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Summary. We derive a Hodge decomposition of discrete vector fields on polyhe-
dral surfaces, and apply it to the identification of vector field singularities. This
novel approach allows us to easily detect and analyze singularities as critical points
of corresponding potentials. Our method uses a global variational approach to in-
dependently compute two potentials whose gradient respectively co-gradient are
rotation-free respectively divergence-free components of the vector field. The sinks
and sources respectively vortices are then automatically identified as the critical
points of the corresponding scalar-valued potentials. The global nature of the de-
composition avoids the approximation problem of the Jacobian and higher order
tensors used in local methods, while the two potentials plus a harmonic flow com-
ponent are an exact decomposition of the vector field containing all information.

1 Introduction and Related Work

Singularities of vector fields are among the most important features of flows.
They determine the physical behavior of flows and allow one to characterize
the flow topology [9][10]. The most prominent singularities are sinks, sources,
and vortices. Higher order singularities often appear in magnetic fields. All
these singularities must be detected and analyzed in order to understand the
physical behavior of a flow or in order to use them as an ingredient for many
topology-based algorithms [24][26]. Although feature analysis is an important
area, only a few technical tools are available for the detection of singularities
and their visualization.

Methods for direct vortex detection are often based on the assumption
that there are regions with high amounts of rotation or divergence. See, for
example, Banks and Singer [1] for an overview of possible quantities to inves-
tigate. The deficiencies of first-order approximations have been widely recog-
nized, and, for example, higher-order methods try to overcome this problem
[18]. The detection and visualization of higher-order singularities is an active
research area where rather heavy mathematical methods have been employed
[21].

The Jacobian ∇ξ of a differentiable vector field ξ in R
2 or R

3 can be de-
composed into a stretching tensor S and a vorticity matrix Ω, the symmetric
and anti-symmetric parts of ∇ξ. The eigenvalues of the diagonal matrix S
correspond to the compressibility of the flow, and the off-diagonal entries
�� polthier@math.tu-berlin.de, eike@sfb288.math.tu-berlin.de
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Fig. 1. Pretzel in �3 with vector field, obtained by projection of a flow around the
z-axis onto the tangential space of the curved, 2-dimensional surface. Original field
(bottom right), rotation-free component (upper left) and divergence-free component
(upper right). The harmonic component (bottom left) belongs to an incompressible,
rotation-free flow around the handles of the pretzel. See also Sect. 7.

of Ω are the components of the rotation vector. This matrix decomposition
has classically also been used for discrete vector fields where the Jacobian is
approximated by discrete difference techniques. The quality of this approach
depends on the quality of the underlying grid and the accuracy of the vec-
tor field. For practical problems of vortex identification we refer to the case
study of Kenwright and Haimes [12], and the eigenvector method in Sujudi
and Haimes [22].

Another class of methods follows a geometric approach where geometric
properties of streamlines and pathlines are investigated and put in relation
to properties of the flow [19][20]. Tittgemeyer et al. [23] use a contraction
mapping to detect singularities of displacement fields in magnetic resonance
imaging. This helps in the understanding of pathological processes in a brain.
Their method is applicable to any higher order singularities but fails to detect
some critical points like centers of rotation or balanced saddle points.

Our approach uses a discrete version of the Hodge-Helmholtz decompo-
sition of vector fields on curved surfaces Mh. We choose a global variational
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approach to compute the decomposition of a discrete vector field ξ which
seems to be a novel approach to the detection and analysis of singularities
of discrete vector fields. We compute two potentials u and w which deter-
mine the rotation-free and the divergence-free components of the flow. The
remaining harmonic component v comprises the incompressible and irrota-
tional component of the flow such that we have the exact decomposition (see
Theorem 5)

ξ = ∇u+ δ(wω) + v.

The potentials are obtained by a global variational approach where certain
energy functionals are minimized in the set of scalar-valued functions on the
surface Mh. The detection and analysis of vector field singularities is then
transferred to the much simpler study of the critical points of the scalar valued
potentials. In contrast to local methods, our approach avoids the approxima-
tion of the Jacobian matrix or higher order tensors from local information.

