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Abstract. We define triangulated piecewise linear constant mean curvature
surfaces using a variational characterization. These surfaces are critical for area
amongst continuous piecewise linear variations which preserve the boundary
conditions, the simplicial structures, and (in the nonminimal case) the vol-
ume to one side of the surfaces. We then find explicit formulas for complete
examples, such as discrete minimal catenoids and helicoids.

We use these discrete surfaces to study the index of unstable minimal sur-
faces, by numerically evaluating the spectra of their Jacobi operators. Our
numerical estimates confirm known results on the index of some smooth mini-
mal surfaces, and provide additional information regarding their area-reducing
variations. The approach here deviates from other numerical investigations in
that we add geometric interpretation to the discrete surfaces.

1. Introduction

Smooth submanifolds, and surfaces in particular, with constant mean curvature
(cmc) have a long history of study, and modern work in this field relies heavily on
geometric and analytic machinery which has evolved over hundreds of years. How-
ever, nonsmooth surfaces are also natural mathematical objects, even though there
is less machinery available for studying them. (Consider M. Gromov’s approach of
doing geometry using only a set with a measure and a measurable distance function
[9].)

Here we consider piecewise linear triangulated surfaces (we call them ”discrete
surfaces”), which have been brought more to the forefront of geometrical research
by computer graphics. We define cmc for discrete surfaces in R

3 so that they are
critical for volume-preserving variations, just as smooth cmc surfaces are. Discrete
cmc surfaces have both interesting differences from and similarities with smooth
ones. For example, they are different in that smooth minimal graphs in R

3 over a
bounded domain are stable, whereas discrete minimal graphs can be highly unsta-
ble. We will explore properties like this in section 2.

In section 3 we will see some ways in which these two types of surfaces are
similar. We will see that: a discrete catenoid has an explicit description in terms
of the hyperbolic cosine function, just as the smooth catenoid has; and a discrete
helicoid can be described with the hyperbolic sine function, just as a conformally
parametrized smooth helicoid is; and there are discrete Delaunay surfaces which
have translational periodicities, just as smooth Delaunay surfaces have.

Pinkall and Polthier [17] used Dirichlet energy and a numerical minimization
procedure to find discrete minimal surfaces. In this work, we rather have the goal to
describe discrete minimal surfaces as explicitly as possible, and thus we are limited
to the more fundamental examples, for example the discrete minimal catenoid and
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helicoid. We note that these explicit descriptions will be useful test candidates
when implementing a procedure that we describe in the next paragraphs.

Discrete surfaces have finite dimensional spaces of admissible variations, there-
fore the study of linear differential operators on the variation spaces reduces to the
linear algebra of matrices. This advantage over smooth surfaces with their infinite
dimensional variation spaces makes linear operators easier to handle in the discrete
case.

This suggests that a useful procedure for studying the spectra of the linear Ja-
cobi operator in the second variation formula of smooth cmc surfaces is to consider
the corresponding spectra of discrete cmc approximating surfaces. Although sim-
ilar to the finite element method in numerical analysis, here the finite element
approximations will have geometric and variational meaning in their own right.

As an example, consider how one finds the index (the number of negative points
in the spectrum) of a smooth minimal surface. The standard approach is to replace
the metric of the surface with the metric obtained by pulling back the spherical
metric via the Gauss map. This approach can yield the index: for example, the
indexes of a complete catenoid and a complete Enneper surface are 1 ([7]), the index
of a complete Jorge-Meeks n-noid is 2n− 3 ([12], [11]) and the index of a complete
genus k Costa-Hoffman-Meeks surface is 2k + 3 for every k ≤ 37 ([14], [13]). How-
ever, this approach does not yield the eigenvalues and eigenfunctions on compact
portions of the original minimal surfaces, as the metric has been changed. It would
be interesting to know the eigenfunctions associated to negative eigenvalues, since
these represent the directions of variations that reduce area. The above procedure
of approximating by discrete surfaces can provide this information.

In sections 5 and 6 we establish some tools for studying the spectrum of dis-
crete cmc surfaces. Then we test the above procedure on two standard cases – a
(minimal) rectangle, and a portion of a smooth minimal catenoid bounded by two
circles. In these two cases we know the spectra of the smooth surfaces (section
4), and we know the discrete minimal surfaces as well (section 3), so we can check
that the above procedure produces good approximations for the eigenvalues and
smooth eigenfunctions (section 7), which indeed must be the case, by the theory of
the finite element method [4], [8]. With these successful tests, we go on to consider
cases where we do not apriori know what the smooth eigenfunctions should be, such
as the Jorge-Meeks 3-noid and the genus 1 Costa surface (section 7).

We note that the above procedure can also be implemented using discrete ap-
proximating surfaces which are found only numerically and not explicitly, such as
surfaces found by the method in [17]. And in fact, we use the method in [17] to
find approximating surfaces for the 3-noid and Enneper surface and Costa surface.

We note also that Ken Brakke’s surface evolver software [3] is an efficient tool for
numerical index calculations using the same discrete ansatz. Our main emphasis
here is to provide explicit formulations for the discrete Jacobi operator and other
geometric properties of discrete surfaces.

2. Discrete Minimal and cmc Surfaces

We start with a variational characterization of discrete minimal and discrete
cmc surfaces. This characterization will allow us to construct explicit examples
of unstable discrete cmc surfaces. (Note that merely finding minima for area with
respect to a volume constraint would not suffice for this, as that would produce only
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Figure 1. The vectors J(r−q) whose sum form the gradient of discrete
area, as in Equation (1).

stable examples.) We will later use these discrete cmc surfaces for our numerical
spectra computations.

The following definitions for discrete surfaces and their variations work equally
well in any ambient space R

n, but for simplicity we restrict to R
3.

Definition 2.1. A discrete surface in R
3 is a triangular mesh T which has the

topology of an abstract 2-dimensional simplicial surface K combined with a geomet-
ric C0 realization in R

3 that is piecewise linear on each simplex. The geometric
realization |K| is determined by a set of vertices V = {p1, ..., pm} ⊂ R

3, and T
can be identified with the pair (K,V). The simplicial complex K represents the
connectivity of the mesh. The 0, 1, and 2 dimensional simplices of K represent the
vertices, edges, and triangles of the discrete surface.

Let T = (p, q, r) denote an oriented triangle of T with vertices p, q, r ∈ V. Let
pq denote an edge of T with endpoints p, q ∈ V .

For p ∈ V, let star(p) denote the triangles of T that contain p as a vertex. For
an edge pq, let star(pq) denote the (at most two) triangles of T that contain pq as
an edge.

Definition 2.2. Let V = {p1, ..., pm} be the set of vertices of a discrete surface T .
A variation T (t) of T is defined as a C2 variation of the vertices pi

pi(t) : [0, ε) → R
3 so that pi(0) = pi ∀i = 1, ...,m.

The straightness of the edges and the flatness of the triangles are preserved as the
vertices move.

In the smooth situation, the variation at interior points is typically restricted
to normal variation, since the tangential part of the variation only performs a
reparametrization of the surface. However, on discrete surfaces there is an ambigu-
ity in the choice of normal vectors at the vertices, so we allow arbitrary variations.
But we will later see (section 7) that our experimental results can accurately es-
timate normal variations of a smooth surface when the discrete surface is a close
approximation to the smooth surface.

In the following we derive the evolution equations for some basic entities under
surface variations.

The area of a discrete surface is

area(T ) :=
∑
T∈T

areaT ,
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where areaT denotes the Euclidean area of the triangle T as a subset of R
3.

Let T (t) be a variation of a discrete surface T . At each vertex p of T , the
gradient of area is

(1) ∇p areaT =
1
2

∑
T=(p,q,r)∈star p

J(r − q) ,

where J is rotation of angle π
2 in the plane of each oriented triangle T . The first

derivative of the surface area is then given by the chain rule

(2)
d

dt
areaT =

∑
p∈V

〈p′,∇p area T 〉 .

The volume of an oriented surface T is the oriented volume enclosed by the cone
of the surface over the origin in R

3

volT :=
1
6

∑
T=(p,q,r)∈T

〈p, q × r〉 =
1
3

∑
T=(p,q,r)∈T

〈 �N, p〉 · areaT ,

where p is any of the three vertices of the triangle T and �N = (q−p)× (r−p)/|(q−
p) × (r − p)| is the oriented normal of T . It follows that

(3) ∇p volT =
∑

T=(p,q,r)∈star p

q × r/6

and

(4)
d

dt
volT =

∑
p∈V

〈p′,∇p volT 〉 .

