
Visualizing Maple Plots with JavaViewLib

Steven Peter Dugaro1 and Konrad Polthier2

1 Center for Experimental and Constructive Mathematics, Simon Fraser
University, Canada

2 Institute of Mathematics, Technical University Berlin, Germany

Abstract. JavaViewLib is a new Maple package combined with the JavaView vi-
sualization toolkit that adds new interactivity to Maple plots in both web pages and
worksheets. It provides a superior viewing environment to enhance plots in Maple
by adding several features to plots’ interactivity, such as mouse-controlled scaling,
translation, rotation in 2d, 3d, and 4d, auto-view modes, animation, picking, mate-
rial colors, texture and transparency. The arc-ball rotation makes geometry viewing
smoother and less directionally constrained than in Maple. Furthermore, it offers
geometric modeling features that allow plots to be manipulated and imported into
a worksheet. Several commands are available to export Maple plots to interactive
web pages while keeping interactivity. JavaViewLib is available as an official Maple
Powertool.

1 Introduction

Application connectivity refers to one programs’ ability to link to other pro-
grams. In the past, application connectivity has typically been of secondary
importance to the Mathematics community. Software is commonly developed
from the ground up to realize the research goal, not the potential for inte-
gration with other mathematics applications. However, some applications do
make provisions and have great connectivity. JavaView [5][6] provides an api
for 3rd party development in addition to great import and export utility for
the exchange of geometric data. Mathematica [7] has provided a very thor-
ough interface known as MathLink on top of which a Java version known as
J/Link allows Java programs to be controlled from within Mathematica, and
the Mathematica kernel to be controlled from within any Java program. In
fact, the ease of application connectivity provided by these two applications
has already allowed for their quick and seamless integration1.

This paper documents the authors’ efforts on JavaViewLib to establish
connectivity between JavaView and Maple [3], unite their strengths, and ex-
tend their functionality. JavaView and Maple vary in scope, but it is clear that
one application’s strengths overlaps the other’s shortcomings. While Maple is
a powerful tool for algebraically obtaining and generating visualization data,
JavaView is a superior geometry viewer and modeling package capable of
displaying geometries dynamically in html pages.

1 http://www.javaview.de



2 Steven P. Dugaro and Konrad Polthier

The JavaViewLib (JVL) is an amalgam of JavaView with a Maple library;
an interface between them. It makes use of the strong aspects of both to
facilitate the exchange of geometries between the two, quickly build web
pages with those geometries, and enhance the experience one has with Maple
plots. JVL is typically used to preserve the dynamic qualities of a Maple plot
upon export to the web; static plot snapshots in Maple html exports can
now be replaced with dynamic plots in a JavaView Applet. Via JavaView,
geometries can be exported from Maple to a variety of modeling packages
and vice versa. JVL can quickly build geometry galleries with little effort,
and these geometries can be exported and displayed in a legible XML format
to ease further development. JavaViewLib is available as an official Maple
Powertool [4].

2 Visualization in Maple and JavaView

2.1 Graphics in Maple

Maple is a comprehensive computer algebra system. It offers packages from
various branches of advanced mathematics to aid in solution and visualiza-
tion. It also offers word processing facilities with typeset mathematics and
export capabilities to aid in the composition of mathematical papers. Fur-
thermore, it provides a unique environment for the rapid development of
mathematical programs using its own programming language and function
libraries. These features are encapsulated in a single Maple Worksheet (mws),
which can be transported and rendered between Maple applications.

-30
-25

-20
-15

-10
-5

0
5

10
15

20
25

30

-30

-25

-20

-15

-10

-5

0

5

10

15

20

25

30

5

10

15

20

-14-13-12-11-10-9-8-7-6-5-4-3-2-1 0 1 2 3 4 5 6 7 8 9 1011121314-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

-4
-3
-2
-1
0
1
2
3
4

Fig. 1. JavaView parses the color of meshes and viewing options like axis and
frames of Maple plots.

Maple’s mathematics engine is among the industry’s best, but there is
room for improvement in certain areas of the application overall. While Maple
supplies numerous methods for generating graphics from mathematical ex-
pressions, the viewer itself has a primitive feature set. Once the graphic –



Visualizing Maple Plots with JavaViewLib 3

Fig. 2. Maple Plots with transparency visualized and colored in JavaView, for
example, to show the hidden inner tube of the Klein bottle (right figure).

or plot in Maple terminology – has been rendered, the viewer only provides
control for color, line styles, perspective, axes, and polar coordinate rotation;
sufficient control over the appearance of the visualization, but not much in
the way of actually viewing it. Maple worksheets can be exported to a variety
of document formats including html, rich text, and latex. The plots therein
are exported via Graphics Interchange Format – although plots may be indi-
vidually exported to various standard image formats such as eps, jpeg, and
bmp. Certainly static images suffice for hardcopies, but with multimedia rich
documents, such as mws and html, the dynamic qualities of visualizations
should be preserved to convey the greatest amount of information.

