
EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24(2005), Number 3

FreeLence - Coding with Free Valences

Felix Kälberer Konrad Polthier Ulrich Reitebuch Max Wardetzky

Zuse Institute Berlin

Abstract
We introduce FreeLence, a novel and simple single-rate compression coder for triangle manifold meshes. Our
method uses free valences and exploits geometric information for connectivityencoding. Furthermore, we intro-
duce a novel linear prediction scheme for geometry compression of 3D meshes. Together, these approaches yield
a significant entropy reduction for mesh encoding with an average of 20-30% over leading single-rate region-
growing coders, both for connectivity and geometry.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Surface mesh compres-
sion, connectivity coding, geometry coding.

1. Introduction

Compression of digital geometry models is the answer to
an industrial demand: Ever-finer geometric detail, requir-
ing millions of vertices, is part of the everyday agenda in
the movie industry, the computer aided design (CAD) in-
dustry, and in server-sided rendering applications. Over the
last years, many exciting ideas and new theoretical insights
have been devoted to finding ways of reducing the amount
of storage such models absorb. Some of those ideas have
become industrial standards, like the compression methods
built into MPEG-4 and Java3D. Different requirements gave
rise to differing solutions with varying trade-offs between
efficiency of representation and accuracy of detail - there are
lossless and lossy approaches, there are wavelet and spec-
tral decomposition methods, there are progressive as well as
single-resolution techniques. But often, such as for detailed
mechanical components in CAD systems, lossy storage is
prohibitive, and this is where lossless coders enter.Lossless
stands for the ability to encode the floating point positions of
the mesh at highest accuracy; in practice, positions are often
quantized to 10-14 bits per coordinate, a concession which
has turned out to be imperceptible by the human eye.

It seems fair to say that among the lossless, single-resolution
coders, the TG-coder [TG98], Gumhold’s Cut-Border-
Machine [GS98], and Rossignac’s Edgebreaker [Ros99]
stand out not only for their simplicity and robustness com-
bined with competitive compression rates, but also because

Figure 1: Geometry-driven coding with free valences (left) will
in practiceyield a lower symbol dispersion than coding with full
valences (right). The frequency of local splits (N andP) as well as
global splits is negligibly low for this particular model.

they have spawned numerous descendants. These schemes
have seemingly subtle yet conceptually crucial differences.

Full-valence coding. The most prominent full-valence (or
degree) coder was introduced by Touma & Gotsman [TG98].

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

Although it has seen slight extensions and improvements,
the method has stayed unchanged at its heart. The mesh is
conquered by a region-growing traversal in a spiraling man-
ner. During traversal the coder maintains anactive list that
separates the already encoded region from the unencoded
part. The combinatorics (or connectivity) of the mesh is en-
coded by subsequently picking afocusvertex on this active
list and storing thefull valenceof everyadjacentunencoded
vertex. As at this point no information about the focus itself
is stored, the TG-coder could be said to store information
ahead of time. Only in few cases, when the active list touches
upon itself, additional symbols must be spent in order to
properly decode this so calledsplit situation. One attractive
aspect of full-valence coders stems from the fact that their to-
tal code length almost matches the Shannon entropy [Sha48]
of the involved full valences alone. Tutte [Tut63] provided a
theoretical lower bound for the asymptotic length of any tri-
angle mesh code by counting the number of differing rooted
planar triangulations for a given number of vertices. Later it
was shown in [AD01b] and [KADS02] that the asymptotic
worst-case bit rate for full-valence coders is exactly equal
to Tutte’s census, provided that one counts out split events.
It was a break-through by Poulalhon and Schaeffer [PS03]
to develop a connectivity coder (not being valence-based)
which works precisely at the Tutte limit. In practice, how-
ever, their approach consumes a constant number of bits for
all meshes with the same number of vertices, at least if used
without a context-based entropy coder; and their coder is not
easy to generalize to meshes of higher genus.

Label-based coding. The label-based codersEdgebreaker
andCut-Border-Machinewere developed independently by
Rossignac [Ros99] and Gumhold & Strasser [GS98]. Like
the TG-coder, label-based methods maintain an active list
that bounds the processed region. Successively the unen-
coded triangle incident to a distinguishedgateedge on the
active list is conquered. If the third vertex of that triangle is
yet unconquered, Edgebreaker stores aC (create) label. Oth-
erwise, the third vertex must have been previously encoded,
and its incident edges in the new triangle may or may not
lie on the active list. The four cases that can thus arise are
distinguished by the labelsR (right), L (left), S (split), and
E (end). The gate is subsequently moved according to the
last symbol. The Cut-Border-Machine and Edgebreaker are
almost identical. Their only real difference is the handling of
splits.

Labels vs. degrees. There are important conceptual differ-
ences between label-based coders and degree coders. Label
coding istriangle-based- in Edgebreaker, for example, ev-
ery triangle contributes exactly one symbol. In contrast, de-
gree coding isvertex based: degree symbols of the TG-coder
are directly corresponding to the vertices of the mesh, and
triangles are encoded implicitly without having any explicit
symbol that could be said to correspond to them. Moreover,
label coders encode mesh information locally, right at the
gate of the active list; in contrast, degree coders store infor-

mation ahead of time and maintain global information about
the entire active list. As a consequence, degree coders will
never split off regions containing no unprocessed vertices,
whereas label-based coders lack the ability to recognize such
situations, calledwarts[TR98].