Remark 2.1. Note also that ∇p volT =
∑

T=(p,q,r)∈star p(2 · areaT · �N + p× (r −
q))/6. Furthermore, if p is an interior vertex, then the boundary of star p is closed
and

∑
T∈star p p× (r− q) = 0. Hence the q× r in Equation (3) can be replaced with

2 · areaT · �N whenever p is an interior vertex.

In the smooth case, a minimal surface is critical with respect to area for any
variation that fixes the boundary, and a cmc surface is critical with respect to area
for any variation that preserves volume and fixes the boundary. We wish to define
discrete cmc surfaces so that they have the same variational properties for the same
types of variations. So we will consider variations T (t) of T that fix the boundary
∂T and that additionally preserve volume in the nonminimal case, which we call
permissible variations. The condition that makes a discrete surface area-critical for
any permissible variation is expressed in the following definition.

Definition 2.3. A discrete surface has constant mean curvature (cmc) if there
exists a constant H so that ∇p area = H∇p vol for all interior vertices p. If H = 0
then it is minimal.

This definition for discrete minimality has been used in [17]. In contrast, our
definition of discrete cmc surfaces differs from [15], where cmc surfaces are char-
acterized algorithmically using discrete minimal surfaces in S3 and a conjugation
transformation. Compare also [2] for a definition via discrete integrable systems
which lacks variational properties.
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Remark 2.2. If T is a discrete minimal surface that contains a simply-connected
discrete subsurface T ′ that lies in a plane, then it follows easily from Equation (1)
that the discrete minimality of T is independent of the choice of triangulation of
the trace of T ′.

2.0.1. Notation from the Theory of Finite Elements. Consider a vector-valued func-
tion vpj ∈ R

3 defined on the n interior vertices Vint = {p1, ..., pn} of T . (We may
extend this function to the boundary vertices of T as well, by assuming vp = �0 ∈ R

3

for each boundary vertex p.) The vectors vpj are the variation vector field of any
boundary-fixing variation of the form

(5) pj(t) = pj + t · vpj + O(t2) ,

that is, p′j(0) = vpj . We define the vector �v ∈ R
3n by

(6) �vt = (vt
p1
, ..., vt

pn
).

The variation vector field �v can be naturally extended to a piece-wise linear con-
tinuous R

3-valued function v on T , with v in the following vector space:

Definition 2.4. Define Sh of the discrete surface T to be

Sh := {v : T → R
3 | v ∈ C0(T ), v is linear on each T ∈ T and v|∂T = 0} .

This space in named Sh, as in the theory of finite elements. Note that any
component function of any function v ∈ Sh has bounded Sobolev H1 norm.

For each triangle T = (p, q, r) in T and each v ∈ Sh,

(7) v|T = vpψp + vqψq + vrψr ,

where ψp : T → R is the head function on T which is 1 at p and is 0 at all other
vertices of T and extends linearly to all of T in the unique way. The functions ψpj

form a basis (with scalars in R
3) for the 3n-dimensional space Sh.

2.0.2. Non-Uniqueness of Discrete Minimal Disks. Uniqueness of a bounded min-
imal surface with a given boundary ensures that it is stable. For smooth minimal
surfaces, uniqueness can sometimes be decided using the maximum principle of el-
liptic equations, which ensures that the minimal surface is contained in the convex
hull of its boundary, and, if the boundary has a 1-1 projection to a convex planar
curve, then it is unique for that boundary and is a minimal graph. The maximum
principle also shows that any minimal graph is unique even when the projection of
its boundary is not convex. More generally, stability still holds when the surface
merely has a Gauss map image contained in a hemisphere, as shown in [1] (although
their proof employs tools other than the maximum principle).

However, such statements do not hold for discrete minimal surfaces. Consider
the surface shown in the left-hand side of Figure 2, whose height function has a
local maximum at an interior vertex. This example does not lie in the convex hull
of its boundary and thereby disproves the general existence of a discrete version of
the maximum principle. Also, the three surfaces on the right-hand side in Figure 3
are all minimal graphs over an annular domain with the same boundary contours
and the same simplicial structure, and yet they are not the same surfaces, hence
graphs with given simplicial structure are not unique. And the left-hand surface in
Figure 3 is a surface whose Gauss map is contained in a hemisphere but which is
unstable (this surface is not a graph) – another example of this property is the first
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annular surface in Figure 3, which is also unstable. (We define stability of discrete
cmc surfaces in section 5).

The influence of the discretization on nonuniqueness, like as in the annular ex-
amples of Figure 3, can also be observed in a more trivial way for a discrete minimal
graph over a simply connected convex domain. The two surfaces on the right-hand
side of Figure 2 have the same trace, i.e. they are identical as geometric surfaces,
but they are different as discrete surfaces. Interior vertices may be freely added and
moved inside the middle planar square without affecting minimality (see Remark
2.2).

In contrast to existence of these counterexamples we believe that some properties
of smooth minimal surfaces remain true in the discrete setting. We say that a
discrete surface is a disk if it is homeomorphic to a simply connected domain.

Conjecture 2.1. Let T ⊂ R
3 be a discrete minimal disk whose boundary projects

injectively to a convex planar polygonal curve, then T is a graph over that plane.

The authors were able to prove this conjecture with the extra assumption that all
the triangles of the surface are acute, using the fact that the maximum principle (a
height function cannot attain a strict interior maximum) actually does hold when
all triangles are acute.

One can ask if a discrete minimal surface T with given simplicial structure and
boundary is unique if it has a 1-1 perpendicular or central projection to a convex
polygonal domain in a plane. The placement of the vertices need not be unique, as
we saw in Remark 2.2, however, one can consider if there is uniqueness in the sense
that the trace of T in R

3 is unique:

Conjecture 2.2. Let Γ ⊂ R
3 be a polygonal curve that either A: projects injectively

to a convex planar polygonal curve, or B: has a 1-1 central projection from a point
p ∈ R

3 to a convex planar polygonal curve. Let K be a given abstract simplicial
disk, and let γ : ∂K → Γ be a given piecewise linear map. If T is a discrete minimal
surface that is a geometric realization of K so that the map ∂K → ∂T equals γ,
then the trace of T in R

3 is uniquely determined. Furthermore, T is a graph in the
case A, and T is contained in the cone of Γ over p in the case B.

We have the following weaker form of Conjecture 2.2, which follows from Corol-
lary 5.1 of section 5 in the case that there is only one interior vertex:

Conjecture 2.3. If a discrete minimal surface is a graph over a convex polygonal
domain, then it is stable.

3. Explicit Discrete Surfaces

Here we describe explicit discrete catenoids and helicoids, which seem to be the
first explicitly known nontrivial complete discrete minimal surfaces (with minimal-
ity defined variationally).

3.1. Discrete Minimal Catenoids. To derive an explicit formula for embedded
complete discrete minimal catenoids, we choose the vertices to lie on congruent
planar polygonal meridians, with the meridians placed so that the traces of the
surfaces will have dihedral symmetry. We will find that the vertices of a discrete
meridian lie equally spaced on a smooth hyperbolic cosine curve. Furthermore,
these discrete catenoids will converge uniformly in compact regions to the smooth
catenoid as the mesh is made finer.
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Figure 2. Two views on the left-hand side of a discrete minimal sur-
face that defies the maximum principle. The two discrete minimal sur-
faces on the right-hand side with boundary vertices (x, 0, z1), (−x, 0, z1),
(0, y, z2), and (0,−y, z2) in R

3 have the same trace in R3 but have differ-
ent simplicial structures. Another surprising feature of these examples
is that the innermost triangles form a square, regardless of the values of
x, y, z1 �= z2.

Figure 3. Two unstable and two stable discrete minimal surfaces in
R

3 . The first figure on the left is unstable, even though it is locally a
graph over a horizontal plane, in the sense that the third coordinate
of the normal vector to the surface is never zero. The second figure
on the left is one of the four congruent pieces of the first figure. The
middle figure (the leftmost annular graph) is unstable, even though it
is a graph over an annular polygonal region in a horizontal plane; it has
area-reducing variations that can deform to either of the last two stable
minimal surfaces on the right, which have the same simplicial structure.

