Japan [20]. The cooperation started during Rossman’s visit in Berlin
and was continued via putting the experimental applets online to be ac-
cessible world-wide. The software development was continued in Berlin
and the software archive on the web site was regularly updated with the
newest version. Both parties from Berlin and Kobe were able to share
experiments without a need for a laborious synchronization of software
versions.

5 Integration with Other Software

An important application of JavaView is the integration as a viewer
and as a geometry processing engine to commercial packages like Math-
ematica and Maple, or public domain university software. The possi-
ble integration with JavaView ranges from simple command line argu-
ments over the pipe mechanism for exchange of geometry data, to a
full scripting of JavaView. Currently, the scripting feature is available in
Mathematica through J/Link, an optional Mathematica package freely
available from Wolfram Research. J/Link allows bi-directional communi-
cation, that means JavaView not only provides a viewer for Mathematica
graphics but JavaView events are able to invoke and steer Mathemat-
ica computations. For example, picking vertices on a geometry currently
viewed in a JavaView display may be used as input for Mathematica
calculations.

Currently, the following external mechanisms are available to config-
ure, steer and query JavaView:

– Command line arguments.
– Applet parameters.
– Geometry models from file, stdin, applet parameter, and url.
– Configuration files from file, stdin, applet parameter, and url.
– Access to JavaView’s class library from any Java class and from

Mathematica via J/Link.
– Event listeners may register from any Java code and Mathematica

via J/Link.

Special packages and libraries for the integration of JavaView with
the following third-party software tools are available at the JavaView
site.



18 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

Fig. 11. Real-time computations by Mathematica initiated from pick events
in a JavaView display. Vertices are dragged while Mathematica simultaneously
calculates the Delaunay triangulation and updates the mesh combinatorics in
the JavaView display.

5.1 Mathematica and J/Link

We now take a closer look at the prominent example of the tight integra-
tion of JavaView with Mathematica [23]. The J/Link package available
for free fromWolfram Research http://www.wolfram.com allows the ac-
cess to Java classes and methods from within a Mathematica notebook,
including the handling of Java events. For example, one can type the
following sequence of commands in a Mathematica notebook to show
Mathematica graphics in a JavaView display and to configure the geom-
etry directly from the notebook:

(* Load the Java runtime and initialize JavaView. *)

<<JavaView‘JLink‘

InstallJavaView[];

(* Create a sample Mathematica Graphics. *)

cube = Graphics3D[Cuboid[{1,1,1}]];

(* Show the geometry in a JavaView display *)

(* and catch the returned JavaView object. *)

jvCube = JavaView[cube];

(* Query and modify the JavaView geometry *)

(* from a notebook. *)

jvCube@getArea[];

jvCube@showVertexNormals[True];



Publication of Interactive Visualizations with JavaView 19

Fig. 12. Typing commands in a computer algebra system online in a web
browser, and displaying the graphics result in a JavaView applet. Sample ap-
plets created by Klaus Hildebrandt.

Note: the returned object jvCube is a full instance of a JavaView
class, that means that from this Mathematica notebook all public meth-
ods of the geometry class may be invoked. Using J/Link, Mathematica
becomes a powerful scripting environment for JavaView programmers,
and Mathematica programmers are able to catch 2 and 3-dimensional
user pick events in the display.

5.2 WebMathematica

webMathematica [23] by Wolfram Research connects Mathematica to the
web. It is a server-based technology built on top of Java servlets which
are pieces of Java source code that add functionality to a web server
in a manner similar to the way applets add functionality to a browser.
Servlets are designed to support a request/response computing model
that is commonly used in web servers, similar to cgi scripts. Servlet
environments are freely available.

A webMathematica site can return content in many formats including
HTML, various image formats, Mathematica notebooks, MathML, and
TeX. It can work conveniently with many different web client technolo-
gies in browsers such as HTML forms, Java applets, JavaScript, Plug-
ins, and ActiveX controls. Running webMathematica requires an HTTP
server, including a servlet environment, an installation of Mathematica,
and the Mathematica package J/Link .

There are basically two ways to communicate with a webMathemat-
ica server: either to write an HTML page that contains extra tags with
Mathematica code, or to communicate with the Mathematica server from



20 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

a Java applet. In the first case, when an Html page is requested these
commands are processed by a Mathematica kernel on the server and
the resulting values are included. The usage of Html FORM elements
offers possibilities for interactivity. We developed the additional web-
Mathematica command MSPJavaView[g ] where g means any Mathe-
matica graphics object. This command inserts a JavaView applet to the
HTML page which obtains the computed Mathematica graphics as ap-
plet parameter.