Coding with free valences. Akin to the above coders,
FreeLence conquers the vertices of a mesh by a grow-
ing disk. Except for split events, coding with free valences
stands for storing the number ofunconquered verticescon-
nected to the focus, and, as in full-valence coders, the num-
ber of symbols is closely related to the total number of
vertices, so that their code sequences and symbol disper-
sions can be compared as in Figure 1. Despite this similarity
in symbol counts, FreeLence is conceptually a label-based
coder and not a degree coder. FreeLence encodes informa-
tion about vertices right at the active contour, and the result-
ing code sequence can be translated directly into an extended
Cut-Border-Machine code, see Section 2.5. Similar to Edge-
breaker and the Cut-Border-Machine, switching from full
valences to free valences introduces warts which are avoided
entirely in full-valences coders. To reduce the impact of such
unwanted events, FreeLence introduces two newlocal split
symbols,P (previous) andN (next). The separation of con-
cepts between general splits and local splits is essential for
the success of our coder in practice.

Geometry-driven mesh traversal. The concept of using
free valences alone, without an appropriate mesh traversal,
will not outperform existing connectivity coders. FreeLence
employs ageometry-driven traversal schemeas in [LAD02],
which keeps the active boundary locally as convex as possi-
ble. The basic idea is to pick the next focus according to the
minimal opening anglealong the active contour. On the one
hand, this approach significantly reduces symbol dispersion
in the sequence of free valences. On the other hand, occur-
rence of costly split symbols, which destroy code coherence,
is reduced. In addition, FreeLence uses opening angles as
contextsfor storing free valences. The use of contexts results
in a further significant drop of bit rates.

Geometry encoding. To encode the geometry part of the
mesh, each vertex is stored as an offset from an educated
guess of its (quantized) position. The beautifully simplepar-
allelogram rule [TG98] makes such a guess by assuming
that two adjacent triangles form a parallelogram. This has
proved to be a powerful choice in practice. The parallelo-
gram rule has seen improvements and extensions: Isenburg
and Alliez [IA02] generalize it to polygon meshes, Kron-
rod and Gotsman [KG02] propose a spanning tree to op-
timize for the best-suitable parallelograms and Cohen-Or
et.al. [COCI02] use several parallelogram predictions simul-
taneously. As observed in [LAD02] and [GA03], it is highly
beneficial to move tolocal coordinate systems, defined by
one or severalcontributing triangles. FreeLence takes up the
scheme of quantizing in local coordinates and augments it by
a novellocal linear prediction rule. In essence, by extend-

c© The Eurographics Association and Blackwell Publishing 2005.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

ing the stencil of vertices which contribute to prediction, we
observe significantly lower bit-rates while keeping the same
L2-error as other single-rate region-growing coders. Further-
more, we show how our particular choice of weights can
be extended to an entire space ofreasonable local weights.
We report first evidence that separate model classes such as
models produced by CAD applications as well as very reg-
ular models like subdivision surfaces on the one hand, and
very irregular models on the other, tend to formclustersin
this space of local prediction weights.

Contributions. Connectivity codingbased on free va-
lences as a new variant of label-based coding. Free valence
codes highly benefit from a geometry-guided mesh traversal
which significantly reduces symbol dispersion in the con-
nectivity code. This scheme is augmented by the concept of
encoding free valences based onangle contextson the one
hand, and the introduction oflocal split labelson the other.

Geometry predictionin local coordinates based on a sim-
ple multi-gate parallelogram approach, significantly reduc-
ing bit-rates compared to the classical parallelogram rule.
This new scheme embeds into a larger space of linear predic-
tions. First evidence suggests that different 3D model classes
tend to form distinct clusters in this larger space.

Together these approaches improve existing single-rate con-
nectivity coders by 20-30%.

Other relevant work. The literature on digital geome-
try compression has been vast over the last few years and
is rapidly growing. This is not the place to give an exhaus-
tive account of it; for an excellent survey we refer to Al-
liez and Gotsman [AG03]. Here we give a short overview
of those concepts which are relevant to our work. Descen-
dants of the pioneering approaches to single-rate compres-
sion are numerous - such as the improved Cut-Border-
Machine [Gum99], improvements of the gate-based Edge-
breaker as in [KR99], [RS99], [IS99], [IS00], [KG00b],
[Szy02], [CR04], as well as extensions of valence-based
techniques as in [AD01a], [AD01b], [Ise02], [KG02]. The
interplay between geometry and connectivity has been inves-
tigated by several authors. The approach of [IGG01] shows
that a lot of geometric information is contained in the con-
nectivity of a mesh. But since geometric information is also
completely contained in the vertex positions which are saved
along with the connectivity, some of this information is re-
dundant. There are two natural ways to remove this redun-
dancy: Using connectivity information to improve geometry
coding or using geometry information to improve connectiv-
ity coding. The first approach was investigated in a series of
articles by Gotsman et.al. [KG00a], [KG01] and [BCG05]
who have studied spectral decompositions of the discrete
graph Laplacian for geometry encoding. The second ap-
proach was for example taken up in [GD02] and [LAD02].
Our approach, too, fits more into this latter category.

Figure 2: Encoding with free valences (top) versus encoding with
full valences (bottom).

2. Coding with free valences

In this section we explain how FreeLence encodes connec-
tivity of 2-manifold triangle meshes (with or without bound-
ary) by working with free valences. We first review some
relevant terminology and concepts; in particular it is impor-
tant to clearly distinguish between the notions offree vertex,
free edgeandfree valence.

Free Vertex: A vertex of the mesh which has not been pre-
viously visited by the encoder.

Free Edge:An edge not previously conquered.

Active List (or cut border): A boundary component of a
fully conquered sub-complex of the mesh, separating the
mesh locally in an inner region of conquered edges and an
outer part containing free edges. Due to global splits, there
may be several active lists at a time.