We begin with a lemma that prepares the construction of the vertical meridian
of the discrete minimal catenoid, by successively adding one horizontal ring after
another starting from an initial ring. Since our construction will lead to pairwise
coplanar triangles, the star of each individual vertex can be made to consist of
four triangles (see Remark 2.2). We now derive an explicit representation of the
position of a vertex surrounded by four such triangles in terms of the other four
vertex positions. The center vertex is assumed to be coplanar with each of the
two pairs of two opposite vertices, with those two planes becoming the plane of
the vertical meridian and the horizontal plane containing a dihedrally symmetric
polygonal ring (consisting of edges of the surface). See Figure 4.

Lemma 3.1. Suppose we have four vertices p = (d, 0, e), q1 = (d cos θ,−d sin θ, e),
q2 = (a, 0, b), and q3 = (d cos θ, d sin θ, e), for given real numbers a, b, d, e, and
angle θ so that b �= e. Then there exists a choice of real numbers x and y and a
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fifth vertex q4 = (x, 0, y) so that the discrete surface formed by the four triangles
(p, q1, q2), (p, q2, q3), (p, q3, q4), and (p, q4, q1) is minimal, i.e.

∇p area(star p) = 0 ,

if and only if

2ad >
(e− b)2

1 + cos θ
.

Furthermore, when x and y exist, they are unique and must be of the form

x =
2(1 + cos θ)d3 + (a + 2d)(e− b)2

2ad(1 + cos θ) − (e− b)2
,

y = 2e− b .

Proof. First we note that the assumption b �= e is necessary. If b = e, then one may
choose y = b, and then there is a free 1-parameter family of choices of x, leading to
a trivial planar surface.

For simplicity we apply a vertical translation and a homothety about the origin
of R

3 to normalize d = 1, e = 0, and by doing a reflection if necesary, we may
assume b < 0. Let c = cos θ and s = sin θ.

We derive conditions for the coordinate components of ∇p area to vanish. The
second component vanishes by symmetry of star p. Using the definitions

c1 :=
(a− 1)s2 − b2(1 − c)√
2b2(1 − c) + (a− 1)2s2

, c2 :=
ab + b√

2b2(1 − c) + (a− 1)2s2
,

the first (resp. third) component of ∇p area vanishes if

(8) c1 =
y2(1 − c) − (x − 1)s2√
2y2(1 − c) + (x− 1)2s2

, resp. c2 =
−(x− 1)y − 2y√

2y2(1 − c) + (x− 1)2s2
.

Dividing one of these equations by the other we obtain

(9) x− 1 =
c2y(1 − c) + 2c1

c2s2 − c1y
y ,

so x is determined by y. It now remains to determine if one can find y so that
c2s

2 − c1y �= 0. If x − 1 is chosen as in equation (9), then the first minimality
condition of equation (8) holds if and only if the second one holds as well. So we
only need to insert this value for x−1 into the first minimality condition and check
for solutions y. When c1 �= 0, we find that the condition becomes

1 =
c2s

2 − c1y

|c2s2 − c1y|
y

|y|
−(1 − c)y2 − 2s2√

2(1 − c)c22s4 + 4c21s2 + (2(1 − c)c21 + s2(1 − c)2c22)y2
.

Since −(1− c)y2 − 2s2 < 0, note that this equation can hold only if c2s2 − c1y and
y have opposite signs, so the equation becomes

1 =
(1 − c)y2 + 2s2√

2(1 − c)c22s4 + 4c21s2 + (2(1 − c)c21 + s2(1 − c)2c22)y2
,

which simplifies to

1 =

√
(1 − c)y2 + 2s2√

(1 − c)c22s2 + 2c21
.

This implies y2 is uniquely determined. Inserting the value

y = ±b ,
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one finds that the above equation holds. When y = b < 0, we find that c2s2−c1y <
0, which is impossible. When y = −b > 0, we find that c2s

2 − c1y < 0 if and only
if 2a(1 + c) > b2. And when y = −b and 2a(1 + c) > b2, we have the minimality
condition when

x =
2 + 2c + ab2 + 2b2

2a + 2ac− b2
.

Inverting the transformation we did at the beginning of this proof brings us back
to the general case where d and e are not necessarily 1 and 0, and the equations
for x and y become as stated in the lemma.

When c1 = 0, we have (a−1)(1+c) = b2 and (x−1)(1+c) = y2, so, in particular,
we have a > 1 and therefore 2a(1 + c) > b2. The right-hand side of equation (8)
implies y = −b and x = a. Again, inverting the transformation from the beginning
of this proof, we have that x and y must be of the form in the lemma for the case
c1 = 0 as well. �

The next lemma provides a necessary and sufficient condition for when two points
lie on a scaled cosh curve, a condition that is identical to that of the previous lemma.
That these conditions are the same is crucial to the proof of the upcoming theorem.

Lemma 3.2. Given two points (a, b) and (d, e) in R
2 with b �= e, and an angle θ

with |θ| < π, there exists an r so that these two points lie on some vertical translate
of the modified cosh curve

γ(t) =
(
r cosh

[
t

e− b
arccosh

(
1 +

1
r2

(e− b)2

1 + cos θ

)]
, t

)
, t ∈ R ,

if and only if 2ad > (e−b)2

1+cos θ .

Proof. Define δ̂ = e−b√
1+cos θ

. Without loss of generality, we may assume 0 < a ≤ d

and e > 0, and hence −e ≤ b < e. If the points (a, b) and (d, e) both lie on the
curve γ(t), then

arccosh

(
1 +

δ̂2

r2

)
= arccosh

(
d

r

)
− sign(b) · arccosh

(a
r

)
,

where sign(b) = 1 if b ≥ 0 and sign(b) = −1 if b < 0. Note that if b = 0, then a
must equal r (and so arccosh(a

r ) = 0). This equation is solvable (for either value of
sign(b)) if and only if(

d

r
+

√
d2

r2
− 1

)(
a

r
+

√
a2

r2
− 1

)
= 1 +

δ̂2

r2
+

δ̂

r

√
2 +

δ̂2

r2

when b ≤ 0, or
d
r +

√
d2

r2 − 1

a
r +

√
a2

r2 − 1
= 1 +

δ̂2

r2
+

δ̂

r

√
2 +

δ̂2

r2

when b ≥ 0, for some r ∈ (0, a]. The right-hand side of these two equations has the
following properties:

(1) It is a nonincreasing function of r ∈ (0, a].
(2) It attains some finite positive value at r = a.
(3) It is greater than the function 2δ̂2/r2.
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(4) It approaches 2δ̂2/r2 asymptotically as r → 0.
The left-hand sides of these two equations have the following properties:

(1) They attain the same finite positive value at r = a.
(2) The first one is a nonincreasing function of r ∈ (0, a].
(3) The second one is a nondecreasing function of r ∈ (0, a].
(4) The second one attains the value d

a at r = 0.
(5) The first one is less than the function 4ad/r2.
(6) The first one approaches 4ad/r2 asymptotically as r → 0.

It follows from these properties that one of the two equations above has a solution
for some r if and only if 2ad > δ̂2. This completes the proof. �

We now derive an explicit formula for discrete minimal catenoids, by specifying
the vertices along a planar polygonal meridian. Then the traces of the surfaces
will have dihedral symmetry of order k ≥ 3. The surfaces are tessellated by planar
isosceles trapezoids like a Z

2 grid, and each trapezoid can be triangulated into
two triangles by choosing a diagonal of the trapeziod as the interior edge. Either
diagonal can be chosen, as this does not affect the minimality of the catenoid, by
Remark 2.2.

The discrete catenoid has two surprising features. First, the vertices of a merid-
ian lie on a scaled smooth cosh curve (just as the profile curve of smooth catenoids
lies on the cosh curve), and there is no apriori reason to have expected this. Sec-
ondly, the vertical spacing of the vertices along the meridians is constant.

Theorem 3.1. There exists a four-parameter family of embedded and complete
discrete minimal catenoids C = C(θ, δ, r, z0) with dihedral rotational symmetry and
planar meridians. If we assume that the dihedral symmetry axis is the z-axis and
that a meridian lies in the xz-plane, then, up to vertical translation, the catenoid
is completely described by the following properties:

(1) The dihedral angle is θ = 2π
k , k ∈ N, k ≥ 3.