Figure 12 shows an example where a user types commands online in a
text field whose result is then processed by a Mathematica kernel on the
server. The result, here consisting of graphics content, is then displayed
in a JavaView applet. The following example is for programmers and
shows a simple Mathematica server page containing an MSP tag:

<html>

<%Mathlet MSPJavaView[Plot3D[Sin[x*y],{x,0,1},{y,0,1}]] %>

</html>

After processing, this page is replaced with a regular HTML page
including a JavaView applet with the computed Mathematica graphics:

<html>

<applet code="javaview.class" archive="javaview.jar"

width=400 height=400>

<param name=mathematica value="SurfaceGraphics[{

{0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.},

{0.,0.005102018681303901,0.010203904553163461, ...

MeshRange -> {{0.,1.}, {0.,1.}}}]">

</applet>

</html>

JavaView equips the web page with an advanced 3D viewer for inter-
active scientific visualization. Graphics imported from Mathematica are
optimized in JavaView for visualization tasks: for example, equal vertices
are identified and a topological mesh is created. JavaView provides tools
to operate on this structure, e.g. interactive refinement or simplification
of the mesh. Additionally, lists of graphics can optionally be shown as
animations.

Using MSPJavaView[g] is simple and does not require any knowledge
of Java, but it provides access to a variety of different applications. This is
mainly achieved by the feature that JavaView projects can be optionally
loaded into the viewer, e.g. MSPJavaView[g, Project->”Modeling”]. This
offers the possibility of easily using existing applets and to integrate self-
made projects.

The second type of communication with the Mathematica server is to
write applets and use a URL connection. This equips the applet with the



Publication of Interactive Visualizations with JavaView 21

possibility to send requests to and get responses from the Mathematica
kernel. Here interactivity is provided by the applet. In comparison to
FORM elements, this gives you more possibilities and is more convenient,
e.g. you do not need to reload the whole page after each request. For
convenience, the JavaView library contains a special class PsMSP for
the communication with a Mathematica server.

5.3 Maple and JavaViewLib

JavaViewLib is an add-on package to Maple [14] developed by Steve
Dugaro and one of the authors. The momentum for the JavaViewLib
project was initiated in the summer of 2000 by Jonathan Borwein, direc-
tor of the Center for Experimental and Constructive Mathematics, and
Konrad Polthier following the Live Collaborative Mathematics confer-
ence at Simon Fraser University. Efforts were aimed at using JavaView
to preserve the dynamic viewing capability of Maple for mathematically
generated plot objects upon export to the web. Funding by the Telelearn-
ing NCE and MathResources allowed for a complete Maple package to
be developed. With this package, any maple plot object can be exported
through a variety of ways into a superior viewing environment. Further-
more, JavaViewLib allows for models created in a variety of other soft-
ware packages to be effortlessly imported into Maple worksheets. Many
examples of the linking of JavaView and Maple are demonstrated at
http://www.cecm.sfu.ca/projects/webDemo/htm/webdemo.htm.

JavaView provides a superior viewing environment to augment and
enhance the plot of geometrical objects in Maple. It provides several
features that are non-existent in the Maple plotter, such as an arc-ball
rotation, making object viewing smoother and less directionally con-
strained than in Maple. Furthermore, JavaView offers a point modeling
feature that allows plots to be manually manipulated.

The predominant feature of the JavaViewLib is the capacity to export
Maple- generated models into one of two applet-based viewers — one
optimized for speed, the other for customizability. This greatly enhances
the current state of plot object export in Maple — no longer do dynamic
plots need to be converted to static images when creating html pages
from Maple worksheets. One can also export plot data to a variety of
other formats such as VRML or JavaView’s own XML format, where
data can be viewed as a markup tree or further developed upon. Efforts
were made to maintain the aesthetic presentation of Maple geometries
and their corresponding axes upon export. With JavaViewLib, models
created in other applications, such as Maya and Mathematica, can easily
be imported into Maple’s viewing environment.

5.4 Polymake

Polymake [3] by Michael Joswig and Ewgenij Gawrilow is a highly flexible
software system which is used by researchers in geometry to investigate



22 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

Fig. 13. Schlegel diagram of a 4-dimensional permutahedron generated with
Polymake and rendered in JavaView. The JavaView display directly renders
models in R

4 and hyperbolic spaces.

geometric and combinatorial properties of convex polytopes. As a key
feature it offers a wide variety of interfaces to other programs, which
greatly enlarges the capabilities of the system. For visualization purposes
the system primarily relies on JavaView.

The system allows one to work with polytopes on a rather abstract
level, and the user can trigger visualization in an almost näıve way. We
give an example:

> permutahedron perm4.poly 4

> polymake perm4.poly SCHLEGEL

The first command on a standard UNIX shell produces a 4-
dimensional permutahedron, whose vertices correspond to the 120 ele-
ments of the symmetric group of degree 5. The second command asks
for a certain 3-dimensional projection of it, a so-called Schlegel diagram,
see figure 13.

Polymake is a hybrid system where C++ client components interact
with a Perl server. Interfaces to external programs are usually done in
Perl; JavaView is no exception. In our example, polymake produces a
JVX file with a description of the Schlegel diagram which is then passed
to JavaView via a system() command line call.