Focus (or pivot): The vertex in an active list which is cur-
rently processed by the encoder or decoder. How the focus
is chosen depends on thetraversal scheme.

Split: The event of the active list touching upon itself. A
split occurs if afree edgeconnects the focus with a previ-
ouslyconquered vertex.

Full Valence: The total number of edges incident to a ver-
tex.

Free Valence:In general, the number offree verticescon-
nected to the focus by an edge (except at split vertices, see
Section 2.4).

Opening Angle:Assigned to each vertex in an active list.

opening angle= 2π −∑
i

∠(ei ,ei+1),

the sum being taken over all angles between adjacentcon-
quered edgesincident to the vertex.

Encoding: Akin to existing popular methods we employ a
region-growing strategy to conquer the mesh. Throughout

c© The Eurographics Association and Blackwell Publishing 2005.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

the encoding, we maintain one or more lists of vertices, the
active lists, which constitute the boundary of the so far pro-
cessed region. Initially the link of an arbitrary vertex will
serve as the first active list. The vertex with minimal open-
ing angle is chosen as the focus. Unless a split situation is en-
countered, the number of free valences of the focus is stored.
The free vertices around the focus are conquered in clock-
wise order and their positions are encoded, as described in
Section 3. The active list is updated by replacing the focus
by the newly conquered vertices. Updating opening angles
and picking a new focus finishes the iteration. The algorithm
is explained in more detail in Sections 2.1 and 2.4.

2.1. Separation of concepts - local vs. global splits

When the current focus has a free edge connecting it to a
previously conquered vertex on the same active list, the ac-
tive list needs to get split along the connecting edge. In order
to properly decode this situation, a special split symbolS to-
gether with a unique identifier to restore the target vertex
is stored (usually as an offset from the focus). Full-valence
coders such as the TG coder will only split-off active lists
which enclose at least a single free vertex as they knowall
free edges along the entire active listand can therefore close
triangles with zero free edges early. The situation changes
for a free-valence coder, where only the information about
thecurrent focusis fully available. As a consequence, free-
valence coders may split off regions containing no free ver-
tices in their interior. We observe that the vast majority of
such situations happens if the next or previous vertex to the
focus contains zero free edges. To account for this fact, we
introduce two new coding symbols -N (next) andP (previ-
ous). We call themlocal splits, compare Figure 3; all other
splits are calledglobal splits.

Figure 3: A local split occurs if a neighbor of the focus has zero
free edges. The sequence shows how to avoid wasting a full split:
FreeLence codes a next symbolN, closes the next vertex, and pro-
ceeds at the focus.

2.2. Geometry-driven traversal

We observe that bit rates for storing free valences signifi-
cantly depend on a clever traversal scheme. FreeLenceex-
ploits geometric informationabout the mesh by picking the
next focus according to thesmallest opening anglealong the
active contour. This geometry-guided traversal is highly ben-
eficial for optimizing free valence codes in two ways:

Symbol dispersion. Ignoring global splits, each vertex
gets assigned exactly one of the symbolsP, N, 0, 1, 2,

Figure 4: Symbol frequencies of free-valence codes of the Max
Planck model for a simple spiraling mesh traversal (left) vs. Free-
Lence’s geometry-driven traversal (right). Local splits are denoted
byP (previous) andN (next), global splits byJ (join).

If V denotes the total number of vertices, then, assuming no
global splits,

V = VP +VN +V0 +V1 +V2 + · · · ,

whereVP stands for the number ofP-vertices,VN stands for
the number ofN-vertices, andVi denotes the number of ver-
tices with i free valences. Moreover, ignoring global splits,
during traversal of a free valence coder, each vertex isfree
exactly once, i.e. there exists exactly one focus for which a
vertex is counted as a free vertex. Hence,V = ∑∞

1 i ·Vi , so
that

V = 0· (VP +VN +V0)+1·V1 +2·V2 + · · ·

Combining these equations shows that the penalty for each
free valencei, with i > 1, are(i−1) symbols out of0, P, N.
At the same time, our traversal scheme, by choosing small-
est opening angles, tends to penalize large free valences, and
the number of0’s, P’s, andN’s is thus also reduced. There-
fore, geometry-guided traversal yieldsin practice symbol
dispersions concentrating around theaverage free valence
1, cp. Figure 4.

Split reduction. By avoiding local peeks and pokes in the
active list, not only the occurrence of local splits (P andN)
is reduced, but also the frequency of splits in general is kept
at low levels, see Figure 4.

2.3. Context-based coding - exploiting regularity

Full-valence coders, by design, adapt to combinatorially reg-
ular meshes, other schemes like Angle-Analyzer [LAD02]
do not. Free-valence coders perform well for highly regular
meshes if used with a suitablecontext-based entropy coder.
To achieve adaption to regularity, FreeLence stores free va-
lences in separate tables (contexts) which are chosen accord-
ing to the opening angle of the current focus, compare Fig-
ure 5. This context-based encoding relies on the following
simple heuristics:small angles usually indicate a smaller
number of free edges, and bigger angles a bigger number.
In our implementation we are using a greedy approach to
further optimize the angle contexts according to theiractual
distribution of the respective mesh in such a way, that the
sum over all entropies in the tables becomes minimal. The

c© The Eurographics Association and Blackwell Publishing 2005.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

Figure 5: Distribution of opening angles for an encoding run of
the Max Planck model. Each free valence has its own distribution.
Note how the curves for different values of free valences overlap due
to the irregularity of the mesh. Negative opening angles canoccur
at vertices with negative Gauß curvature and at boundary vertices.
The vertical gray and white bars show the optimized thresholds by
which FreeLence groups symbols into contexts.

vertical lines in Figure 5 show such an optimized dissection
for the Max Planck mesh. Each table is compressed sepa-
rately with an order-0 entropy coder [WNC87]. By using
angle contexts, we observe a gain of about another 25% for
the entropy of the connectivity code. Note that angle-based
context modeling can not be applied to full-valence coders
such as [TG98] and [AD01b] because degree coders store
no information about the current focus, but only information
about adjacent vertices, the degrees of which are not corre-
lated to the opening angle at the focus. On the other hand,
label coders may very well benefit from angle contexts.