Maples’ programming environment is the Maple worksheet. With imme-
diate access to the extensive mathematical function library, code is written,
executed, and debugged inline. This makes coding small mathematical pro-
cedures relatively painless. However, on a larger scale such as package devel-
opment, programming, compiling and debugging can quickly become cum-
bersome. While there are a few new developments that allow more control
over the Maple interface, the absence of a software development kit (sdk),
or application programmers’ interface (api) makes it impossible to develop
genuine, transparent plug-ins.

2.2 Interactive Visualization online with JavaView

JavaView is a sophisticated visualization appletcation and geometric soft-
ware library. It offers a superior viewing environment that employs scaling,
translation, quaternion rotation, customizable axes, colouring, materials and
textures, transparency, anti-aliasing, depth cueing, animation, and camera
control among other features. It is capable of importing and exporting 3d ge-
ometries in a wide variety of formats, and can perform modeling upon these
geometries. It also offers an API, allowing custom plug-ins and visualizations
to be developed for it. Furthermore, JavaView can be used as a standalone



4 Steven P. Dugaro and Konrad Polthier

application or may be embedded as an applet in web pages for remote use
via web browsers.

JavaView is a mature and portable geometry viewer. Numerous researchers
and educators have utilized it for their own experiments and as a result have
developed many general JavaView based visualization tools. However, a cer-
tain amount of Java programming and web development expertise is required
to employ its full functionality. Unlike Maple, where an exhaustive function
library and mathematics engine can be called upon to quickly input and exe-
cute mathematical programs, more programmatic care and custom code may
be needed in JavaView to achieve similar results. The scope of the applica-
tion is smaller, and therefore it may be easier to make use of other software
applications to generate the visualization data or geometric models for the
JavaView environment.

3 JavaViewLib - A New Maple Powertool

Maple makes little provision for application connectivity. However, it does
allow for packages written in the Maple programming environment to be
loaded into a Maple session. This development constraint combined with
lack of control over the interface makes it impossible to create a plug-in in
the true sense of the word. In the absence of an api, JVL enables the two
applications to exchange data through flat files. Two file formats are utilized
to allow geometric information to pass between the applications; one is an
.mpl file that is nearly identical to the Maple plot data structure, the other,
.jvx, is JavaView’s native XML based file format for the storage of geometry
models, animations and scenes. JVL parses and prepares Maple plot data in
one of these two formats for import into JavaView, and as these files are the
means of connectivity, JVL provides the mechanism by which the data in
these files can be rendered in Maple. JVL also builds the necessary html code
that browsers require to render these geometries in an embedded JavaView
applet.

3.1 Maple Plot Data Structures

The maple plotting functions produce PLOT and PLOT3D data structures de-
scribing how Maple graphics are rendered in Maple’s 2D or 3D viewer respec-
tively. The two data structures produced are themselves internal Maple func-
tions of the form PLOT(. . . ) or PLOT3D(. . . ). These structures can be viewed in
a maple worksheet by assigning a plot function to a variable. Executing this
variable on a Maple command line will invoke the functional data structure
and render the image. Normally, the structures consist of the geometric data
organized in labeled point lists followed by some stylistic information. For the
some parts, JVL currently ignores stylistic information and uses JavaView’s
default options.



Visualizing Maple Plots with JavaViewLib 5

The PLOT data structure embeds four types of objects: points, curves,
polygons, and text. In addition to these four types, the PLOT3D data struc-
ture embeds the mesh, grid and isosurface objects. A geometric point is repre-
sented by a list of floating point values; pi := [xi,yi] for the PLOT data structure
and pi := [xi,yi,zi] for the PLOT3D data structure. Connected points are main-
tained in a geometric point list. A plot object is represented by a set of geo-
metric points or geometric point lists wrapped in the corresponding label. For
instance, the points object takes the form: POINTS(p1, p2,. . . ,pn), the curves
object takes the form: CURVES([p1,p2,. . . ,pn], [q1,q2,. . . ,qn], . . . ,[r1,r2,. . . ,rn]),
and the polygons object takes a form identical to the curves object, except
the POLYGONS label indicates that the last point in each point list is to be
connected to the first. The text object is nothing more than a label, a point
and a string to display at that point: TEXT(p, “string”). The mesh, and grid
objects are slightly more interesting.