Although the Helmholtz decomposition [11] of smooth fields into a curl-
free and divergence-free part is well-known in fluid dynamics [5], we have
not found any application to the study of singularities of discrete vector
fields. Discrete differential forms were introduced in differential geometry by
Whitney [25] who invented the so-called Whitney forms. Whitney forms were
brought to a new life in the pioneering work on discrete Hodge decomposi-
tions in computational electromagnetism by Bossavit [3][2] who applied them
to the solution of boundary value problems. For simplicial complexes, Eck-
mann [8] developed a combinatorial Hodge theory. Dodziuk [7] showed that
if a simplicial complex K is a smooth triangulation of a compact oriented
Riemann manifold X then the combinatorial Hodge theory is an approxima-
tion of the Hodge theory of forms on X by choosing a suitable inner product
on K.

Our discretization method has connections with weak derivatives used in
finite element theory where the formal application of partial integration is
used to shift the differentiation operation to differentiable test functions. In
fact, the integrands of our discrete differential operators div h and rot h can
be obtained from ∇ξ by formal partial integration with test functions. In
contrast, our focus here is to emphasize the geometric interpretation of the
discrete differentials, and to relate them with the discrete Hodge operator
which also played a role in the discrete minimal surface theory in Polthier
[15].

In Sect. 7 we apply our method to several test cases with artificial and
simulated flows which are accurately analyzed. The simulated flow in the Bay
of Gdansk reproduces similar results of Post and Sadarjoen [19], who applied
different geometric methods.
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2 Setup

In the following let Mh be a simplicial surface immersed in R
n (possibly with

self-intersections and/or boundary), that is a surface consisting of planar
triangles where the topological neighbourhood of any vertex consists of a
collection of triangles homeomorphic to a disk (see [15] for an exact definition
of a simplicial surface). We need the following finite element spaces, see the
books [6][4] for an introduction.

Definition 1. On a simplicial surface Mh we define the function space Sh

of conforming finite elements:

Sh :=
{
v : Mh → R

∣∣ v ∈ C0(Mh) and v is linear on each triangle
}

Sh is a finite dimensional space spanned by the Lagrange basis functions
{ϕ1, .., ϕn} corresponding to the set of vertices {p1, ..., pn} of Mh, that is for
each vertex pi we have a function

ϕi : Mh → R, ϕi ∈ Sh

ϕi(pj) = δij ∀i, j ∈ {1, .., n}
ϕi is linear on each triangle.

(1)

Then each function uh ∈ Sh has a unique representation

uh(p) =
n∑

j=1

ujϕj(p) ∀ p ∈Mh

where uj = uh(pj) ∈ R. The function uh is uniquely determined by its nodal
vector (u1, ..., un) ∈ R

n.
The space of non-conforming finite elements includes discontinuous func-

tions such that their use is still sometimes titled as a variational crime in the
finite element literature. Nevertheless, non-conforming functions naturally
appear in the Hodge decomposition and in the theory of discrete minimal
surfaces [15].

Definition 2. For a simplicial surface Mh, we define the space of non-
conforming finite elements by

S∗
h :=

{
v : Mh → R

∣∣∣∣ v|T is linear for each T ∈Mh, and
v is continuous at all edge midpoints

}

The space S∗
h is no longer a finite dimensional subspace of H1(Mh) as in

the case of conforming elements, but S∗
h is a superset of Sh. Let {mi} denote

the set of edge midpoints of Mh, then for each edge midpoint mi we have a
basis function

ψi : Mh → R ψi ∈ S∗
h

ψi(mj) = δij ∀ i, j ∈ {1, 2, ..}
ψi is linear on each triangle.

(2)
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The support of a function ψi consists of the (at most two) triangles adjacent
to the edge ei, and ψi is usually not continuous on Mh. Each function v ∈ S∗

h

has a representation

vh(p) =
∑

edges ei

viψi(p) ∀ p ∈Mh

where vi = vh(mi) is the value of vh at the edge midpoint mi of ei.
We use the following space of vector fields on Mh

Λ1
h :=

{
v | v|T is a constant, tangential vector on each triangle

}

which will later be considered in the wider setup of discrete differential forms.
As common practice in the finite element context, the subindex h distin-
guishes this set from smooth concepts.

On each oriented triangle, we define the operator J that rotates each
vector by an angle π

2 on the oriented surface.
Note, in this paper we use a slightly more general definition of the spaces

Sh respectively S∗
h, namely we include functions which are only defined at

vertices respectively at edge midpoints. For example, the (total) Gauß cur-
vature is defined solely at vertices. Here for a given vector field ξ we will
have div hξ ∈ Sh (respectively div∗hξ ∈ S∗

h) to be defined solely at a vertex.
The motivation of this generalization is two-fold: first, a simplified notation
of many statements, and, second, the fact that for visualization purposes
one often extends these point-based values over the surface. For example,
barycentric interpolation allows to color the interior of triangles based on the
discrete Gauss curvature at its vertices. Caution should be taken if integral
entities are derived.