2.4. Coding details

FreeLence operates on two main data structures - a single
priority queuewhere all active vertices are sorted by their
opening angles, and one or more doubly linked lists of these
vertices, theactive lists. The algorithm uses a finite set ofla-
bels, P (previous),N (next),J (join), D (dummy), and a set
of numberswhich specifyfree valenceandoffset. The algo-
rithm works as a finite state machine. Special symbols like
previous, next, join, anddummyare represented as negative
integers−1, −2, −3 and−4 to distinguish them from free
valences. The algorithm starts by picking an arbitrary seed
vertexv, the first focus, and its full valence is written out.
Then the star ofv is closed in clockwise order, and the link
of v constitutes the first active list. At every update, anopen-
ing angle is assigned to each vertex in the active list, and
a new focus is repeatedly chosen according to the minimal
opening angle. As all vertices in active lists reside in a single
priority queue, the focus may jump between different lists.
If there is no split, the number of free valences of the focus
is stored, and its incident triangles are consideredprocessed.
The focus is removed from the active list and the priority

queue, and the newly conquered vertices are inserted. This
scheme is repeated until a focus is hit which has a free edge
connecting it to a previously visited vertex; in this case, a
specialsplit symbol needs to be stored.

Splits and merges. A local splitoccurs if the successor or
predecessor to the current focus has zero free edges, and we
store the symbolN resp.P in that case. The next or previous
vertex can then be conquered without storing an additional
number. After local splits have been processed, we proceed
conquering the free edges of the focus in clockwise order. If
a free edge is hit connecting the focus to a vertex on some
active list, then ajoin event occurs. Joins either correspond
to global splits, i.e. connect the focus to a vertex in the same
active list or tomergesconnecting it to a different active list.
The number of merges equals the genus of the surface. When
a join is encountered, a labelJ together with the number of
free edges in clockwise order to the join edge is stored. A
second identifier is needed by the decoder to uniquely locate
the target vertex in the queue. Commonly, this identifier is
defined by the offset of the split vertex to focus in the ac-
tive list. However, in order to avoid the need to distinguish
between splits and merges, we order the vertices in the pri-
ority queue according to their Euclidian distance from the
focus. The position of the join vertex in this ordering is used
as the missing unique identifier. This identifier is usually a
much smaller number than the commonly used offset iden-
tifier within the active list. It is stored in a separateoffset
list. After a join has been processed, the active lists and the
priority queue are updated and a new focus is chosen.

Boundaries are handled similar to the TG coder. The ver-
tices of each boundary component are connected to a new
dummy-vertex, so that the mesh becomes closed. When the
encoder hits a dummy-vertex for the first time, a special
boundary codeD is written to provide a hint for the decoder
to remove it upon decoding. Since the dummy vertex has no
geometric position, we define its incident angles to beπ/2.

2.5. Analysis and Discussion

Using free valences together with a geometry-driven mesh
traversal significantly better compresses mesh connectivity
in practice than previous single-rate coders, cp. Table 1.

Free valences, degrees, and labels.FreeLence symbols
can be directly translated into an extended Cut-Border-
Machine code: A number ofi free valences corresponds
to a sequence ofi consecutiveC labels followed by a sin-
gle R label. Similarly, the FreeLence labelP corresponds to
the Edgebreaker symbolL (calledconnect backwardin the
Cut-Border-Machine). TheN label has no correspondence
in Edgebreaker or the Cut-Border-Machine, but this symbol
could be additionally integrated into these coders to treat
special warts. Splits can be handled similarly to the Cut-
Border-Machine. Although it is possible to translate free-
valence codes into label sequences, the translated label code

c© The Eurographics Association and Blackwell Publishing 2005.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

Figure 6: Benchmark testing models.

will not benefit as strongly as the original free valence code
from geometry-guided traversal if used with an order-0 en-
tropy coder. In fact, the number ofC labels in the transla-
tion corresponds to the sum of free valences, which is the
number of vertices of the mesh. Moreover, thetotal number
of translated labels roughly equals the number of triangles
(about twice the number of vertices), and about 90% of all
labels different fromC areR labels in practice. Hence, the
number of bothC’s andR’s is roughly equal to the number
of vertices. Any rearrangement of them, due to a different
traversal, will therefore not affect compression rates if used
with an order-0 entropy coder as in FreeLence because the
code length of an order-0 entropy coder only depends on
the frequenciesof input symbols. Similarly, the compressed
length of full valence sequences is unaffected by the partic-
ular choice of a traversal scheme since degree coders store
the full degree of every vertex exactly once.

Warts are situations of global splits which do not occur for
full-valence coders: In the case where an active list is split
off containing more than three vertices but no interior free
vertex - similar to the situation in Edgebreaker and the Cut-
Border-Machine. For an extensive discussion of warts we re-
fer to Isenburg and Snoeyink [IS04]. In practice, we remove
the majority of warts by introducing the symbolsN (next)
andP (previous). Note that one could, in theory, avoid warts
entirely bylocally remeshing. In fact, one could even avoid
local splits (Figure 3) by applying a single edge flip (cor-
responding to writing a 0 at the focus instead ofN or P).
Yet, edge flips are lossy so that we did not further pursue
this direction here. In summary, although warts result in a
greater number of possible global splits, by employing our
geometry-driven traversal, we have not observed any drastic
such effects in practice.