Typically, plot functions involving parametric equations generate the mesh
object. The mesh object maintains a matrix of geometric points based on a
u-parameter resolution and a v-parameter resolution. This resolution is de-
termined by specifying the amount by which to partition the u and v param-
eter ranges. The matrix, a list of geometric point lists, connects the geomet-
ric points sequentially by rows and by columns. For example, the following
Maple plot function encapsulates the parametric representation for a sphere,
and requires a discrete u,v-domain with which to compute the mapping. This
is specified with a u-parameter range, a v-parameter range and the amount to
partition by in the u and v directions with the grid=[numU,numV] argument.
Storing the plot object reveals its data structure, and by examining the ma-
trix of vertices embedded within the mesh object, we are able to determine
the order in which the geometric points are connected.

[> s:=plots[sphereplot](1,u=0..2*Pi,v=0..Pi, grid=[4,5]);

s := PLOT3D(MESH(Array(1..4, 1..5, 1..3, [

[[0.,0.,1.],[.7,0.,.7],[1.,0.,0],[.7,0.,-.7],[0.,0.,-1.]],

[[0.,0.,1.],[-.35,.61,.7],[-.49,.86,0],[-.35,.61,-.7],[0.,0.,-1.]],

[[0.,0.,1.],[-.35,-.61,.7],[-.5,-.86,0.],[-.35,-.61,-.7],[0.,0.,-1.]],

[[0.,0.,1.],[.7,0.,.7],[1.,0.,0.],[.7,0.,-.7],[0.,0.,-1.]]])))

Most other plot functions in Maple generate the grid object. The grid
object maintains a matrix of z-coordinate values based on an implicitly de-
rived, discretely resolved Cartesian domain. The parameter ranges are also
stored in the grid object, and are used with the row and column dimen-
sions of the z-coordinate matrix to compute the corresponding x and y co-
ordinate of the geometric point to be rendered. The geometric points are
computed and connected sequentially by rows and by columns. For instance,
the following Maple plot function specifies a Cartesian grid resolution with
the grid=[numX,numY] argument and the x= x1..x2 and y=y1..y2 parame-
ter ranges. The grid argument specifies the dimensions of the z-coordinate



6 Steven P. Dugaro and Konrad Polthier

Fig. 3. Polyhedral meshes in the Maple Plot data structure.

matrix, whose values are incrementally computed with the given formula f.
The first geometric point is resolved by P1,1 = [x1,y1,f(x1,y1)], and subse-
quent points are connected horizontally and vertically by Pi+1,j+1 [xi+(x2 -
x1)/numX, yj+(y2 - y1)/numY, f(xi+(x2 - x1)/numX, yj+(y2 - y1)/numY)].

Finally, Maple achieves animation via the animate plot object. It contains
a sequence of plot objects wrapped in a list where each list defines one frame in
the animation. It takes the form: ANIMATE([Plot Object frame 1], [Plot Object
frame 2], . . . , [Plot Object frame n] ). For instance, the Maple command
that follows animates a sequence of mesh objects. It uses the parameter t to
describe how the geometry changes from frame to frame, and builds the set
of mesh objects accordingly.

[> catHelAnim:=animate3d([cos(t)*cos(x)*cosh(y)+sin(t)*sin(x)*sinh(y),

-cos(t)*sin(x)*cosh(y)+sin(t)*cos(x)*sinh(y),cos(t)*y+sin(u)*x],

x=-Pi..Pi,y=-2..2,t=0..Pi,scaling=constrained);

catHelAnim = PLOT3D(ANIMATE([MESH(...)],[MESH(...)],...,[MESH(...)]),

AXESLABELS(x,y,""),AXESSTYLE(FRAME),SCALING(CONSTRAINED))

[> runJavaView(catHelAnim);

3.2 Usage of JVL

The library functions available in JVL can be viewed after successfully loading
the library into a maple session:

[> with(JavaViewLib);

[exportHTM, exportHTMLite, exportJVX, exportMPL, genTag, genTagLite,

getInfo, import, runApplet, runAppletLite, runJavaView, runMarkupTree,

set, viewGallery]

These functions employ JVL to set configuration parameters and build
web pages, allow 3rd party geometries to be imported via JavaView, and
enable maple plots to be exported in a variety of ways that interface with
JavaView. Notice that some function names have the ‘Lite’ suffix. These
functions make use of an alternative version of JavaView – optimized for size
and speed – intended for use as a geometry viewer only. More details on the
JVL commands are described in subsequent sections of this document.