3 Discrete Rotation

The rotation rot of a differentiable vector field on a smooth surfaces is at each
point p a vector normal to the surface whose length measures the angular
momentum of the flow. On a planar Euclidean domain with local coordinates
(x, y), the rotation of a differentiable vector field v = (v1, v2) is given by
rot v = (0, 0, ∂

∂xv2− ∂
∂y v1). In the discrete version of this differential operators,

the (total) discrete rotation, we neglect the vectorial aspect and consider the
rotation as a scalar value given by the normal component.

In the following we use a simplicial domain Mh which contains its bound-
ary. The boundary is assumed to be counter clockwise parametrized. If
p ∈ ∂Mh is a vertex on the boundary then star p consists of all triangles
containing p. If m ∈ ∂Mh is the midpoint of an edge c then ∂starm does
contain the edge c as well.
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Definition 3. Let v ∈ Λ1
h be a piecewise constant vector field on a simplicial

surface Mh. Then the (total) discrete rotation rot v is a vertex based function
in Sh given by

rot hv(p) :=
1
2

∫
∂star p

v =
1
2

k∑
i=1

〈v, ci〉

where ci are the edges of the oriented boundary of the star of p ∈Mh.
Additionally, the discrete rotation rot ∗v at the midpoint m of each edge

c is an edge-midpoint based function in S∗
h given by

rot ∗
hv(m) :=

∫
∂star c(m)

v

where ∂starm is the oriented boundary of the triangles adjacent to edge c.

If the rotation of a vector field is positive on each edge of the link of
a vertex then the vector field rotates counter clockwise around this vertex.
Note that rot ∗

h vanishes along the boundary. One easily shows the following
Lemma.

Lemma 1. Let p be a vertex of a simplicial surface Mh with emanating edges
{c1, ..., ck} with edge midpoints mi. Then

2rot hv(p) =
k∑

i=1

rot ∗
hv(mi) .

Note, that rot ∗
hv = 0 at all edge midpoints implies rot hv = 0 on all

vertices. The converse is not true in general.
Rotation-free vector fields are characterized by the existence of a discrete

potential.

Theorem 1. Let Mh be a simply connected simplicial surface with a piece-
wise constant vector field v. Then v = ∇u is the gradient of a function u ∈ Sh

if and only if
rot ∗

hv(m) = 0 ∀ edge midpoints m .

Similarly, v = ∇u∗ is the gradient of a function u∗ ∈ S∗
h if and only if

rot hv(p) = 0 ∀ interior vertices p.

Further, for a vertex q ∈ ∂Mh the value rot h∇u∗(q) is the difference of u∗(q)
at the two adjacent boundary triangles.

Proof. 1.) ” ⇒ ”: Assume the orientation of the common edge c = T1 ∩ T2 of
two triangles leads to a positive orientation of ∂T1. Then we obtain from the
definition of rot ∗

h

rot ∗
hv(m) = − 〈

v|T1 , c
〉

+
〈
v|T2 , c

〉
.
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Let T1 be a triangle with vertices {p1, p2, p3} and edges cj = pj−1 − pj+1.
Assume v = ∇uh is the gradient of a piecewise linear function uh ∈ Sh. Let
uj = uh(pj) be the function values at the vertices of T1 then

〈∇uh, cj〉 = uj−1 − uj+1 .

The sum of the two scalar products 〈∇uh, c〉 at the common edge of two
adjacent triangles cancels because of the continuity of uh and the reversed
orientation of c in the second triangle.

” ⇐ ”: We construct a vertex spanning tree of Mh and orient its edges
towards the root of the tree. Since v is rotation-free the scalar product of
v with each oriented edge cj is unique, and we denote it with vj := 〈v, cj〉.
Now we construct a function uh by assigning uh(r) := 0 at the root of the
spanning tree, and integrate along the edges of the spanning tree such that

uh(pj2) − uh(pj1) = vj

if cj = pj2 −pj1 . This leads to a function uh ∈ Sh. On each triangle T we have
∇u|T = v|T since by construction we have 〈∇uh, cj〉 = uh(pj2 )−uh(pj1) = vj

on each edge cj .
We now show that the function uh is independent of the choice of the

spanning tree. It is sufficient to show that the integration is path independent
on each triangle (which is clear) and around the link of each vertex. Around
a vertex p denote the vertices of its oriented link with {q1, ..., qs}. Since we
have the edge differences u(p) − u(qj) = vj it follows that

s∑
j=1

u(qj) − u(qj+1) =
s∑

j=1

u(qj) − u(p) + u(p) − u(qj+1)

=
s∑

j=1

−vj + vj+1 = 0 .