Influence of quantization. Since we are using geometric
properties of the mesh (the opening angle) to improve com-
pression of the combinatorics, our connectivity rates depend
on the quantization of the geometry. Lower precision results
in an increasing number of splits and a reduction of the pos-

model verts VD AA FL vs vs
bpv bpv bpv VD AA

body 711 2.38 1.96 1.90 20% 3%
femur 3,897 2.71 n/a 2.11 22% n/a

random 4,338 n/a 0.57 0.36 n/a 37%
egea 5,315 1.63 0.81 0.54 67% 33%

fandisk 6,475 1.02 n/a 0.74 27% n/a
venus 8,268 2.71 1.95 1.73 36% 12%
foot 10,016 2.20 1.56 1.34 39% 14%

sphere 10,242 n/a 0.23 0.03 n/a 85%
manneq. 11,706 0.37 n/a 0.38 −2% n/a

dino 14,070 2.25 1.69 1.44 36% 15%
tf2 14,169 n/a 1.01 0.60 n/a 40%

horse 19,851 2.25 1.35 0.96 57% 29%
David 24,085 2.52 n/a 1.98 22% n/a
Max 25,445 2.22 1.45 1.19 47% 18%
feline 49,864 2.38 1.50 1.23 48% 18%

average 34% 28%

Table 1: Connectivity rates for 12bit globally quantized geome-
try. Comparison of FreeLence (FL) with the Valence-Driven coder
(VD) by Alliez-Desbrun and Angle-Analyzer (AA) by Lee-Alliez-
Desbrun. The numbers are in bits per vertex. The last two columns
show the improvements of FL over VD and AA.

itive effect of angle contexts, and hence can cause a drop
of our rates. However, the correlation between quantization
and connectivity bit rates isreasonable. For the models listed
in Table 1, 10 bit global quantization only yields an average
drop of 6% compared to 12 bit global quantization, and mod-
els showing significant change in bit rates, such as feline, al-
ways showed visually noticeable geometric distortion, too.
For 14 bit global quantization there is no measurable differ-
ence to 12 bit global quantization. We further counteract this
effect by quantizing in alocal coordinate systems, as de-
scribed in the next section, based on the observation that an-
gles are far less prone to drastic changes if quantized in a
local system which adapts to thetangency of the mesh.

3. Geometry compression

The bulk of information of a 3D mesh is stored in the posi-
tions of its vertices rather than the way these vertices are con-
nected. Therefore it is imperative for any mesh compressor
to address this issue. Motivated by the FreeLence geometry-
driven traversal scheme, we introduce a new and simple ge-
ometry compression method which is based on linear vertex
weights around the focus.

Global vs. local systems.The classical TG coder quantizes
and predicts in aglobal coordinate system, defined by ob-
ject space. To that end, the object bounding box is regularly
n-bit quantized into voxels of side lengthlvox = lmax/2n,
wherelmax is the length of the longest edge of the object’s
bounding box. The vertices of the mesh are then snapped
onto their nearest neighbors in the resulting grid. The core
problem with global quantization is highnormal distortion

c© The Eurographics Association and Blackwell Publishing 2005.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

Figure 7: Left In a hexagon, the unknown point (labeled "?") is
to be predicted from the five known neighbors of the focus (which
has weight c). Equal weights are chosen due to invariance under
symmetry.Right The FreeLence rule, showing our choice of weights
around the focus used for prediction. The rule is used for thelast
free edge of any focus of degree greater or equal to five.

of quantized geometry, resulting in astaircase look. To avoid
this effect it is highly beneficial to move to alocal coordi-
nate system, defined by one or severalcontributing trian-
gles. This approach was pursued by Lee et.al. [LAD02] and
Gumhold and Amjoun [GA03]; Gumhold and Amjoun use
higher-order (non-linear) prediction, resulting in a high pay-
off in run time, whereas Lee et.al. do not use any prediction
but store coordinates in the local system directly.

3.1. Freelence geometry prediction

Choosing local weights.FreeLence adopts the approach of
local coordinates and augments it by a simple and power-
ful prediction scheme. The scheme is simple because it only
useslinear weightsof a local stencilaround the focus. Be-
fore discussing a whole space of possible local predictions,
we explain the motivation behind the weights we have cho-
sen. First of all we observe that the simple parallelogram
rule [TG98] can be improved by employing a bigger sten-
cil. Secondly, we observe that it is beneficial to usemulti-
way parallelogram predictions across bothexistingandvir-
tual edges of the mesh. Virtual edges are employed to defeat
the given connectivity of a mesh for an irregular layout of
its vertices. In FreeLence, weaverageover parallelogram
predictions across three edges: the two edges connecting the
focus with its direct neighbors on the active list as well as
the one virtual edge between the previous and next vertex.
This scheme can be used for the last free edge of any focus
which has full degree greater or equal to five, see Figure 7.
For cases where it cannot be employed, we fall back to the
usual parallelogram rule.