(2) The vertices of the meridian in the xz-plane interpolate the smooth cosh
curve

x(z) = r cosh
(

1
r
az

)
,

with

a =
r

δ
arccosh

(
1 +

1
r2

δ2

1 + cos θ

)
,

where the parameter r > 0 is the waist radius of the interpolated cosh curve,
and δ > 0 is the constant vertical distance between adjacent vertices of the
meridian.

(3) For any given arbitrary initial value z0 ∈ R, the profile curve has vertices
of the form (xj , 0, zj) with

zj = z0 + jδ

xj = x(zj)

where x(z) is the meridian in item 2 above.
(4) The planar trapezoids of the catenoid may be triangulated independently of

each other (by Remark 2.2).



DISCRETE CONSTANT MEAN CURVATURE SURFACES AND THEIR INDEX 11

pq
1

q2

q
3

q
4

y
x 0

z

Figure 4. The construction in Lemma 3.1, and a discrete minimal
catenoid and helicoid. (For this helicoid we have chosen x0 = 0.)

Proof. By Lemma 3.1, if we have three consecutive vertices (xn−1, zn−1),(xn, zn),
and (xn+1, zn+1) along the meridian in the xz-plane which satisfy the recursion
formula

(10) xn+1 =
(xn−1 + 2xn)δ̂2 + 2x3

n

2xnxn−1 − δ̂2
, zn+1 = zn + δ ,

where δ = zn − zn−1 and δ̂ = δ/
√

1 + cos θ. As seen in Lemma 3.1, the vertical
distance between (xn−1, zn−1) and (xn, zn) is the same as the vertical distance
between (xn, zn) and (xn+1, zn+1), so we may consider δ and δ̂ to be constants
independent of n.

In order for the surface to exist, Lemma 3.1 requires that

2xnxn−1 > δ̂2 .

This implies that all xn have the same sign, and we may assume xn > 0 for all n.
Therefore the surface is embedded. Also, as the condition 2xnxn−1 > δ̂2 implies

2xn+1xn =
2xn(xn−1 + 2xn)δ̂2 + 4x4

n

2xnxn−1 − δ̂2
>

2xnxn−1δ̂
2

2xnxn−1 − δ̂2
> δ̂2 ,

we see, inductively, that xj is defined for all j ∈ Z. Hence the surface is complete.
One can easily check that the function x(z) in the theorem also satisfies the

recursion formula (10), in the sense that if xj := x(zj), then these xj satisfy this
recursion formula. It only remains to note that, given two initial points (xn−1, zn−1)
and (xn, zn) with zn > zn−1, there exists an r so that these two points lie on
the curve x(z) with our given δ and θ (up to vertical translation) if and only if
2xnxn−1 > δ̂2, as shown in Lemma 3.2. �

Remark 3.1. If we consider the symmetric example with normalized waist radius
r = 1, that is if we choose (x1, z1) = (1, 0) and (x2, z2) = (1 + δ̂2, δ), then the
recursion formula in Equation (10) implies that

(xn, zn) = (1 +
n−1∑
j=1

2j−1an−1,j δ̂
2j , (n− 1)δ) , for n ≥ 3 ,

where an−1,j is defined recursively by an,m = 0 if m < 0 or n < 0 or m > n,
a0,0 = 1, an,0 = 2 if n > 0, and an,m = 2an−1,m−an−2,m +an−1,m−1 if n ≥ m ≥ 1.
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Thus

an,m =
(

n + m
2m

)
+
(

n + m− 1
2m

)
.

These an,m are closely related to the recently solved refined alternating sign matrix
conjecture [5].

Corollary 3.1. There exists a two-parameter family of discrete catenoids C1(θ, z0)
whose vertices interpolate the smooth minimal catenoid with meridian x = cosh z.

Proof. The waist radius of the scaled cosh curve must be r = 1. Further, we
must choose the parameter a = 1 which is fulfilled if θ and δ are related by 1 +
cos θ + δ2 = (1 + cos θ) cosh δ. The offset parameter z0 may be chosen arbitrarily
leading to a vertical shift of the vertices along the smooth catenoid. Note that if
z0 = 0, we obtain a discrete catenoid that is symmetric with respect to a horizontal
reflection. �

Corollary 3.2. For each fixed r and z0, the profile curves of the discrete catenoids
C(θ, δ, r, z0) approach the profile curve x = r cosh z

r of a smooth catenoid uniformly
in compact sets of R

3 as δ, θ → 0.

Proof. This is a direct consequence of the explicit representation of the meridian.
Since

lim
δ→0

1
δ

arccosh(1 +
1
r2

δ2

1 + cos θ
) =

√
2

r
√

1 + cos θ
,

it follows that the profile curve of the discrete catenoid converges uniformly to the
curve

x = r cosh
√

2z
r
√

1 + cos θ
as δ → 0. Then, as θ → 0 we approach the profile curve x = r cosh z

r . �

3.2. Discrete Minimal Helicoids. We continue on to the derivation of explicit
discrete helicoids, which are a natural second example of complete, embedded dis-
crete minimal surfaces.

In the smooth setting, there exists an isometric deformation through conjugate
surfaces from the catenoid to the helicoid (see, for example, [16]). So, one might
first try to make a similar deformation from the discrete catenoids in Theorem 3.1
to discrete minimal helicoids. But such a deformation is impossible in the space
of edge-continuous triangulations. In fact, in order to make an associate family
of discrete minimal surfaces, one must allow non-continuous triangle nets having
greater flexibility, as described in [18].

Therefore, we adopt a different approach for finding discrete minimal helicoids.
The helicoids will be comprised of planar quadrilaterals, each triangulated by four
coplanar triangles, see Figures 4 and 5. Each quadrilateral is the star of a unique
vertex, and none of its four boundary edges are vertical or horizontal, and one
pair of opposite vertices in its boundary have the same z-coordinate, and the four
boundary edges consist of two pairs of adjacent edges so that within each pair the
adjacent edges are of equal length.

First we derive an explicit representation for a particular vertex star to be min-
imal, as this will help us describe helicoids:
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Figure 5. star(p) is the portion considered in Lemma 3.3, and star(p′)
is a planar quadrilateral, like the ones comprising the helicoid in Fig-
ure 4. Note that the vertex p′ can be moved freely inside the planar
quadrilateral star(p′) without affecting minimality, by Remark 2.2.

Lemma 3.3. Let p be a point with a vertex star consisting of four vertices q1,
q2, q3, q4 and four triangles �i = (p, qi, qi+1), i ∈ {1, 2, 3, 4} (mod 4). We as-
sume that p = (u, 0, 0), q1 = (b cos θ, b sin θ, 1), q2 = (b cos θ,−b sin θ,−1), q3 =
(t cos θ,−t sin θ,−1), q4 = (t cos θ, t sin θ, 1) with real numbers b < u < t and
θ ∈ (0, π

2 ). If either

t = −b(1 + 2u2 sin2 θ) + 2u
√

1 + b2 sin2 θ
√

1 + u2 sin2 θ or

b = −t(1 + 2u2 sin2 θ) + 2u
√

1 + t2 sin2 θ
√

1 + u2 sin2 θ ,

then ∇p area vanishes.

Proof. Consider the conormals J1 = J(q2 − q1), J2 = J(q3 − q2), J3 = J(q4 − q3),
J4 = J(q1 − q4), where J denotes oriented rotation by angle π

2 in the triangle �j

containing the edge being rotated. Then

J1 = (2
√

1 + b2 sin2 θ, 0, 0) and J3 = (−2
√

1 + t2 sin2 θ, 0, 0) .

Since 〈J4, (cos θ, sin θ, 0)〉 = 0 and det(J4, (cos θ, sin θ, 0), (u−b cos θ,−b sin θ,−1)) =
0 and |J4|2 = (t− b)2, we have that the first component of J4 (and also of J2) is

u(t− b) sin2 θ√
1 + u2 sin2 θ

.