The function uh depends solely on v and the integration constant uh(r).
2.) The second assumption follows from a similar calculation which we

only sketch here.
” ⇒ ”: If v is the gradient of a function u∗ ∈ S∗

h then the assumption
follows since at all interior vertices p we have

∫
γp

∇u∗ =
n∑

j=1

〈∇u∗,mj −mj−1〉

=
n∑

j=1

u∗(mj) − u∗(mj−1) = 0

where γp is a polygon connecting the midpoints mj of all edges emanating
from p.
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” ⇐ ” By assumption, the path integral of v along any closed curve
γ crossing edges at their midpoints vanishes. Since v integrates to a linear
function on each triangle, we obtain a well-defined function u∗h ∈ S∗

h similar
to the procedure in 1.) by

u∗h(p) :=
∫

γ

v

where γ is any path from a base point r ∈ Mh to p which crosses edges at
their midpoints.

3.) The statement on the height difference of u∗ at a boundary vertex q
follows directly from the evaluation of rot h∇u∗(q).

The above theorem does not hold for non-simply connected surfaces since
integration along closed curves, which are not null-homotopic, may lead to
periods. Also note, that from Sh ⊂ S∗

h follows 0 = rot h∇u = rot ∗
h∇u for any

u ∈ Sh.

4 Discrete Divergence

In the smooth case the divergence div of a field is a real-valued function
measuring at each point p on a surface the amount of flow generated in
an infinitesimal region around p. On a planar Euclidean domain with local
coordinates (x, y), the divergence of a differentiable vector field v = (v1, v2) is
given by div v = v1|x +v2|y. The discrete version of this differential operators,
the (total) discrete divergence, is obtained by a similar physical reasoning,
that means we define the discrete divergence as the amount of flow generated
inside the star p of a vertex p which is the total amount flowing through the
boundary of star p.

At a boundary vertex p the discrete divergence must take into account
the flow through the two boundary edges as well as divergence generated at
all other edges emanating from p since the divergence at these interior edges
has only been considered by half at interior vertices. The following definition
also fulfills the formal integration by parts relation (3):

Definition 4. Let v ∈ Λ1
h be a piecewise constant vector field on a simplicial

surface Mh. Then the (total) discrete divergence div h : Λ1
h → Sh of v is a

vertex-based function given by

div hv(p) =
1
2

∫
∂star p

〈v, ν〉 ds

where ν is the exterior normal along the oriented boundary of the star of
p ∈Mh. If p ∈ ∂Mh then star p consists of all triangles containing p.

Additionally, we define the divergence operator div ∗
h : Λ1

h → S∗
h based at

the midpoint m of an edge c
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(b) At edge midpoint.

Fig. 2. On the definition of discrete divergence.

div ∗
hv(m) =

∫
∂star c

〈v, ν〉 ds

where ∂starm is the oriented boundary of the triangles adjacent to edge c. If
m ∈ ∂Mh then ∂starm does not contain the edge c.

Note, the divergence div ∗
h at an edge c common to two triangles T1 and

T2 may equivalently be defined by div ∗
hv(m) = 〈v, Jc1〉|T1

+ 〈v, Jc2〉|T2
where

the common edge has opposite orientation c1 = −c2 in each triangle. Let
ϕp ∈ Sh denote the Lagrange basis function associated to each vertex p of
Mh. Then formally, the discrete divergence can obtained by applying Green’s
integration by parts

div hv(p) : =
∫

star p

”div v” · ϕpdx (3)

= −
∫

star p

〈v,∇ϕp〉 dx +
∫

∂star p

〈v, ν〉ϕpds

although Green’s formula does not hold in the discrete setting since v and ϕp

are not differentiable on star p. On the right hand side the boundary integral
vanishes since ϕp = 0 along ∂starp such that we obtain the same equation
for div hv(p) as in definition above.

The normalization of the divergence operator gives the following equality
known from the smooth case:

div h∇uh = ∆huh (4)

using the discrete Laplace operator ∆h in [13]. The same holds for the oper-
ators on S∗

h.
The discrete version of the Gauß integration theorem relates the diver-

gence of a domain to the flow through its boundary.