Visualizing Maple Plots with JavaViewLib 7

Fig. 4. Maple animations are shown as dynamic geometry in JavaView, optionally
with a smooth morphing between keyframes. In this figure, the surface coloring
of the helicoid and catenoid, and the display of grids of the in-betweenings was
fine-tuned in JavaView.

3.3 Basic Commands

The simplest way to use JVL is to wrap a ‘run’ function around a plot
command. By default, a file called JVLExport.mpl will be created in the
mpl folder of the installation directory. A call to runJavaView launches the
JavaView standalone with the geometry contained in JVLExport.mpl. Once
in JavaView, several operations can be applied to the geometry. For instance,
when exporting a surface from Maple then adjacent polygons are not con-
nected, that means, the common vertices appear multiple time. JavaView is
able to identify these vertices and merge them to create a single seamless
surface.

[> runJavaView(plot3d([4+x*cos(y),2*y,x*sin(y)],

x=-Pi..Pi,y=-0..Pi,coords=cylindrical,grid=[2,40])):

The runApplet command is used to create an html file called JVLEx-
port.htm containing the necessary applet tag and then to launch the defined
browser to view it. Adding Maple plots to a JavaView enhanced web page
allows geometries to be viewed remotely over the Internet. The following
example also illustrates the additional flexibility of the JavaView system to
analyse individual geometries of a complex scene, see Figure 5. Additional
JVL commands will be discussed in the following sections.



8 Steven P. Dugaro and Konrad Polthier

[> runApplet(plots[coordplot3d](sixsphere));

Fig. 5. The JVL command runApplet() creates an interactive web page of any
Maple plot.

3.4 Development of JVL

Maple’s provision for application development comes in the way of packages.
Packages are implemented with Maple’s module construct, and are simply
a collection of data and procedures, some of which are made public to the
user. A number of Maple modules can be stored together in library, which
is made up of three files: maple.lib maple.rep and maple.ind. The following
partial code listing outlines JVL’s basic module definition and the required
calls to create the library. The module definition specifies the procedures to
make public using the export identifier. Private procedures and data must
be declared using the local identifier. Once these are initialized, they cannot



Visualizing Maple Plots with JavaViewLib 9

be modified. Procedures and data declared with the global modifier are not
publicly exposed, but are publicly accessible and may be modified. The option
identifier, among other things, specifies the function to call when the package
is loaded into a maple session. After the module is defined, the march (maple
archive) command creates the library files in the specified directory. Once
the library files are created the savelib command adds the Maple expression
defined as ‘JavaViewLib’ to the archive.

[> JavaViewLib := module()

option package, load = setup, ‘Copyright Steven Dugaro 2001‘:

export import, exportHTM, runApplet, runJavaView, ..., set:

global ‘type/JVLObject‘:

local setup, import, ..., w1:

# muted module constants; unmodifiable strings

w1:="Unable to find the specified file.":

...

# private function definitions

setup := proc()

interface(verboseproc=0):

‘type/JVLObject‘ := proc(x) ... end proc:

setOS():

buildIT():

end proc;

...

# public function definitions

import := proc() ... end proc:

...

end module:

[> march(’create’, ’/JavaViewLib’, 100);

[> savelib(’JavaViewLib’);

Using Maple’s plot data structures and package mechanism it is straight-
forward to build application connectivity via parsers, file I/O and system
calls. Two parsers were written – one within JavaView and one within JVL.
The JVL parser extracts the geometric information from the plot data struc-
tures, and reproduces the information in JavaViews’ jvx file format. JVL also
outputs the plot structures into .mpl files from which the JavaView parser
extracts the necessary geometric and stylistic information. These geometry
files serve as the basic means of information exchange between JavaView and
Maple. The jvx file format is intended for the export of stylistic free geome-
tries in a human readable file format. The .mpl file format should be used to
export stylistic geometries in a compact file format. These files are passed to
JavaView via a command line argument when it is invoked as a standalone,
or via an applet tag parameter when it is rendered in a browser. JVL also



10 Steven P. Dugaro and Konrad Polthier

allows plot data to be included as an applet parameter in the applet tag so
that all the necessary information may be contained in a single html file.
Using simple file I/O, JVL creates the geometry files, the html files or both
then employs system calls to launch JavaView or the user’s browser from
within Maple. The following code snippet shows a brief example of a JVL
library procedure that performs plot parsing and JVX file generation. Note,
saving Maple plots as JVX file will allow JVL to include additional render-
ing commands like setting transparency of a geometry. However, exporting
Maple plots to JavaView via MPL files will work fine, too.