By symmetry, the second and third components of J2 and J4 are equal but opposite
in sign, hence the second and third components of J1 + J2 + J3 + J4 are zero. So
for the minimality condition to hold at p, we need that the first component of
J1 + J2 + J3 + J4 is also zero, that is, we need

u(t− b) sin2 θ√
1 + u2 sin2 θ

+
√

1 + b2 sin2 θ −
√

1 + t2 sin2 θ = 0 ,

and the solution of this with respect to b or t is as in the lemma. So, for this
solution, ∇p area vanishes. �

Theorem 3.2. There exists a family of complete embedded discrete minimal heli-
coids, with the connectivity as shown in Figure 4. The vertices, indexed by i, j ∈ Z,
are the points

r sinh(x0 + jδ)
sin θ

(cos(iθ), sin(iθ), 0) + (0, 0, ir) ,
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Figure 6. Discrete analogs of cylinders and Delaunay surfaces.

for any given reals θ ∈ (0, π
2 ) and r, δ ∈ R.

Note that these surfaces are invariant under the screw motion that combines
vertical upward translation of distance 2r with rotation about the x3-axis by an
angle of 2θ. The term x0 determines the offset of the vertices from the z-axis (if
x0 = 0, then the z-axis is included in the edge set), and δ determines the horizontal
spacing of the vertices. The homothety factor is r, which equals the vertical distance
between consecutive horizontal lines of edges.

Proof. Without loss of generality, we may assume r = 1. So for a given i, the
vertices are points on the line {s(cos(iθ), sin(iθ), i) | s ∈ R}, for certain values of s.
We choose x0 and δ so that the (j − 2)’th vertex has s-value sj−2 = sinh(x0 + (j −
2)δ)/ sin θ and the (j − 1)’th vertex has s-value sj−1 = sinh(x0 + (j − 1)δ)/ sin θ.
Lemma 3.3 implies that the j’th vertex has s-value

sj = −sj−2(1 + 2s2
j−1 sin2 θ) + 2sj−1

√
1 + s2

j−2 sin2 θ
√

1 + s2
j−1 sin2 θ ,

a recursion formula that is satisfied by

sj = sinh(x0 + jδ)/ sin θ .

Lemma 3.3 implies a similar formula for determining sj−3 in terms of sj−2 and
sj−1, with the same solution. Finally, noting that those vertices whose star is a
planar quadrilateral can be freely moved inside that planar quadrilateral without
disturbing minimality of the surface, the theorem is proved. �
3.3. Discrete Cylinders and Delaunay Surfaces. Here we describe some ways
one can find discrete analogs of cylinders and Delaunay surfaces. The strategy for
constructing discrete cmc surfaces follows Definition 2.3: position vertices p so that
∇parea is a constant multiple of ∇pvol. A simple discrete cmc cylinder is obtained
by choosing positive reals a and e and an integer k ≥ 3, and then choosing the
vertices to be

pj,� = (a cos(2πj/k), a sin(2πj/k), e,)
for j, , ∈ Z. We then make a grid of rectangular faces, and cut the faces by
diagonals with endpoints pj,� and pj+1,�+1. This is a discrete cmc surface with
H = a−1(cos(π/k))−1. It is interesting to note that H is independent of the value
of e. See the left-hand side of Figure 6.

Another special example is to choose positive reals a, b, e, and an integer k ≥ 3,
and to choose the vertices to be

pj,� = (a cos(2πj/k), a sin(2πj/k), e,) when j + , is even, and

pj,� = (b cos(2πj/k), b sin(2πj/k), e,) when j + , is odd,
for j, , ∈ Z. We then make a grid of quadrilateral faces, and cut the faces by
diagonals with endpoints pj,� and pj+1,�+1 if j + , is even, and by diagonals with
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Figure 7. A triply-periodic discrete minimal surface with the symme-
try of the Schwarz p-surface. Note that one can easily construct surfaces
like this with many triangles if the fundamental domains consist of only
a few triangles. There is an even simpler example with Schwarz p-surface
symmetry whose fundamental piece has only half as many triangles.

endpoints pj,�+1 and pj+1,� if j + , is odd. By symmetry, it is clear that ∇pj,�
area

and ∇pj,�
vol are parallel at each vertex; and for each value of e, one can then show

the existence of values of a and b so that H is the same value at all vertices, using
an intermediate value argument. Thus a discrete cmc cylinder is produced. See
the second surface in Figure 6.

A third example can be produced by taking the vertices to be

pj,� = (a cos(2πj/k), a sin(2πj/k), e,) when , is even, and

pj,� = (b cos(2πj/k), b sin(2πj/k), e,) when , is odd,
for j, , ∈ Z. We then make a grid of isosceles trapezoidal faces, and put an extra
vertex in each of the trapezoidal faces, and connect this extra vertex by edges
to each of the four vertices of the surrounding trapezoid. Placing the vertices of
the surface numerically as symmetric as possible so that Definition 2.3 is satisfied,
surfaces like the last two examples in Figure 6 can be produced.

Remark 3.2. The 2-dimensional boundaries of the tetrahedron, octahedron, and
icosahedron are discrete cmc surfaces in our variational characterization, as well
as in the sense of [15]. The boundaries of the cube and dodecahedron are not discrete
surfaces in our sense, as they are not triangulated. However, by adding a vertex to
the center of each face and connecting it by edges to each vertex in the boundary of
the face, we can make discrete surfaces, and then we can move these face-centered
vertices perpendicularly to the faces to adjust the mean curvature.

4. Jacobi Operator for Smooth cmc Surfaces

We now begin the study of the spectra of the second variation of cmc surfaces,
and in this section we consider smooth surfaces. In particular, here we explicitly
determine the eigenvalues and eigenfunctions of the Jacobi operator for portions of
smooth catenoids, which will have applications to section 7. Also, here we state
the well-known connection between the second variation and the Jacobi operator
in the smooth case, which motivates the computations we do for the discrete case
in sections 5 and 6.

Let Φ : M → R
3 be an immersion of a compact 2-dimensional surface M . Let �N

be a unit normal vector field on Φ(M). Let Φ(t) be a smooth variation of immersions
for t ∈ (−ε, ε) so that Φ(0) = Φ and Φ(t)|∂M = Φ(0)|∂M for all t ∈ (−ε, ε). Let
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�U(t) be the variation vector field on Φ(t). We can assume, by reparametrizing Φ(t)
for nonzero t if necessary, that the corresponding variation vector field at t = 0 is
�U(0) = u �N , with u ∈ C∞(M) and u|∂M = 0. Let a(t) be the area of Φ(t)(M) and
H be the mean curvature of Φ(M). The first variational formula is

a′(0) :=
d

dt
a(t)

∣∣∣∣
t=0

= −
∫

M

〈nH �N, u �N〉dA,

where 〈, 〉 and dA are the metric and area form on M induced by the immersion
Φ. We now assume H is constant, so a′(0) = −nH

∫
M
udA. Let V (t) be the

volume of Φ(t)(M), then V ′(0) =
∫

M udA. The variation is volume preserving if∫
M 〈�U(t), �N(t)〉dA(t) = 0 for all t ∈ (−ε, ε). In particular,

∫
M udA = 0 when t = 0,

so a′(0) = 0 and Φ(M) is critical for area amongst all volume preserving variations.
The second variation formula for volume preserving variations Φ(t) is

a′′(0) :=
d2

dt2
a(t)

∣∣∣∣
t=0

=
∫

M

{|∇u|2 − (4H2 − 2K)u2}dA =
∫

M

uLudA ,

where K is the Gaussian curvature on M induced by Φ, and

(11) L = −�− 4H2 + 2K

is the Jacobi operator with Laplace-Beltrami operator �.
There are two ways that the index of a smooth cmc surface can be defined: the

geometric definition for Ind(M)=Ind(Φ(M)) is the maximum possible dimension
of a subspace S of volume-preserving variation functions u ∈ C∞

0 (M) for which
a′′(0) < 0 for all nonzero u ∈ S. The analytic definition for IndU (M) is the number
of negative eigenvalues of the operator L, which equals the maximum possible di-
mension of a subspace SU of (not necessarily volume-preserving) variation functions
u ∈ C∞

0 (M) for which
∫

M uLudA < 0 for all nonzero u ∈ SU . The subscript U
stands for “U nconstrained index”.

We have IndU (M) ≥ Ind(M) ≥ IndU (M)−1, see [10]. As it is geometrically
more natural, we want to compute Ind(M). But IndU (M) is more accessible to
computation than Ind(M), and they differ only by at most 1.

In the case that we are considering minimal surfaces, as in section 7, the volume
constraint is not necessary, and hence Ind(M) = IndU (M).