Theorem 2. Let Mh be a simplicial surface with boundary ∂Mh and piece-
wise constant vector field v. Then



10 Konrad Polthier and Eike Preuß

∑
p∈Mh

div hv(p) =
∫

∂Mh

〈v, ν〉 (5)

where ν is the exterior normal along ∂Mh. Further, we have

∑
m∈Mh

div ∗
hv(m) =

∫
∂Mh

〈v, ν〉 (6)

where m runs through the midpoints of all edges of Mh.

Proof. Sort and count edges, using that the integral along all edges of a single
triangle vanishes.

For practical applications, we compute the explicit formula for the discrete
divergence operator in terms of triangle quantities. Note the similarity with
the formula of the discrete Laplace operator [13] where the influence of the
domain metric solely appears in the cotangent factor.

Theorem 3. Let v ∈ Λ1
h be a piecewise constant vector field on a simplicial

surface Mh. Then the discrete divergence div h of v is given at each vertex p
by

div hv(p) = −1
2

k∑
i=1

〈v, Jci〉 =
1
2

k∑
i=1

(cotαi + cotβi) 〈v, ai〉 (7)

where J denotes the rotation of a vector by π
2 in each triangle, k the number

of directed edges ai emanating from p, and the edges ci form the closed cycle
of ∂star p in counter clockwise order. In the two triangles adjacent to an edge
ai we denote the vertex angles at the vertices opposite to ai with αi and βi

(see Fig. 2).

Proof. By definition Jc rotates an edge such that it points into the triangle,
i.e. Jc = −ν|c| is in opposite direction of the outer normal of the triangle at
c. Therefore, the representation of the discrete divergence operator follows
from the representation of

Jc = cotαa+ cotβb

in each triangle with edges c = a− b, and sorting the terms around star p by
edges.

Lemma 2. The discrete rotation and divergence of a vector field v ∈ Λ1
h on

a simplicial surface Mh relate by

rot hJv(p) = div hv(p),

respectively,
rot ∗

hJv(m) = div ∗
hv(m)

where p is a vertex and m is the midpoint an edge of Mh.
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Proof. The two relations of rot and div follow directly from definitions 4 and
3 of the differential operators.

The divergence at vertices and edges is related by the following lemma.

Lemma 3. Let p be a vertex of simplicial surface Mh with emanating edges
{c1, ..., ck} with edge midpoints mi. Then

2div hv(p) =
k∑

i=1

div ∗
hv(mi) .

Proof. On a single triangle we have div ∗
hv(m3) = −div ∗

hv(m1)− div ∗
hv(m2).

Therefore, the right-hand side of the assumed equation is equal to
∫

∂star p

〈v, ν〉

as assumed.

Divergence-free vector fields in R
2 can be characterized by the existence

of a discrete 2−form ω with δ(ω) = v (where δ is the co-differential operator,
see also Def. 7) which is another justification of the discrete definition of div h.
Here we formulate the statement without the usage of differential forms which
are introduced in the next section.

Theorem 4. Let v be a piecewise constant vector field on a simply connected
simplicial surface Mh. Then

div hv(p) = 0 ∀ interior vertices p

if and only if there exists a function u∗ ∈ S∗
h with v = J∇u∗. Respectively,

div ∗
hv(m) = 0 ∀ edge midpoints m

if and only if there exists a function u ∈ Sh with v = J∇u. In both cases, the
function is unique up to an integration constant.

Proof. Using the relation between the discrete rotation and divergence of
Lemma 2 the statement follows directly from the integrability conditions
proven in Theorem 1.

5 Hodge Type Decomposition of Vector Fields

On each triangle we have a well-defined volume form ω from the induced
metric of the triangle which can be expressed as ω = ∇x ∧ ∇y in local
orthonormal coordinates (x, y) of the triangle, and for each vector v a one-
form v which can expressed as v1∇x+ v2∇y.
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Definition 5. The spaces of discrete differential forms on a simplicial sur-
face Mh are defined piecewise per triangle T :

Λ0
h : =

{
u : Mh→R | u is continuous and u|T linear

} ∼= Sh

Λ1
h : =

{
v | v|T is a constant, tangential vector

}

Λ2
h : =

{
w | on each simply connected region D
w|D = uω with a function u ∈ Λ0

}
.

Additionally, we define the spaces Λ0,∗ ⊃ Λ0 and Λ2,∗ ⊃ Λ2 having functional
representatives in S∗

h.