[> exportJVX := proc()

# PUBLIC: save a Maple plot in JavaView’s JVX file format

if nargs = 1 then

if type(args[1], JVLObject) then

oargs:= getIOstring("JVLExport",jvx),args[1]:fi:

else

oargs:=check2args(args):

oargs:=getIOstring(oargs[1],"jvx"),oargs[2]:fi:

try

fd:= fopen(getIOstring(oargs[1],jvx), WRITE):

fprintf(fd,"%s", JVXHEADER):

fprintf(fd," <jvx-model>\n\t<geometries>\n"):

for l from 1 to nops(oargs[2]) do

a:=op(l,oargs[2]):

if op(0,a) = MESH then

...

elif op(0,a) = GRID then

...

elif op(0,a) = POLYGONS then

...

elif op(0,a) = CURVES then

...

elif op(0,a) = POINTS then

...

else # handle other Maple objects including styles.

...

fi:

od:

fprintf(fd,"\n\t</geometries>\n</jvx-model>"):

fclose(fd):

return oargs[1]:

catch:

error("Could not write to file ", oargs[1], lastexception):

end try:

end proc:



Visualizing Maple Plots with JavaViewLib 11

4 Importing and Exporting Geometries

JVL has extended the capabilities of Maple to make geometric information
highly portable. For the first time it is possible to export Maple plots to
a variety of formats and import geometries from a variety of formats into
Maple. One is finally able to export Maple worksheets into an html file where
the dynamic qualities of the plot is preserved.

As it is typically encouraged to keep similar file types grouped together
when developing web pages, JVL maintains a working directory to organize its
exports. Its working directory contains four subfolders: 1) an ./mpl subfolder
for mpl files, 2) a ./jvx subfolder for jvx files 3) an ./htm subfolder for html
files, and 4) a ./jars subfolder for the JavaView applet. The working directory
defaults to the JVL installation directory, so it is recommended that a working
directory be set before exporting.

4.1 Import of Geometry Files into Maple

JVL does not implement its own file format parsers; these parsers are already
implemented in JavaView. These parsers cannot be accessed from within
JVL since application connectivity is weak. As a result, importing 3rd party
geometries into Maple requires an intermediate step. After the geometry has
been loaded into JavaView, it must be saved down as an mpl file. At this
point JVL’s import command can be called to pull the geometry into Maple.
The following example and Figure 6 illustrate this.

[> runJavaView("/temp/hand.obj");

[> import("/temp/hand.mpl");

4.2 Exporting Maple Plots to Web Pages

The three fundamental JVL export functions are exportHTM, exportMPL, and
exportJVX. They provide three different contexts in which to export Maple
plot data. The former is used to generate html pages that either link to or
contain the plot information and embed the JavaView applet. The latter two,
are for generating the respective geometric files only. These functions require
1 argument – the plot object. A second optional argument may be given to
specify the filename and path to which the file is to be exported. Maples plots
commands can be wrapped in the export functions or defined in a variable
to be passed by reference. Here we define a simple cube in the box variable:

[> box:=plots[polyhedraplot]([0,0,0],polytype=hexahedron):

The exportMPL interface is used to export a stylistic, compact represen-
tation of the Maple plot. JavaView interprets most of the plot attributes,
and selectively discards others. The following command exports the geome-
try into a file called mplBox.mpl into the mpl folder of the current working
directory.



12 Steven P. Dugaro and Konrad Polthier

Fig. 6. Import a wealth of 3D file formats into Maple via JavaView’s geometry
loaders. For example, OBJ is the standard file format of Java3D and Wavefront,
and accepted by rendering software like Maya.

[> exportMPL(box, mplBox):

The exportJVX interface is used to export a minimal, legible represen-
tation of the Maple plot. However, the display can be embellished with the
addition of attributes and other jvx tags to the jvx file. The following com-
mand exports the geometry to a file called jvxBox.jvx in the temp folder of
the root directory.

[> exportJVX("/temp/jvxBox", box):



Visualizing Maple Plots with JavaViewLib 13

The exportHTM interface is used to generate and couple html pages with
exported Maple plots. This can be done in one of three ways: 1) embed the
data within the html page itself, 2) generate and link to a geometry file, or
3) create the html page for an existing geometry file. Appending a filename
extension qualifies the method of plot export. Embedding the data within
the html file is the default method for this function and so no extension is
needed, however appending ‘.jvx’ or ‘.mpl’ will export the plot to a separate
file and creates the html page that links to it. JVL normally exports with
respect to the working directory so that all files can be relatively referenced,
nevertheless, exporting to an arbitrary path will copy all the relevant files
to that directory. The following commands demonstrate these four possible
usage scenarios.