6 Conclusion

The internet dramatically changes the classical way of communicating
and publishing mathematics. We have sketched some ideas of ongoing
changes and the benefits which mathematics will gain from these new
developments. The interactive, exploratory component of mathematics,
which has been removed from mathematical publications for too long



Publication of Interactive Visualizations with JavaView 23

a time, is now available in the form of Java-enabled software. We have
given several demonstrations of JavaView to enhance online publications
with multimedia experiments.

References

1. B. Bauslaugh, R. Cannings, C. Laflamme, and K. Nicholson. An intuitive
approach to elementary geometry on the web. In J. Borwein, M. Morales,
K. Polthier, and J. F. Rodrigues, editors, Multimedia Tools for Communi-

cating Mathematics. Springer Verlag, 2001. http://ilaw.math.ucalgary.
ca.

2. A. Cohen, H. Cuypers, and H. Sterk. Algebra Interactive! Springer Verlag,
1999.

3. E. Gawrilow and M. Joswig. polymake, version 1.4: a software package for
analyzing convex polytopes, 1997–2001. http://www.math.tu-berlin.

de/diskregeom/polymake.

4. C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, and U. Schwarz. Oor-
ange: A virtual laboratory for experimental mathematics. In H.-C. Hege
and K. Polthier, editors, Visualization and Mathematics, pages 249–265.
Springer Verlag, Heidelberg, 1997.

5. T. Hoffmann. jDvi - a way to put interactive TeX on the web. In J. Bor-
wein, M. Morales, K. Polthier, and J. F. Rodrigues, editors, Multimedia

Tools for Communicating Mathematics. Springer Verlag, 2001.

6. IBM Alphaworks Homepage. http://www.alphaworks.ibm.com/.

7. Javasoft Homepage. http://www.javasoft.com.

8. M. Joswig and K. Polthier. Digital models and computer assisted proofs.
EMS Newsletter, December, 2000.

9. M. Joswig and K. Polthier. Digitale geometrische Modelle. DMV Mit-

teilungen, 4:20 – 22, 2000.

10. M. Joswig and K. Polthier. EG-Models - a new journal for digital geometry
models. In J. Borwein, M. Morales, K. Polthier, and J. F. Rodrigues, edi-
tors, Multimedia Tools for Communicating Mathematics. Springer Verlag,
2001. http://www.eg-models.de.

11. U. H. Kortenkamp and J. Richter-Gebert. A dynamic setup for elementary
geometry. In J. Borwein, M. Morales, K. Polthier, and J. F. Rodrigues, ed-
itors, Multimedia Tools for Communicating Mathematics. Springer Verlag,
2001. http://www.cinderella.de.

12. W. Kühnel. Differential Geometry, Curves - Surfaces - Manifolds. Amer-
ican Math. Society, 2001.

13. G. Kuntz. Dynamic geometry on WWW. In J. Borwein, M. Morales,
K. Polthier, and J. F. Rodrigues, editors, Multimedia Tools for Communi-

cating Mathematics. Springer Verlag, 2001. http://www-cabri.imag.fr/
cabrijava.

14. Maple Waterloo. Homepage. http://www.maplesoft.com.

15. R. J. Morris. The use of computer graphics for solving problems in sin-
gularity theory. In H.-C. Hege and K. Polthier, editors, Visualization and

Mathematics, pages 53–66. Springer Verlag, Heidelberg, 1997.

16. P. Neumann, C. W. W. Pirk, R. Hepburn, and S. E. Radloff. A scien-
tific note on the natural merger of two honeybee colonies (apis mellifera
capensis). Apidologie, 32:113–114, 2000.



24 Konrad Polthier, Samy Khadem, Eike Preuß and Ulrich Reitebuch

17. M. Phillips. Geomview Manual, Version 1.4. The Geometry Center, Uni-
versity of Minnesota, Minneapolis, 1993.

18. K. Polthier, S. Khadem-Al-Charieh, E. Preuß, and U. Reitebuch. Home-
page, 2001. http://www.javaview.de/.

19. K. Polthier and E. Preuß. Variational approach to vector field decompo-
sition. In R. van Liere, F. Post, and et.al., editors, Proc. of Eurographics
Workshop on Scientific Visualization. Springer Verlag, to appear.

20. K. Polthier and W. Rossman. Index of discrete constant mean curvature
surfaces. Report 484, SFB 288, TU-Berlin, 2000.

21. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipies in C: The Art of Scientific Computing. Cambridge Uni-
versity Press, 1993. http://www.nr.com/.

22. Sfb256. Grape Manual. Sonderforschungsbereich 256, University of Bonn,
Sept. 1995. http://www-sfb256.iam.uni-bonn.de/grape/main.html.

23. Wolfram Research. Homepage. http://www.wolfram.com.