The space Λ1
h is the space of discrete vector fields on a polyhedral surface

which are tangential and constant on each triangle. In the following we try
to avoid too much formalism and, on simply connected domains, identify a
2−form w = uω with its function u without explicitly listing the volume form
ω. Similarly, we identify vector fields with 1−forms.

Fig. 3. Test vector field (bottom right) decomposed in rotation-free (upper left),
divergence-free (upper right) and harmonic component (bottom left). The three
lines indicate the centers of the original potentials.

Definition 6. On a simplicial surface Mh the Hodge operator ∗ is a map

∗ : Λi
h → Λ2−i

h
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such that locally

∗u = uω ∀u ∈ Λ0
h respectively Λ0,∗

h

∗v = Jv ∀v ∈ Λ1
h

∗(uω) = u ∀(uω) ∈ Λ2
h respectively Λ2,∗

h .

The gradient operator ∇ used in S∗
h generalizes to two differential oper-

ators ∇ and δ on differential forms. We use rot ∗
h respectively div h in order

to synchronize with the integrability condition of discrete vector fields in the
following sequences.

Definition 7. The differential operator ∇ : Λ0
h → Λ1

h = Λ1,∗
h → Λ2,∗

h on a
simplicial surface Mh is defined by

∇u = ∇u ∀u ∈ Λ0
h

∇v = rot ∗
hv ∀v ∈ Λ1

h

∇(uω) = 0 ∀(uω) ∈ Λ2,∗
h .

The co-differential operator δ is defined by δ := ∗d∗ : Λ2,∗
h → Λ1,∗

h = Λ1
h →

Λ0
h, that is

δu : = 0 ∀u ∈ Λ0
h

δv : = div hv ∀v ∈ Λ1
h

δ(uω) : = J∇u ∀(uω) ∈ Λ2,∗
h .

Both operators are similarly defined on Λ0,∗
h respectively Λ2

h using rot h re-
spectively div ∗

h.

We remind that in the smooth situation for a vector field v = (v1, v2),
we have ∇v = (v2|x − v1|y)∇x∇y and δv = v1|x + v2|y on a planar Euclidean
domain with coordinates (x, y).

Lemma 4. Let u ∈ Λ0 and w ∈ Λ2 then

∇2u(m) = 0 and δ2w(m) = 0 at each edge midpoint m ∈Mh .

Similarly, if u ∈ Λ0,∗ and w ∈ Λ2,∗ then

∇2u(p) = 0 and δ2w(p) = 0 at each interior vertex p ∈Mh,

Proof. Direct consequence of the corollaries of the previous section.

We now state a Hodge-type decomposition of 1−forms (vector fields) on
simplicial surfaces into a rotation-free, divergence-free, and a harmonic field.
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Theorem 5. Let Mh be a simplicial surface. Then any tangential vector field
ξ ∈ Λ1(Mh) has a unique decomposition

ξ = ∇u + δ(wω) + v (8)

with u ∈ Λ0, wω ∈ Λ2 and harmonic component v ∈ Λ1 with div hv =
rot hv = 0, i.e. ∇v = 0, δv = 0. Uniqueness of the decomposition follows
from the normalization ∫

Mh

u = 0,
∫

Mh

wω = 0 .

Since u and w are functions, ∇u is rotation-free and δ(wω) is divergence-free.

Proof. First, we derive the potential u ∈ Λ0 of the rotation-free component
of a given vector field ξ. We define the following quadratic functional F for
functions in Sh

F (u) :=
∫

Mh

(|∇u|2 − 2 〈∇u, ξ〉) (9)

which associates a real-valued energy to each function uh. A quadratic func-
tional has a unique minimizer which we denote with u ∈ Sh. As a minimizer, u
is a critical point of the functional which fulfills at each vertex p the following
minimality condition

0 !=
d

dup
F (u) = 2

∫
star p

〈∇u− ξ,∇ϕp〉 (10)

where ϕp ∈ Sh is the Lagrange basis function corresponding to vertex p.
Formally, u solves the Poisson equation div h∇u = div hξ respectively ∆hu =
δξ.

To obtain the divergence-free component we define a similar functional

G(w) :=
∫

Mh

(|δ(wω)|2 − 2 〈δ(wω), ξ〉) (11)

and compute the potential w ∈ Sh as its unique minimizer which solves

0 !=
d

dwp
G(w) = 2

∫
star p

〈δ(wω) − ξ, J∇ϕp〉 . (12)

Formally, w solves rot hδ(wω) = rot hξ resp. ∆hw = ∇ξ.
The harmonic remainder is defined as v := ξ−∇u−J∇w. Using the above

relations and the fact that for a 2−form wω ∈ Λ2
h we have div ∗

hδ(wω) = 0
which implies div hδ(wω) = 0, one easily verifies

div hv(p) = div h(ξ −∇u) − div hδ(wω) = 0 .