Quantization and visual quality. Theoffset vectorbetween
the predicted position of the new vertex and its actual po-
sition is stored in alocal coordinate system. This system
is determined by choosing atangent spaceat the focus.
Our choice is as follows: The tangent space at the focus is
spanned by two vectors - the first being the vector which
connects the focus to the predicted vertex and the second

being parallel to the line connecting the previous and next
vertex on the active list. We then put thex-axis along the
line connecting the focus to the predicted vertex and they-
axis orthogonal to it in the tangent space. Thez-axis is deter-
mined by the cross product between thex- andy-axis. Offset
vectors can then be quantizeddifferently in tangential and
normal direction - based on the observation that tangential
drift will be far less visually noticeable than normal drift and
the fact that local coordinate systems can separate the typi-
cally small prediction errorsin normal direction from the
typically larger prediction errors in tangential direction. To
avoid error accumulation during encoding, it is important to
snap each encoded vertex to its quantized position. We mea-
sure theL2-error between the quantized mesh and the orig-
inal using theMetro tool [CRS98]. The optimal bit-rates
for quantizing separately in tangential and normal direction
with L2-errors matching that of Angle-Analyzer are shown
in Table 2. In practice, by turning this observation around,
this implies that for quantizations with the same bit-rates as
for other coders, we achieve a much bettervisual qualityby
significantly reducing theirL2-error. Figure 8 shows an ex-
ample of this effect.

Figure 8: Middle Mean curvature plot of the Max Planck model.
Left Difference picture between the mean curvature plots of the orig-
inal and the globally12bit quantized model with a geometry bit-rate
of 16.43 bpv (TG) and a L2-error of 0.000131. Right Difference
picture between the mean curvature plots of the original andFree-
Lence’s locally quantized model with a geometry bit-rate of15.21
bpv and a L2-error of 0.000032.

3.2. Optimality and prediction clusters

We have experimented with a wide variety of local linear
weights on a vast variety of digital models in search for a
universally optimal scheme. It turns out that such a scheme
does not seem to exist - in fact, for different model classes
the optimal weights tend to form clusters around only a few
distinct values. Such clusters arise in the space ofreasonable
weights. We call these patternsprediction clusters.

A class of reasonable weights.In a first approach to find op-
timal weights, we restricted our analysis to situations where
the focus has (full) degreesix andone unknown vertex in
its link. Symmetry with respect to the line connecting the

c© The Eurographics Association and Blackwell Publishing 2005.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

Figure 9: Different model classes form distinct clusters in the mod-
uli space of prediction weights:green points correspond to subdi-
vision models produced by Loop, Butterfly and

√
3-subdivision,red

points correspond to CAD models, andblue points to all other cases.

focus to the unknown vertex leaves four linear weights to
be determined, see Figure 7. We make the following natural
assumptions for choosing these weights:

• Affine invariance of the prediction scheme.

• Exact prediction in a regular planar hexagon.

Affine invariance holds if and only if the weights sum to one,

2a+2b+c+d = 1.

Exact prediction for a regular hexagon implies that

3a+b+c = 2,

which can be seen by putting a regular hexagon of edge
length one upright into the plane such that the vertex of
weight d coincides with the point(0,0) and the unknown
vertex lies at the point(0,2). This gives two equations on
four unknowns, resulting in amoduli space of predictions,
forming a 2-dimensional plane for vertices in general posi-
tions. If one chooses to parametrize this plane by the un-
knowns(c,d), thena andb depend linearly onc andd. For
example, the FreeLence prediction scheme uses the weights
(c,d) = (1/3,0) which has the benefit to work on any focus
of degree greater or equal to five.

Prediction clusters.We have searched for lowest bit-rates
by determining the optimal(c,d)-prediction parameters sep-
arately for each model from a pool of varying digital sur-
faces. In our tests, we used the new prediction for focuses
of degree six; all other cases were treated by the parallel-
ogram rule. We noticed the formation of certain prediction
clusters - models of the same class tend to cluster around the

same optimal(c,d)-predictions. In particular, very regular
models such as those produced by repeated subdivision as
well as those produced by CAD applications, cluster around
(c,d) = (0,1), which results in the maska = d = 1, b = −1
andc = 0. For testing regularity we used common bench-
mark models, simplified them and applied Loop, Butterfly
and

√
3-subdivision. On the other end of the spectrum there

are irregular models (in the combinatorial and geometric
sense) such as David, Body, Max, Dino, Feline, Femur, Foot
and Venus which tend to cluster around(c,d) = (1/2,0).
Semi-regular models such as Bunny and Cow can be found
in-between. In summary, it seems that thesearch for a uni-
versal prediction rule is a Sisyphean task. On the other hand,
due to clustering, there is good evidence that certain model
classes have specific optimal schemes associated with them.

3.3. Analysis and Discussion

Extending the simple parallelogram rule to a linear predic-
tion scheme on a bigger stencil proves superior to existing
single-rate geometry coders in practice. Our new prediction
scheme can be applied whenever the degree of a given focus
is greater than four and there is exactly one unknown vertex
in its link. Hence, the total number of focuses to which our
new scheme can be applieddepends on the traversal method.
The FreeLence rule of choosing the next focus according to
minimal opening angles prefers situations where the focus
hasone free edge, and is hence the optimal traversal scheme
for our prediction. Note how the same angle-based traver-
sal is beneficial both for our connectivity encoding as well
as our geometry encoding techniques. The results for geom-
etry compression on benchmark models are summarized in
Table 2.

Tangential vs. normal quantization. As in [LAD02], off-
set vectors are quantized differently in tangential and nor-
mal direction. These quantizations are based on the length
of the longest edge of the object’s bounding box, rescaled
differently for tangential and normal quantization. For repro-
ducibility, the optimal rescaling factors which minimize the
geometry code length under the constraint to match theL2-
error produced by 12 bit global quantizations are provided in
Table 2. Automating the choice of different quantization val-
ues in tangential and normal direction is an important topic
for future research.