4.1. Eigenvectors of L for Rectangles. Consider the minimal rectangle

M = {(x, y, 0) ∈ R
3 | 0 ≤ x ≤ x0, 0 ≤ y ≤ y0}

with natural coordinates (x, y) ∈ R
2, and consider functions on M with Dirichlet

boundary conditions. Then L = −� with eigenvalues and eigenfunctions

λm,n =
m2π2

x2
0

+
n2π2

y2
0

, φm,n =
2

√
x0y0

sin
mπx

x0
sin

nπy

y0

for (m,n) ∈ Z
+ × Z

+. Hence Ind(M)= 0.

4.2. Eigenvectors of L for Catenoids. The catenoid is given as a conformal
map

Φ : (x, y) ∈ R → (cos x cosh y, sinx cosh y, y) ∈ R
3 ,
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with R = S1×[y0, y1]. The metric, Laplace-Beltrami operator, and Gauss curvature
are

ds2 = cosh2 y · (dx2 + dy2) , � =
∂2

∂2x + ∂2

∂2y

cosh2(y)
, K = − cosh−4 y .

We put Dirichlet boundary conditions on the two boundary curves of R.

Lemma 4.1. The catenoid Φ has an L2-basis of eigenfunctions for its Jacobi op-
erator L = −� + 2K of the form sin(mx)f(y) or cos(mx)f(y), for m ∈ N ∪ {0}.
The function f is a solution of the 2nd-order ordinary differential equation

(12) fyy = (m2 − λ cosh2 y − 2 cosh−2 y)f ,

with eigenvalue λ ∈ R of L and Dirichlet boundary conditions f(y0) = f(y1) = 0.
Therefore, the eigenvalues λ and eigenfunctions of L are determined by the so-

lutions of Equation (12) with f(y0) = f(y1) = 0.

Proof. It is well known that L, with respect to the Dirichlet boundary condition, has
a discrete spectrum in R, and that, for all λ ∈ R, ker(L− λ) is a finite dimensional
space of smooth functions. Furthermore, an orthonormal basis of the L2 space over
R (with respect to ds2) can be obtained as a set of smooth eigenfunctions of L
satisfying the Dirichlet boundary condition.

Define the symmetric operator D = i ∂
∂x . To see that D is symmetric, for func-

tions u and v that are 2π-periodic in x we have

〈 ∂

∂x
u, v〉L2 + 〈u, ∂

∂x
v〉L2 =

∫
R

(uxv + uvx) cosh2 ydxdy = 0 ,

which implies that the operator ∂
∂x is skew symmetric, and so D is symmetric.

Note that DL = LD, so D : ker(L − λ) → ker(L − λ). Since D is symmetric, it
has a basis of eigenfunctions in each finite dimensional space ker(L−λ). So we can
choose a set of functions that is simultaneously an L2-basis of eigenfunctions for
both D and L. Since the eigenfunctions of D must be of the form emxif(y) with
m ∈ Z, the first part of the lemma follows.

An eigenfunction sin(mx)f(y) of L satisfies

L(sin(mx)f(y)) = λ sin(mx)f(y)

=
m2 sin(mx)f(y)

cosh2 y
− sin(mx)fyy(y)

cosh2 y
− 2 sin(mx)f(y)

cosh4 y
,

and a similar computation holds for an eigenfunction cos(mx)f(y). Hence f satisfies
Equation (12). �

5. Second Variation of Area

We now consider the spectra of the second variation for discrete cmc surfaces
T (t) as in Definition 2.2, and we begin with a technical and explicit computation
of the second variation in this section.

Lemma 5.1. For a compact discrete cmc H surface T with vertex set V,

d2

d2t
area(T )

∣∣∣∣
t=0

=
∑
p∈V

〈p′, (∇p area)′ −H(∇p vol)′〉

for any permissible variation.



18 KONRAD POLTHIER AND WAYNE ROSSMAN

Proof. Differentiating Equation (2) and using Definition 2.3, we have

(area)′′(0) =
∑
p∈V

〈p′′, H∇p vol〉 +
∑
p∈V

〈p′, (∇p area)′〉.

For a minimal discrete surface, the first term on the right hand side vanishes. For
a discrete cmc surface with H �= 0, the variation p(t) is volume preserving for all
t, so by Equation (4) we have∑

p∈V
〈p′,∇p vol〉 = 0 ∀t =⇒

∑
p∈V

〈p′′,∇p vol〉 + 〈p′, (∇p vol)′〉 = 0 ,

proving the lemma. �

Definition 5.1. A discrete minimal or cmc surface T is stable if (area)′′(0) ≥ 0
for any permissible (i.e. volume-preserving and boundary-fixing) variation.

For any permissible variation as in Equation (5) with �v ∈ R
3n as in Equation

(6), the second variation (area)′′(0) is a bilinear form which can be represented by
a symmetric 3n×3n matrix Q, so that �vtQ�v equals (area)′′(0). We now decompose
(area)′′(0) into the sum of two terms

(13) �vtQa�v :=
∑
p∈V

〈vp, (∇p area)′〉 and −H�vtQV �v := −H
∑
p∈V

〈vp, (∇p vol)′〉 ,

for any permissible variation with variation vector field �v. In the next two proposi-
tions we determine the components of the matrices Qa and QV satisfying Equation
(13), thus giving us the components of Q = Qa −HQV .

Proposition 5.1. The hessian of the area function from Sh to R is a symmetric
bilinear form with 3n×3n matrix representation Qa, with respect to the basis {ψpj}
of Sh. Qa can be considered as an n× n grid with a 3 × 3 entry Qa

i,j for each pair
of interior vertices pi, pj ∈ Vint of T , so that

�vtQa�v =
∑
p∈V

〈vp, (∇p area)′〉

for the variation vector field �v of any permissible variation. The entry Qa
i,j is 0 if

the vertices pi, pj are not adjacent, and is

Qa
i,j =

1
2

∑
T=(pi,pj,r)∈star(pipj),

�eij :=pi−pj

�eij · J t(�eij) − J(�eij) · �et
ij

|�eij |2
− cot θT

�NT · �N t
T

for pi and pj adjacent and unequal, where θT is the interior angle of the triangle
T = (pi, pj , r) at r, and is

Qa
i,i =

1
4

∑
T=(pi,q,r)∈star(pi)

|r − q|2
areaT

�NT
�N t

T

when the vertices are both equal to pi. Here, �NT (or just �N) denotes the oriented
unit normal vector of the triangle T = (p, q, r).
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Proposition 5.2. The hessian of the volume function from Sh to R is a symmetric
bilinear form with 3n×3n matrix representation QV , with respect to the basis {ψpj}
of Sh. QV has a 3×3 entry QV

i,j for each pair of vertices pi, pj ∈ Vint of T , so that

�vtQV �v =
∑
p∈V

〈vp, (∇p vol)′〉

for the variation vector field �v of any permissible variation. We have QV
i,i = 0, and

QV
i,j = 0 when the vertices pi and pj are not adjacent, and

QV
i,j =

1
6


 0 r2,3 − r1,3 r1,2 − r2,2

r1,3 − r2,3 0 r2,1 − r1,1

r2,2 − r1,2 r1,1 − r2,1 0




for adjacent unequal pi and pj, where (pi, pj, rk) are the two triangles in star(pipj)
and rk = (rk,1, rk,2, rk,3) for k = 1, 2, and (pi, pj, r2) is properly oriented and
(pi, pj , r1) is not.

The proofs of these two propositions are technical computations, so we give them
in an appendix to this paper.

Corollary 5.1. If a discrete cmc surface T has only one interior vertex, then it
is stable.

Proof. The single interior vertex is denoted by p1, and star(p1) = T . Then Qa =
Qa

1,1 and QV = QV
1,1 are 3 × 3 matrices. By Propositions 5.1 and 5.2, QV = 0 and

for any vector up ∈ R
3 at p we have that ut

pQ
aup equals

1
4

∑
T=(p,q,r)∈T

|r − q|2
areaT

ut
p
�N �N tup =

1
4

∑
T=(p,q,r)∈T

|r − q|2
areaT

〈up, �N〉2 ≥ 0 ,

so (area)′′(0) ≥ 0 for all permissible variations. �

6. Jacobi Operator for Discrete cmc Surfaces

Since we know the second variation matrix Q explicitly (section 5), we are now
able to find the discrete Jacobi operator for compact discrete cmc surfaces T ,
analogous to L in the smooth case (see Equation (11)). In this section, we find the
correct matrix for the discrete Jacobi operator; this matrix has the eigenvalues and
eigenfunctions of the second variation of T .