[> exportHTM(box,"box"); # export the plot into an html file

[> exportHTM(box,"box.mpl"); # generate box.mpl, box.htm & link

[> exportHTM(box,"jvxBox.jvx"); # generate jvxBox.jvx and jvxBox.htm

[> exportHTM(box,"/temp/"); # copy jars, JVLExport.htm to /temp

4.3 More on the run* Commands

The JVL run* commands are basically wrappers around the above export
functions. They do little more than specify the export method and launch
the appropriate application. Consequently, the argument guidelines are the
same as the export functions. A filename and/or path is optional, defaulting
to JVLExport in the current working directory, a qualifying file extension
specifies the method of export, and arbitrary paths copy the necessary files
to the specified location. However, unlike exportHTM, existing html files are
opened for viewing and not overwritten.
The JavaView standalone application is interfaced with Maple using the
runJavaView command. It contains the most complete compilation of the
JavaView modules as web considerations need not be taken into account.
This interface is provided for the use of JavaView on your local machine, and
automatically launches JavaView from within Maple. Once a model has been
loaded into JavaView, Javaview’s geometry tools may be utilized. This in-
cludes materials features such as texture mapping, modeling features such as
triangulation, and effects features such as explosions. The following function
calls illustrate how to typically make use of this interface function, see Figure
7.

[> runJavaView(): # launch the JavaView application

[> runJavaview(box): # launch JavaView with a Maple plot

[> runJavaview(box,myBox.mpl): # launch and save a Maple plot

[> runJavaView("models/hand.obj"): # load a 3rd party geometry

As an applet, JavaView can be used interactively over the Internet. The
runApplet function is able to expedite this process by exporting maple plots



14 Steven P. Dugaro and Konrad Polthier

Fig. 7. JavaView’s advanced modeling tools allow for the fine tuning of geometric
shapes.

to a ‘skeletal web page’, which can then be fleshed out into a final html
document. This ’skeletal web page’ simply contains the applet tag that em-
beds the JavaView applet. Tags in general are directory structure dependent
as they point to the files with which the browser should render the page.
Therefore it is important to keep the structure maintained by JVL in your
working path - relocating files would require you to manually adjust the tag’s
definition. After building and exporting the necessary files, runApplet will
automatically launch the defined browser from within Maple for viewing. The
following examples demonstrate some typical uses for this function.

[> url:= "http://www.cecm.sfu.ca/news/coolstuff/JVL/htm/webdemo.htm":

[> runApplet(url): # open a web page from within Maple

[> runApplet(box): # launch a browser with a Maple plot

[> runApplet(jvxBox.jvx): # launch and build page for existing file

[> runApplet(box,myBox.mpl): # launch, build page, and save a plot



Visualizing Maple Plots with JavaViewLib 15

[> runApplet("/models/hand.obj"): # launch a 3rd party geometry

[> runApplet(box,"/temp/box.htm"): # launch, build, copy to path

Fig. 8. The original homepage of JavaViewLib launched from inside Maple.

5 Additional Features

5.1 JVL State Information

JVL maintains a small amount of state information to assist in the configura-
tion of the JavaView viewer. For the most part, these states specify how the
JavaView applet is to be rendered in a browser. These states can be set to
specify the size of the JavaView viewport, its background image, the current
working path as well as some viewing initializations such as autorotation,
axes, and depth cueing. The list of state information can be obtained with
the following function:

[> getInfo();

JavaViewLib State Information

-----------------------+------

[W ] Applet Width | 400

[H ] Applet Height | 400

[A ] Applet Alignment | Center



16 Steven P. Dugaro and Konrad Polthier

[R ] AutoRotate | 1. 1. 1.

[X ] Axes | Hide

[BC] Background Colour | 255 255 255

[BI] Background Image | images/jvl.jpg

[B ] Border | Hide

[BB] Bounding Box | Show

[BR] Browser | iexplore

[V ] Camera Direction | 1. 2. 3.