Choosing your weights. Extending the prediction stencil
for a linear prediction scheme implies new degrees of free-
dom for the optimal weights to choose. Some of these de-
grees of freedom can be eliminated by requiringnatural con-
ditions, such as affine invariance. We also chose to include
the requirement of exact prediction for regular hexagons -
motivated by the fact that the average vertex degree in a tri-
angular mesh is equal to six - a consequence of the Euler for-
mula - and the assumption that a prediction scheme should
be invariant under symmetries. Yet, these two requirements
do not single out a unique choice of weights. The FreeLence

c© The Eurographics Association and Blackwell Publishing 2005.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

model AA FL AA FL tan / nor vs
bpv bpv L2 L2 AA

random 11.20 6.95 102 100 13.4 / 0.67 38%
egea 14.90 12.80 39 37 3.7 / 0.48 14%

sphere 4.91 2.19 89 90 15.0 / 0.83 55%
tf2 14.18 11.41 39 41 3.2 / 0.48 20%

horse 12.68 10.35 215 44 4.0 / 0.67 18%
Max 11.93 9.41 127 129 7.1 / 0.63 21%
feline 12.84 9.93 52 55 3.7 / 0.63 23%

average 27%

Table 2: Geometry compression. Comparison of bit rates and L2-
errors (in units of10−6) between Angle-Analyzer (AA) and Free-
Lence (FL). AA reported separate rates for angle space and local
space; for each model we compare to their lowest value. L2-errors
are produced with theMETRO tool with 100,000samples per area
unit and vertex and edge sampling turned off; they match the errors
of the globally12bit quantized versions. The difference between the
L2-errors for the horse model is due to a dilated version used by
AA. Quantizations are12bit, based on the length of the longest edge
of the object’s bounding box rescaled differently for tangential and
normal direction. The tan/nor column reports the optimal tangen-
tial/normal rescaling factors. FL’s connectivity rates for the locally
quantized models above are on average within2% of the values of
the globally quantized versions given in Table 1.

choice of weights fits into this general framework and is
the result of averaging over three parallelogram predictions
over existing and virtual edges. Although it turns out to be a
powerful choice in practice, we observe that different model
classes prefer different weights. In particular, a first analy-
sis shows the formation ofprediction clustersin a space of
reasonable weights - with clearlydistinct clusters for regu-
lar and irregular models. In first experiments we found that
if one hasa priory knowledgeof the class a given mesh be-
longs to, then compression bit rates can significantly be fur-
ther reduced.

4. Conclusion and Future Work

FreeLence introduces two novel approaches for single-rate
encoding of digital surfaces. On the one hand, the concept
of coding with free valencescombined with a geometry-
driven traversal method yields superior bit-rates forconnec-
tivity encodingcompared to previous approaches. As a sec-
ond contribution, FreeLence introduces a simple linearge-
ometry prediction schemewhich yields significantly better
bit rates for encoding the vertex positions, compared to ex-
isting single-rate region-growing compressors.

Experiments show that there is no universally optimal lo-
cal linear prediction scheme for geometry encoding: Differ-
ent model classes tend to form separate optimal prediction
clusters in the moduli space of reasonable predictions. This
poses two challenging problems for future work: First of all,
is it possible to design optimal weights for mesh classes such
as CAD models, scan models and detail-modified subdivi-

Figure 10: A complete run of FreeLence. (a) Pick an initial vertex,
it has valence6, write6. (b) Close the triangles incident to the initial
vertex and find a new focus according to minimal opening angle;
the new focus has2 free valences, write2. (c) Close the triangles
incident to the focus and find a new focus according to minimal
opening angle; the vertex previous to the focus has no free edges,
write P and close previous. (d) Focus has0 free valences, write0. (e)
Focus is boundary vertex with1 free edge preceding the boundary in
clockwise order, writeD 1. Connect a virtual edge (dashed line) to
the dummy vertex. Decrease opening angles of the focus’ neighbors
by π/2. The total count of free valences of the focus is1 write 1.
(f) New focus has1 free valence, write1. (g) to (j). Focus has0
free valences; write0. (k) Active list has length two. Stop. The full
sequence is6 2 P 0 D 1 1 1 0 0 0 0.

sion models? Secondly, is it possible to automate the choice
of the correct weights for any such given model? The an-
swer to these problems will depend on the search and the
definition of a morerelevant poolof 3D benchmark models
enlarging the relatively small pool of examples which has
commonly been used to date.

Acknowledgments.We would like to thank the anonymous review-
ers for their very detailed and helpful comments, and in particular
for pointing out the close relation between free valence codes and
label-based methods. We thank the authors of Angle-Analyzerfor
providing us with their models. This work was supported by the
DFG Research Center Matheon ”Mathematics for key technologies”
in Berlin.

References

[AD01a] ALLIEZ P., DESBRUN M.: Progressive compression
for lossless transmission of triangle meshes. InSIG-
GRAPH 2001 Conference Proceedings(2001), ACM
Press, pp. 195–202.

[AD01b] ALLIEZ P., DESBRUNM.: Valence-driven connectivity

c© The Eurographics Association and Blackwell Publishing 2005.

Kälberer, Polthier, Reitebuch, Wardetzky / FreeLence - Coding with Free Valences

encoding for 3D meshes. InEurographics 2001 Con-
ference Proceedings(2001), vol. 20(3), pp. 480–489.

[AG03] ALLIEZ P., GOTSMAN C.: Recent advances in com-
pression of 3d meshes. InProceedings of the Sympo-
sium on Multiresolution in Geometric Modeling(2003).

[BCG05] BEN-CHEN M., GOTSMAN C.: On the optimality of
spectral compression of mesh data.ACM Trans. Graph.
24, 1 (2005), 60–80.