And using the fact that for a function u ∈ Λ1
h we have rot ∗

h∇u = 0 which
implies rot h∇u = 0, we obtain

rot hv(p) = rot h(ξ − δ(wω)) − rot h∇u = 0 .
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Theorem 5 was stated without proof as Theorem 2 in [17] where it was
not made clear enough that the remaining component v is harmonic with
respect to the vertex based operators div h and rot h.

6 Decomposition Algorithm and
Detecting Vector Field Singularities

For arbitrary tangential piecewise-constant vector fields on a simplicial (pla-
nar or curved) surface Mh. Let Mh again be a simplicial planar or curved
surface and ξ ∈ Λ1

h a vector field onMh. IfMh is a curved surface, ξ is given by
a constant vector in each triangle that lies in the triangle’s plane. We now ap-
ply the discrete Hodge-Helmholtz decomposition introduced in the previous
sections to split the given vector field into a rotation-free, a divergence-free,
and a remaining harmonic component. The first component is the gradient
field of a function u, and the second component is the co-gradient field, i.e.
the gradient rotated with J by 90 degree, of a second function w. The de-
composition is obtained by directly computing the functions as minimizers
of the energy functionals above.

The steps for a practical decomposition of a vector field are now straight-
forward. Assume, we want to compute the rotation-free component of a given
vector field ξ on a simplicial surface Mh with boundary. We begin with an
arbitrary initial function u0 ∈ Sh. The functional F in (10) is a quadratic
in ∇u, so the minimization problem has a unique solution for ∇u (indepen-
dent of the initial function u0), and two solutions u differ only in a constant
vertical offset. Since the offset has no no effect on the critical points of u
one can use any initial function u0. In practice we usually start with zero
values everywhere. Then we apply a standard conjugate gradient method to
minimize the energy functional F by modifying the function values of u0.
As a result we obtain the a minimizer u of F . The same approach using the
functional G is performed to compute the second potential w. Note that the
minimization processes can be performed independently and simultaneously,
e.g. on two different processors.

Furthermore, the minimization can be speed up rapidly by precomput-
ing all terms which solely depend on the domain surface Mh, because only
a few terms in the functionals and their gradients depend on the free vari-
ables. The evaluation of the gradient of the functional F in (10), for example,
can be made rather efficient using the explicit representation of the discrete
divergence operator given in (7):

d

dup
F (u) = 2

∫
star p

〈∇u− ξ,∇ϕp〉

=
k∑

i=1

(cotαi + cotβi) 〈∇u− ξ, ai〉 .
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Since the cotangent values belong to the triangulation Mh their non-linear
computation can be done in a pre-processing step once before the conjugate
gradient method starts. Precomputing the scalar products of the vector field
ξ with the edges ai is also possible. During runtime of the conjugate gradient
method it computes repeatedly per vertex the k scalar products 〈∇u, ai〉 and
k scalar multiplications and one addition, where k is the number of triangles
in the star of the vertex p.

The vector field components of ξ are easily derived by differentiating the
potentials. For efficiency, one does not need to store the three vector field com-
ponents explicitly since they are explicitly determined by the scalar-valued
potentials u and w. Further, if one is interested only, say, in identifying the
vortices of a vector field ξ, then it suffices to calculate w and to avoid the
calculation of the full decomposition. Note that if one only stores the two
potentials and the remaining harmonic component v of the vector field, then
one is still able to fully reconstruct the original vector field ξ using the de-
composition equation (8).

The following algorithms describes how to identify singularities of a given
vector field ξ:

Algorithm 6 (Identifying Singularities)

1. Calculate the potential u by minimizing the functional (9). The gradient
of u is the rotation-free component of ξ.

2. Locate the local maxima and minima of the scalar valued function u over
the two-dimensional surface, which are the centers of sinks or sources
respectively. The maxima and minima can be automatically detected by
searching for vertices p whose function value u(p) is smaller or larger than
the function values of all vertices on its link:

p is a sink ⇔ u(p) < u(q) ∀ q ∈ ∂star p
p is a source ⇔ u(p) > u(q) ∀ q ∈ ∂star p.