[DC] Depth Cueing | Hide

[EA] Edge Aura | Show

[WK] Working Path | C:\Program Files\Maple 6\JavaViewLib\

Installation Path | C:\Program Files\Maple 6\JavaViewLib\

Operating System | Windows NT/2000

JVL states can be configured with the set command by specifying a
list of attribute = value pairs. Most binary states can be toggled by either
assigning a show/hide or on/off value, or by simply including its handle
in the list. Here we set the working path for the export project and specify
that all subsequent tags are to be rendered with a left aligned 200 pixel by
200 pixel viewport, in auto-rotate model with axes, and the currently defined
background image.

[> set(wp="c:\\temp\\myGeoms\\", width=200, height=200, axes,

autorotate, bg=image, align=left):

[> runApplet(plots[polyhedraplot]([0,0,0], polytype=hexahedron));

-0,8 -0,6 -0,4 -0,2 -0 0,2 0,4 0,6 0,8

-0,8

-0,6

-0,4

-0,2

-0

0,2

0,4

0,6

0,8

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

-2

-1

0

1

2

Fig. 9. 2D graphs exported to a JavaView applet will keep axis and projection
settings.

5.2 Markup Tree of the JVX Geometry

The runMarkupTree command simply exports a plot in the jvx format, and
launches a browser to view it. The markup tree is an XML representation
of the geometric data contained in a plot, and consists of tags that repre-
sent points, faces, and geometries. The listing in Figure 10 is the markup
tree for a tetrahedron. Notice that the Maple plot, and therefore the .mpl



Visualizing Maple Plots with JavaViewLib 17

Fig. 10. View a Maple plot as formatted XML document, and collaps and expand
individual parts of the markup tree. The JVL command runMarkupTree() makes
use of JavaView’s JVX file format and the formatting capabilities of the Internet
Explorer. Here the vertices and faces of a tetrahedron are listed.

format, contains many redundant points. These points can be merged with
JavaView’s ‘Identify Points’ modeling command and preserved by saving in
the .jvx format.

[> runMarkupTree(plots[polyhedraplot]([0,0,0], polytype=tetrahedron));

5.3 Create and Configure an Applet Tag

On occasion, it may be quicker to simply generate the applet tags for a
series of plots, instead of exporting an html page for each of them. The
genTag function returns the applet tag as it would be rendered in the html
document if exported otherwise. These tags can then be cut and paste into a
single html document kept relative to the working directory – i.e. in the htm
subfolder. The following example quickly generates 3 orthogonal views and



18 Steven P. Dugaro and Konrad Polthier

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Fig. 11. JavaView recognizes a large variety of different Maple plots including
contour and density plots.

one perspective view with auto-rotation using the lite version of the JavaView
applet.

[> b := plot3d((1.3)^x * sin(y),x=-1..2*Pi,y=0..Pi,

coords=spherical,style=patch):

[> set(reset):

[> set(viewDir="0 -1 0", bg="200 200 200", border="on", axes="off",

width=300, height=300):

[> exportHTM(b,bounty.mpl):

[> set(viewDir="0 1 0"):

[> genTagLite(bounty.mpl);

<APPLET CODE=’jvLite.class’ CODEBASE=’../’ ARCHIVE=’jars/jv_lite.zip’

WIDTH=’300’ HEIGHT=’300’ ID=’JVLAPPLET’ ALT=’JVL - MAPLE Export’>

<PARAM NAME=’Background’ VALUE=’200 200 200’>

<PARAM NAME=’Border’ VALUE=’Show’>

<PARAM NAME=’ViewDir’ VALUE=’0 1 0’>

<PARAM NAME=’Model’ VALUE=’mpl/bounty.mpl’>

</APPLET>

[> set(viewDir="0 0 1"):

[> genTagLite(bounty.mpl);

<APPLET CODE=’jvLite.class’ CODEBASE=’../’ ARCHIVE=’jars/jv_lite.zip’

WIDTH=’300’ HEIGHT=’300’ ID=’JVLAPPLET’ ALT=’JVL - MAPLE Export’>

<PARAM NAME=’Background’ VALUE=’200 200 200’>

<PARAM NAME=’Border’ VALUE=’Show’>

<PARAM NAME=’ViewDir’ VALUE=’0 0 1’>

<PARAM NAME=’Model’ VALUE=’mpl/bounty.mpl’>

</APPLET>

[> set(viewDir="1 1 1", axes="boundingbox", rotate):

[> genTagLite(b,bounty.jvx);



Visualizing Maple Plots with JavaViewLib 19

<APPLET CODE=’jvLite.class’ CODEBASE=’../’ ARCHIVE=’jars/jv_lite.zip’