We begin with an explicit form for the L2 inner product on Sh with respect to
the basis {ψp1 , ..., ψpn}:

Lemma 6.1. The L2 norm

〈u, v〉L2 :=
∫
T
〈u, v〉dA =

∑
T⊂T

∫
T

〈u|T , v|T 〉dA

on T for u, v ∈ Sh has the positive definite 3n× 3n matrix representation

S = (〈ψpi , ψpj 〉L2I3×3)n
i,j=1 ,

so that 〈u, v〉L2 = �utS�v, where �u,�v ∈ R
3n are the vector fields associated to u, v. S

consists of 3 × 3 blocks Si,j in an n× n grid with

Sj,j =
∑

T∈star(pj)

areaT
6

· I3×3 , resp. Si,j =
∑

T∈star(pipj)

areaT
12

· I3×3
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when pi and pj are adjacent, and Si,j = 0 when pi and pj are not adjacent.

Proof. Noting that, for each triangle T ⊂ T ,∫
T

ψ2
pdA =

areaT
6

,

∫
T

ψpψqdA =
areaT

12

for any distinct vertices p and q of T , and using Equation (7), we have that, for
any two functions u, v ∈ Sh, 〈u, v〉L2 equals

∑
pj∈Vint


〈upj , vpj 〉

∑
T∈star(pj)

areaT
6

+
∑

pi∈Vint
adjacent to pj

〈upj , vpi〉
∑

T∈star(pipj)

areaT
12


 .

Hence the 3 × 3 blocks Si,j are as in the lemma. �

We now define the discrete Jacobi operator Lh : Sh → Sh associated to the
second variation formula for the surface (recall Equations (5), (6), and (7)).

Definition 6.1. For v ∈ Sh with associated vector field �v, we define the discrete
Jacobi operator Lhv on v to be the function in Sh associated to the vector field
S−1Q�v.

Lh(Sh) ⊂ Sh, so we can consider the eigenvalue problem for Lh. We also desire
Lh to be linear and symmetric (

∫
T utLhv =

∫
T vtLhu for all u, v ∈ Sh). With these

properties, the above choice of Lh is canonical:

Proposition 6.1. Lh : Sh → Sh is the unique linear operator so that
∫
T utLhvdA

is symmetric in u and v and ∫
T
vtLhvdA = �vtQ�v

for all v ∈ Sh.

Proof. The map Lh is clearly linear, and∫
T
utLhvdA = 〈u, Lhv〉L2 = �utS(S−1Q�v) = �utQ�v

for all u, v ∈ Sh. Hence, since Q is symmetric,
∫
T utLhvdA is symmetric in u and

v.
Uniqueness of Lh with the above properties follows from the following:∫

T
utLhvdA =

1
2

(∫
T

(u + v)tLh(u + v)dA−
∫
T
utLhudA−

∫
T
vtLhvdA

)

=
1
2
(
(�u + �v)tQ(�u + �v) − �utQ�u− �vtQ�v

)
.

Hence
∫
T utLhvdA is uniquely determined for all u ∈ Sh, so Lhv is uniquely deter-

mined for each v ∈ Sh. �

Since S−1Q is self-adjoint with respect to the L2 inner product on Sh, all the
eigenvalues of S−1Q are real.

Definition 6.2. The spectrum of the second variation of T (t) at t = 0 is the set
of eigenvalues of S−1Q.
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Remark 6.1. Another way to see that S−1Q is the correct discrete Jacobi operator
is to consider the Rayleigh quotient

�vtQ�v

〈v, v〉L2
=

�vtS(S−1Q�v)
�vtS�v

.

The standard minmax procedure for producing eigenvalues from the Rayleigh quo-
tient will produce the eigenvalues of S−1Q.

7. Approximating Spectra of Smooth cmc Surfaces

Using our explicit form for S−1Q of the discrete Jacobi operator Lh, we can now
implement the procedure described in the second half of the introduction.

If a sequence of compact cmc discrete surfaces {T }∞i=1 converges (in the Sobolev
H1 norm as graphs over the limiting surface) to a smooth compact cmc surface
Φ : M → R

3, then standard estimates from the theory of finite elements (see, for
example, [4] or [8]) imply that the eigenvalues and eigenvectors (piece-wise linearly
extended to functions) of the operators Lh of the Tj converge to the eigenvalues
and eigenfunctions of the Jacobi operator L of Φ (convergence is in the L2 norm
for the eigenfunctions).

For the first two examples here – a planar square and rotationally symmetric
portion of a catenoid – we know the approximating discrete minimal surfaces ex-
actly, and we know the eigenvalues and eigenfunctions of L for the smooth minimal
surfaces exactly, so we can check that convergence of the eigenvalues and eigenfunc-
tions does indeed occur.

In the final two examples – symmetric portions of a trinoid and a Costa surface
– the spectra of the smooth minimal surfaces is unknown, so we see estimates for
the eigenvalues and eigenfunctions for the first time. Our experiments confirm the
known values 3 and 5 respectively for the indexes of these unstable surfaces, and
additionally show us the directions of variations that reduce area. Thus we have
approximations for maximal spaces of variation vector fields on the smooth minimal
surfaces for which the associated variations reduce area. (For the approximating
discrete surfaces in these examples, we do not have an explicit form; however,
the theory of finite elements applies and we can still expect convergence of the
eigenvalues and eigenfunctions in L2 norm, if we choose the discrete aproximations
so that they converge in H1 norm to the smooth minimal surfaces.)

7.1. The flat minimal square. Considering the square M = {0 ≤ x ≤ π, 0 ≤ y ≤
π} included in R

3 as a smooth minimal surface, the eigenvalues and eigenfunctions
of L are µm,n = m2 + n2 and φm,n = 2

π sin(mx) sin(ny) for m,n ∈ Z
+ (section 4).

Now we consider the discrete minimal surface T that is M with a regular square
n×n grid. In each subsquare of dimension π

n × π
n , we draw an edge from the lower

left corner to the upper right corner, producing a discrete minimal surface with 2n2

congruent triangles with angles π
4 , π

4 , and π
2 .

For this T , S−1Q has no negative eigenvalues, as expected, since the smooth
minimal square is stable. However, we must take tangential motions into account in
the discrete case, and we find that (when writing the eigenvalues in increasing order)
the first two-thirds of the eigenvalues are 0 and their associated eigenvectors are
entirely tangent to the surface. The final one-third of the eigenvalues are positive,
with eigenvectors that are exactly perpendicular to the surface. Examples of these
perpendicular vector fields are shown in Figure 8 for n = 15. (There are 196 interior
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Figure 8. The eigenvectors of the discrete square with n = 15 associ-
ated to the first six positive eigenvalues described in section 7.1. Note
that these eigenvectors closely resemble linear combinations of eigen-
functions of the Laplacian on the smooth square in section 4.1, for exam-
ple the first two resemble sin(x) sin(y) and sin(x) sin(2y)− sin(2x) sin(y)
and the last resembles sin(3x) sin(y) + sin(x) sin(3y).

-2 -1 1 2

0.5

1

1.5

2

2.5

Figure 9. On the left is the eigenvector associated to the negative
eigenvalue λ0 ≈ −0.542 of an unstable discrete catenoid. In the middle
we have also shown this R3n-vector field on the domain grid (where each
R

3-vector is vertical with length equal to that of the corresponding R3-
vector in the R3n-eigenvector field on the discrete catenoid), to show
the close resemblance to the eigenfunction on the right for the smooth
case. The function f(y) (computed numerically) on the right is the
eigenfunction when m = 0 for the catenoid Φ(R) in Section 4 with
y1 = −y0 = 1.91. The corresponding eigenvalue is λ ≈ −0.54, and all
other eigenvalues are positive.

vertices, and so there are 588 eigenvalues λj of S−1Q and λ0 = ... = λ391 = 0
and λj > 0 when j ∈ [392, 587].) The eigenvectors shown in these figures and
their eigenvalues are close to those of the smooth operator L of M . We have
λ392 = 2.022 ≈ µ1,1, λ393 = 5.094 ≈ µ1,2, λ394 = 5.148 ≈ µ2,1, λ395 = 8.347 ≈ µ2,2,
λ396 = 10.434 ≈ µ1,3, λ397 = 10.445 ≈ µ3,1.