A similar algorithm determines first-order vortices of the vector field ξ:

1’. Calculate the potential w by minimizing the functional (11).
2’. Locate the local maxima and minima of the potential w on the surfaceMh

which are the centers of vortices. Vortex rotation direction is determined
by the type of extremal point (maximum or minimum).

p is a vortex ⇔ u(p) < or > u(q) ∀ q ∈ ∂starp.

Local methods for vortex identification and feature analysis of discrete
vector fields often try to approximate the Jacobian by discrete differences or
by higher-order interpolation of the vector field. This approach often suffers
from numerical or measured inaccuracies of the vector field which make it a
delicate task to extract higher order data such as the Jacobian or even higher
order differential tensors.
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Fig. 4. Incompressible flow around a cylinder (bottom) with divergence-free
(top), harmonic (middle) and vanishing rotation-free component. Two dots in the
divergence-free part are the centers of rotation (white=clockwise, black=counter
clockwise), and a third dot marks a saddle. All singularities were detected auto-
matically by our method.

Our approach is global in the sense that u is rather independent of small
local variations of the vector field which might have been introduced by nu-
merical errors in the simulation, during the measurement, or by deficiency
from a bad triangle mesh. This global approach is mainly due to the use of
integrated values during the minimization of the functional.

7 Examples

The first example in Fig. 3 is an artificial vector field. by 90◦ degrees. The field
is the sum of a gradient vector field and two co-gradient fields. Application of
the Hodge decomposition leads to two potentials u and w with gradient ∇u
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and co-gradient J∇w shown in the upper two images on the left and right.
The location of the original, generating potentials are indicated by dots. The
algorithm detects the singularities and clearly separates the source from the
two vortices. The centers of the potentials may be varied at interactive speed
since on a smaller grid the decomposition is done in real-time as shown at
the web site [14].

In Fig. 4 the decomposition is applied to an incompressible flow around
a cylinder from a CFD simulation. The rotation-free component of the in-
compressible flow vanishes as expected. The harmonic component shows the
incompressible, non-rotational part of the flow.

The flow in the Bay of Gdansk in Fig. 6, a coastal region in Poland, is
data from a simulation performed at WL | Delft Hydraulics using a curvilinear
grid of 43 ∗ 28 ∗ 20 nodes. The goal of the simulation was to investigate the
flow patterns induced by wind and several inflows. In [19] Sadarjoen and
Post derive geometric quantities from curvature properties of streamlines to
find vortex cores and analyze their qualitative behaviour. We computed the
potentials of the gradient and co-gradient components and easily recovered
the vortices. We also detected some sinks and sources, that come from vertical
flows in the originally three-dimensional vector field.

The harmonic component of a vector field corresponds to an incompress-
ible, irrotational flow. On compact surfaces this harmonic component repre-
sents the non-integrable flows around the handles of the surface. The artificial
vector field in Fig. 1 is obtained from the restriction of the tangent field of
a rotation of 3−space onto the pretzel. Around each handle we see a well-
distinguished harmonic flow. There are also two sinks and two sources at the
upper side and the lower side.

8 Conclusions and Future Work

We present a method for feature detection that is mathematically well
founded and that adopts the discrete nature of experimental data. It suc-
ceeds in the detection of first order singularities.The two potentials we com-
pute seem to hold much more information than we discussed in this paper.
Therefore it is interesting to extract, for example, magnitudes, axes and an-
gular velocities of vortices and strengths of sources/sinks from them. Since
our variational approach is based on integrated values it has a smoothing
effect on the potentials u and w, which is a good property for the detection
of higher order critical points of these potentials. Work in these directions
has been done and will be presented in a future paper.
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Fig. 5. Automatic identification of vector field singularities using a Hodge decom-
position of a horizontal section of a flow in Bay of Gdansk. Rotation-free component
(bottom) with sinks and sources, which come from vertical flows, and divergence-
free component (top). The big dots indicate the location of sinks and sources (top)
respectively vortices (bottom). The small dark dots mark saddle points (top and
bottom). The bay is colorshaded by its discrete rotation (top) and divergence (bot-
tom).
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Fig. 6. Zoom into a region in Bay of Gdansk showing the divergence-free component
of the Hodge decomposition with its integral curves. Big dots indicate locations
of left and right rotating vortices, and small dark dots mark saddle points. The
visualization of the vector field uses a vertex based, linear interpolated version of the
element based vector field used for the decomposition, therefore sometimes there
appear small discrepancies between visual centers of integral lines and indicated
centers.