[COCI02] COHEN-OR D., COHEN R., IRONI T.: Multi-way Ge-
ometry Encoding. Tech. rep., 2002. Technical report,
School of Computer Science, Tel Aviv University.

[CR04] COORS V., ROSSIGNAC J.: Delphi: Geometry-based
connectivity prediction in triangle mesh compression.
In The Visual Computer, International Journal of Com-
puter Graphics(2004), vol. 20, pp. 507̋U–520.

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro:
Measuring error on simplified surfaces.Comput.
Graph. Forum 17(1998), 167–174.

[GA03] GUMHOLD S., AMJOUN R.: Higher order predic-
tion for geometry compression. InSMI’03: Proc. In-
tern. Conference On Shape Modeling And Applications
(2003), pp. 59–66.

[GD02] GANDOIN P.-M., DEVILLERS O.: Progressive loss-
less compression of arbitrary simplicial complexes.
In SIGGRAPH 2002 Conference Proceedings(2002),
pp. 372–379.

[GS98] GUMHOLD S., STRASSER W.: Real time compres-
sion of triangle mesh connectivity. InSIGGRAPH 1998
Conference Proceedings(1998), ACM Press, pp. 133–
140.

[Gum99] GUMHOLD S.: Improved cut-border machine for tri-
angle mesh compression. InProceedings of Erlangen
Workshop ’99 on Vision, Modeling and Visualization
(1999).

[IA02] I SENBURG M., ALLIEZ P.: Compressing polygon
mesh geometry with parallelogram prediction. InIEEE
Visualization 2002 Conference Proceedings(2002),
pp. 141–146.

[IGG01] ISENBURG M., GUMHOLD S., GOTSMAN C.: Con-
nectivity shapes. InIEEE Visualization 2001 Confer-
ence Proceedings(2001), pp. 135–142.

[IS99] ISENBURG M., SNOEYINK J.: Spirale Reversi: Re-
verse decoding of the Edgebreaker encoding. Tech.
Rep. TR-99-08, 4 1999.

[IS00] ISENBURGM., SNOEYINK J.: Face fixer: Compressing
polygonal meshes with properties. InSIGGRAPH 2000
Conference Proceedings(2000), pp. 263–270.

[IS04] ISENBURG M., SNOEYINK J.: Early-split coding of
triangle mesh connectivity, 2004. submitted.

[Ise02] ISENBURGM.: Compressing polygon mesh connectiv-
ity with degree duality prediction. InGraphics Inter-
face Conference Proceedings(2002), pp. 161–170.

[KADS02] KHODAKOVSKY A., ALLIEZ P., DESBRUN M.,
SCHRÖDERP.: Near-optimal connectivity encoding of
2-manifold polygonal meshes.Graphics Models, spe-
cial issue(2002).

[KG00a] KARNI Z., GOTSMAN C.: Spectral compression of
mesh geometry. InSIGGRAPH 2000 Conference Pro-
ceedings(2000), ACM Press, pp. 279–286.

[KG00b] KRONRODB., GOTSMAN C.: Efficient coding of non-
triangular mesh connectivity. InPG’00: Proceedings of
the 8th Pacific Conference on Computer Graphics and
Applications(2000), p. 235.

[KG01] KARNI Z., GOTSMAN C.: 3D mesh compression
using fixed spectral bases. InProc. Graphics Inter-
face(2001), Canadian Information Processing Society,
pp. 1–8.

[KG02] KRONRODB., GOTSMAN C.: Optimized compression
of triangle mesh geometry using prediction trees. In
Intern. Symp. on 3D Data Processing, Visualization and
Transmission(2002), pp. 602–608.

[KR99] K ING D., ROSSIGNAC J.: Guaranteed 3.67v bit en-
coding of planar triangle graphs. InProceedings of
11th Canadian Conference on Comp. Geometry(1999),
pp. 146–149.

[LAD02] L EE H., ALLIEZ P., DESBRUNM.: Angle-Analyzer: A
triangle-quad mesh codec. InEurographics conference
proceedings(2002), vol. 21, pp. 383–392.

[PS03] POULALHON D., SCHAEFFER G.: Optimal coding
and sampling of triangulations. 30th international
colloquium on automata, languages and programming
(ICALP’03). (2003).

[Ros99] ROSSIGNAC J.: Edgebreaker: Connectivity compres-
sion for triangle meshes.IEEE Transactions on Visual-
ization and Computer Graphics(1999), 47–61.

[RS99] ROSSIGNAC J., SZYMCZAK A.: Wrap&zip decom-
pression of the connectivity of triangle meshes com-
pressed with edgebreaker.Journal of Computational
Geometry 14, 1-3 (1999), 119–135.

[Sha48] SHANNON C. E.: A mathematical theory of communi-
cation.The Bell System Technical J. 27(1948).

[Szy02] SZYMCZAK A.: Optimized edgebreaker encoding for
large and regular triangle meshes. InDCC (2002),
p. 472.

[TG98] TOUMA C., GOTSMAN C.: Triangle mesh compres-
sion. In Graphics Interface Conference Proceedings
(1998), pp. 26–34.

[TR98] TAUBIN G., ROSSIGNACJ.: Just-in-time upgrades for
triangle meshes.SIGGRAPH 1998, Course Notes 21
(1998), 18–24.

[Tut63] TUTTE W.: A census of planar maps.Canadian Jour-
nal of Mathematics 15(1963), 249–271.

[WNC87] WITTEN I. H., NEAL R. M., CLEARY J. G.: Arith-
metic coding for data compression.Communications of
the ACM 30, 6 (1987), 520–540.

c© The Eurographics Association and Blackwell Publishing 2005.