7.2. Discrete minimal catenoids. By Corollary 3.2, we know that the discrete
minimal catenoids converge to smooth catenoids as the meshes are made finer.
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Figure 10. Two-thirds of the eigenvectors are approximately tangen-
tial to the surface. For example, in the first row we show the R3n-
eigenvector fields associated to the eigenvalues λ1, λ2, and λ3 (whose
values are just slightly greater than 0). One-third of the eigenvectors
are approximately perpendicular to the surface, and the second row
shows such eigenvector fields, associated to the eigenvalues λ147, λ171,
λ204, and λ210. The final row shows projected versions of the eigenvec-
tors in the second row, for use in comparing with the eigenfunctions of
the smooth case considered in section 4. These projected versions are
made just as in Figure 9.

Hence the eigenvalues and eigenvectors of the discrete catenoids converge to the
eigenvalues and eigenfunctions of the smooth catenoid. For the discrete catenoids
with relatively fine meshes, we find that two-thirds of the eigenvectors are approx-
imately tangent to the surface, and the remaining ones are approximately perpen-
dicular. The approximately perpendicular ones (considered as functions which are
multiplied by unit normal vectors) and their eigenvalues converge to the eigenfunc-
tions and eigenvalues of the smooth catenoid (computed in section 4).

Consider the example shown in the Figures 9 and 10. Here the catenoid has
9 × 14 = 126 interior vertices, so the matrix S−1Q has dimension 378 × 378. The
first eigenvalue of this matrix is λ0 ≈ −0.542 and λj > 0 for all j ∈ [1, 377], as
expected, since the smooth complete catenoid has index 1 ([7]). Note that λ0 is
very close to the negative eigenvalue for the smooth case, described in the caption of
Figure 9 (the closest matching smooth catenoid portion satisfies y1 = −y0 = 1.91).
The first eigenfunction in the discrete case (also Figure 9) is also very close to the
first eigenfunction in the smooth case.
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Figure 11. Variation vector fields for three area-reducing variations of
a discrete approximation of a compact portion of a trinoid. The lower
row has overhead views of these variation vector fields, as well as an
overhead view of the variation vector field associated to the fourth (and
first positive) eigenvalue.

7.3. Discrete minimal trinoids and Costa surfaces. Since the trinoid has
index 3, we find that approximating discrete surfaces with relatively fine meshes
have 3 negative eigenvalues. And we can look at the corresponding eigenvector
fields (which estimate the eigenfunctions in the smooth case), shown in Figure 11.
For the approximating discrete trinoid in Figure 11, the first four eigenvalues are
approximately −3.79,−1.31,−1.31, 0.014, so we indeed have 3 negative eigenvalues
and the second eigenvalue has multiplicity 2.

Similarly, the genus 1 Costa surface has index 5, and approximating discrete
surfaces with relatively fine meshes have 5 negative eigenvalues. See Figure 12.

Appendix A

Here we give the proofs of Propositions 5.1 and 5.2. For notating area and volume, we
shall now frequently use ”a” and ”V ” instead of ”area” and ”vol”, for brevity. We will
also use |T | or |(p, q, r)| to signify the area of a triangle T = (p, q, r).

Proof. (of Proposition 5.1) If �v and �w are variation vector fields for any pair of permissible
variations, we can define a bilinear form Qa(�v, �w) :=

1

2

X
T=(p,q,r)∈T

−〈vp × wr − vr × wp + vq × wp − vp × wq + vr × wq − vq × wr, �N〉+
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XY

Z

XY

Z

XY

Z

XY

Z

XY

Z

Figure 12. The first five eigenvector fields (whose corresponding
eigenvalues are the five negative ones) for a discrete approximation of a
compact portion of a genus 1 Costa surface.
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Figure 13. The first eigenvector field for a discrete approximation of a
compact portion of an Enneper surface. The associated first eigenvalue
is negative and is the only negative eigenvalue that is not approximately
zero, corresponding to the fact that the smooth Enneper surface has
index 1. Those other negative (approximately zero) eigenvalues have
corresponding eigenvector fields that appear roughly tangent to the sur-

face.

1

2|T | 〈vp × (r − q) + vq × (p − r) + vr × (q − p),

wp × (r − q) + wq × (p − r) + wr × (q − p)〉−
1

2|T | 〈vp × (r − q) + vq × (p − r) + vr × (q − p), �N〉·

〈wp × (r − q) + wq × (p − r) + wr × (q − p), �N〉 .

Using �N ′ = (q−p)×(r′−p′)+(q′−p′)×(r−p)
2|T | − �N

2|T | 〈(q− p)× (r′− p′)+ (q′ − p′)× (r− p), �N〉, it
follows that Qa(�v,�v) =

P
p∈V〈vp, (∇pa)′〉. Qa is clearly bilinear, and the last two terms

of Qa are obviously symmetric in �v and �w. The first term is also symmetric in �v and �w,
since vp ×wr − vr ×wp = wp × vr −wr × vp, vq ×wp − vp ×wq = wq × vp −wp × vq , and
vr × wq − vq × wr = wr × vq − wq × vr.

It only remains to determine an explicit form for Qa. For a given interior vertex p,
suppose �v and �w are nonzero only at p, that is, that �vt = (0t, ..., 0t, vt

p, 0t, ..., 0t) and

�wt = (0t, ..., 0t, wt
p, 0t, ..., 0t). Then

Qa(�v, �w) = Qa
pp(vp, wp) =

1

4

X
T=(p,q,r)∈star(p)

1

|T | 〈vp × (r − q), wp × (r − q)〉 − 1

|T | 〈vp × (r − q), �N〉〈wp × (r − q), �N〉

=
1

4

X
T=(p,q,r)∈star(p)

1

|T |v
t
p(|r − q|2I − (r − q)(r − q)t − ((r − q)× �N)((r − q)× �N)t)wp

=
1

4

X
T=(p,q,r)∈star(p)

|r − q|2
|T | vt

p( �N �N t)wp ,
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hence Qa
pp is of the form in the proposition.

Now suppose �vt = (0t, ..., 0t, vt
p, 0t, ..., 0t) and �wt = (0t, ..., 0t, wt

q, 0
t, ..., 0t) for some

given unequal interior vertices p and q. If p and q are not connected by some edge of
the surface, then clearly Qa(�v, �w) = 0, so assume that p and q are adjacent. Note that
star(pq) then contains two triangles (p, q, rj) for j = 1, 2 and precisely one of them is

properly oriented. Noting also that the normal vector �N of a triangle changes sign when
the orientation of the triangle is reversed, we have the following equation:

Qa(�v, �w) = Qa
pq(vp, wq) =

1

2

X
T=(p,q,rk),k=1,2

〈vp × wq , �N〉+

1

2|T | 〈vp × (rk − q), wq × (p − rk)〉 − 1

2|T | 〈vp × (rk − q), �N〉〈wq × (p − rk), �N〉 =

=
1

4

2X
k=1

1

|T |v
t
p

�
(p − rk)(q − rk)

t − (q − rk)(p − rk)
t − 〈p − rk, q − rk〉 �N �N t

�
wq .

For a triangle (p, q, r), one can check that

(p − r)(q − r)t − (q − r)(p − r)t =
2|(p, q, r)|
|p − q|2

�
(p − q)(J(p − q))t − J(p − q)(p − q)t

�
,

so Qa
pq is as in the proposition. �

Proof. (of Proposition 5.2)
P

p∈V〈p′, (∇pV )′〉 =Pp∈Vint
〈vp, 1

6

P
(p,q,r)∈star(p)(q × r)′〉 =

1

6

X
p∈Vint

0
@ X

q adjacent to p,q �=p

〈vp × vq, r2 − r1〉
1
A ,

where (p, q, r2) is the properly oriented triangle in star(pq), and (p, q, r1) is the non-
properly oriented triangle in star(pq). Thus we have

X
p∈V

〈p′, (∇pV )′〉 =
X

p∈Vint

0
@ X

q adjacent to p,q �=p

vt
p(Q

V
pq)vq

1
A ,

where QV
pq is a 3 × 3 matrix defined as in the proposition. Thus QV

pp = 0, and the fact

that QV
pq is skew-symmetric in p and q implies QV is symmetric. �
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