WIDTH=’300’ HEIGHT=’300’ ID=’JVLAPPLET’ ALT=’JVL - MAPLE Export’>

<PARAM NAME=’Axes’ VALUE=’Show’>

<PARAM NAME=’BoundingBox’ VALUE=’Show’>

<PARAM NAME=’Background’ VALUE=’200 200 200’>

<PARAM NAME=’Border’ VALUE=’Show’>

<PARAM NAME=’AutoRotate’ VALUE=’Show’>

<PARAM NAME=’ViewDir’ VALUE=’1 1 1’>

<PARAM NAME=’Model’ VALUE=’jvx/bounty.jvx’>

</APPLET>

Fig. 12. The JVL commands genTag() create an applet tag of a Maple plot. Here
genTag() was used to show different projections of the same geometry.



20 Steven P. Dugaro and Konrad Polthier

5.4 Creating a Web Gallery of Maple Plots

The quickest way to make exported geometries web ready is to let JVL do
it. The viewGallery command builds a frame based geometry gallery with
a table of contents that links to all exports in the htm folder of the current
working directory. The following commands export a 2D geometry to the htm
folder, and build the necessary html files for the gallery at the top level of the
current working directory. This provides a quick way to publish visualization
projects on the Internet.

[> exportHTM(plot([sin(4*x),x,x=0..2*Pi],coords=polar):

[> viewGallery();

Fig. 13. Automatically create a web gallery of all Maple plots in your repository
with the JVL command viewGallery().

6 Conclusion and Outlook

By establishing even a basic level of application connectivity, the functional-
ity of both JavaView and Maple was enhanced. Maple was afforded greater
visualization and web functionality while JavaView’s geometry generation ca-
pabilities were extended to match that of Maple. The JavaViewLib has made
its mark in the sand as a proponent of application connectivity. By bridging
these applications, the JavaViewLib broadens the toolset available for the
research and teaching of mathematics.



Visualizing Maple Plots with JavaViewLib 21

At the time of its development, the JavaViewLib made the best possible
use of the connectivity resources made available by Maple and JavaView.
However, in the year since its release, there is now room for improvement;
both Maple and JavaView appear to be making considerable advancements
in the provision for third party control. JavaView has introduced a secondary
XML file format for the initialization and preservation of display and camera
properties. Through this format, known as jvd, precise control over cam-
era, lighting, and viewport properties can be specified and launched with
JavaView. This is a step in the right direction, but covers only a small portion
of JavaView’s rich feature set. Ideally, this file format will mature into a full
featured scripting language that allows the broad range of JavaView opera-
tions to be applied to the geometry or geometries loaded into the viewer. Two
new technologies introduced with Maple 8, known as Maplets and MapleNet
appear to be moving in the direction of third party integration. However, the
two fall just short of providing a transparent look and feel for third party
plugins.

7 Downloading JavaViewLib

The JavaViewLib has become an official Maple Powertool, and may be ob-
tained from the MapleSoft website [3] at

http://www.mapleapps.com/powertools/javalib/javalib.shtml.

The original website of JVL [1][2] as well as new releases and updates
reside at the CECM website under

http://www.cecm.sfu.ca/news/coolstuff/JVL/htm/webdemo.htm.

The JavaView [5] visualization environment, which also includes the parser
for Maple plots, is contained in the JVL download but may be upgraded in-
dependently by replacing the JavaView directory with newer versions from
the JavaView homepage

http://www.javaview.de.

Package downloads include a tutorial Maple worksheet gettingStarted.mws
and a readme.txt file for installation instructions.



22 Steven P. Dugaro and Konrad Polthier

References

1. S. Dugaro. JavaViewLib homepage. www.cecm.sfu.ca/news/coolstuff/JVL/

htm/webdemo.htm.
2. S. Dugaro. JavaViewLib - a visualization powertool. In Proc. of the Maple

Summer Workshop. Waterloo Maple Inc., 2002.
3. Maple Waterloo. Homepage. http://www.maplesoft.com.
4. Maple Waterloo. Powertools homepage. http://www.mapleapps.com/

powertools/.
5. K. Polthier. JavaView homepage, 1998–2002. http://www.javaview.de/.
6. K. Polthier, S. Khadem-Al-Charieh, E. Preuß, and U. Reitebuch. Publication of

interactive visualizations with JavaView. In J. Borwein, M. H. Morales, K. Polth-
ier, and J. F. Rodrigues, editors, Multimedia Tools for Communicating Mathe-
matics. Springer Verlag, 2002. http://www.javaview.de.

7. Wolfram Research. Homepage. http://www.wolfram.com.


