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Abstract

We provide conditions for convergence of polyhedral surfaces and their
discrete geometric properties to smooth surfaces embedded in Euclidean
3-space. Under the assumption of convergence of surfaces in Hausdorff
distance, we show that convergence of the following properties are equiva-
lent: surface normals, surface area, metric tensors, and Laplace-Beltrami
operators. Additionally, we derive convergence of minimizing geodesics,
mean curvature vectors, and solutions to the Dirichlet problem.

1 Introduction

Discrete differential geometry on polyhedral surfaces is concerned with dis-
crete analogues of smooth differential geometric concepts. It is a theory sui
iuris where discrete operators take the place of smooth ones, relying solely on
the information inherent to the underlying polyhedral surface. Here we provide
a proof of convergence of various discrete notions to their smooth counterparts.
In particular, we ask: if a sequence of triangulated polyhedral surfaces, isomet-
rically embedded into R3, converges to a smooth surface, under what condi-
tions do metric and geometric properties such as intrinsic distance, area, mean
curvature, geodesics, and Laplace-Beltrami operators converge, too? Pointwise
convergence of surfaces is certainly not sufficient to obtain convergence of these
properties; the Schwarz lantern [33] provides an informative counterexample to
convergence of surface area. Convergence fails since the normal fields of the
approximating sequence diverge. In Theorem 2 we prove: if a sequence of poly-
hedral surfaces {Mn} converges to a smooth surface M in Hausdorff distance
then the following conditions are equivalent:

i convergence of normal fields,

ii convergence of metric tensors,

iii convergence of area,

iv convergence of Laplace-Beltrami operators.
∗This work was supported by the DFG Research Center Matheon “Mathematics for key

technologies” in Berlin.

1



The insight that convergence of normals is required in addition to pointwise con-
vergence of surfaces in order to obtain convergence of area and intrinsic distance
is not new. For example, Morvan and Thibert [23] recently gave quantitative
estimates for the distortion of area and length in terms of deviations of normals
and pointwise distance between surfaces. We extend these results to the above
equivalent conditions.

The methodology of this paper is to adopt the point of view of global analysis
in the sense of analyzing Riemannian manifolds by means of operators acting be-
tween function spaces. The Laplace-Beltrami operator, for example, is regarded
as a bounded linear map

∆ : H1
0(M) −→ H−1(M)

from the Sobolev space H1
0(M) (the space of weakly differentiable functions on

M vanishing along the boundary) to its dual space, H−1(M). Convergence of
these operators is treated in operator norm. Similarly, since the mean curvature
vector of an isometrically embedded surface can be written as

H = ∆I,

where I : M → R3 denotes an isometric embedding, we treat convergence of
mean curvature vectors in the sense of distributions, i.e. as elements of H−1(M).
This view is motivated by the observation that mean curvature vectors on poly-
hedral surfaces have only distributional components because ∆I vanishes in the
interior of (flat) triangles. Let us briefly recall the meaning of convergence in
the sense of distributions. Assume we were dealing with a sequence {Mn} of
C2-surfaces converging to a C2-surface M . Then mean curvature vectors would
be continuous, and their convergence, Hn → H in H−1(M), would imply

∫

M

Hn · φ −→
∫

M

H · φ for all fixed φ ∈ C1
0 (M),

where each Hn is pulled back from Mn to the limit surface M . In other words,
we obtain what could be called convergence of integrated quantities. This inter-
pretation carries over to polyhedral surfaces (which are only of class C0,1) in
the sense that ‖Hn −H‖H−1 → 0 implies that

〈Hn|φ〉 −→ 〈H|φ〉 for all fixed φ ∈ H1
0(M),

where 〈·|·〉 is the dual pairing between H1
0(M) and its dual, H−1(M). Conver-

gence in the sense of distributions is similar in spirit to convergence in mea-
sure [8]. It is an interesting problem to find the precise relationship between
these approaches.

Let us emphasize two aspects of our approach.

i Laplace-Beltrami operators and mean curvature vectors are shown to con-
verge in an appropriate norm. This does not imply convergence pointwise
almost everywhere—we provide a counterexample to L2-convergence.

ii Estimates are made explicit in terms of pointwise distance, deviation of
normals, curvature properties of the smooth limit surface, and (where
appropriate) shapes of the triangles in the sequence of polyhedral surfaces.
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Convergence of operators in norm has to be contrasted with recent work on
pointwise convergence treated by means of asymptotic analysis (see e.g. Meek
and Walton [20], Xu [38, 39], and references therein). In a sense, this work may
be summarized by a negative result: if normals could be approximated to order
O(h2) then Laplacians and curvatures could be approximated to order O(h)1

(since curvatures correspond to normal derivatives); however, unless one im-
poses extra assumptions on the underlying discrete data, normals are in general
only known to order O(h), so that pointwise convergence of curvatures cannot
in general be expected. Here we show that convergence of surfaces in Hausdorff
distance together with convergence of their normals in L∞ suffices to ensure
convergence of curvature operators in (an appropriately chosen) norm2.

Several applications of convergence of polyhedral surfaces to a smooth limit
surface in Hausdorff distance together with convergence of their normals are de-
rived in Section 4. We show uniform convergence of geodesics on compact sets
(Section 4.1), convergence of solutions to the Dirichlet problem (Section 4.2),
and convergence of mean curvature vectors (Section 4.3). As mentioned before,
we show convergence of mean curvature vectors in the sense of distributions
(Theorem 6) and give a counterexample to L2-convergence.

Discrete minimal surfaces in the sense of [25] are polyhedral surfaces which
are stationary points for the area functional within the class of piecewise linear
surfaces having the same underlying simplicial complex, and the same piece-
wise linear boundary. An equivalent definition can be given in terms of finite
elements. Let Sh,0 ⊂ H1

0 be the space of continuous piecewise linear functions
with zero boundary condition on a polyhedral surface. We define the piecewise
linear mean curvature vector, Hh ∈ (Sh,0)

3, by

(Hh, uh)L2 = 〈H|uh〉 ∀uh ∈ Sh,0.

In other words, Hh is the piecewise linear function corresponding to the action
of the mean curvature functional H = ∆I ∈ H−1 on the finite element space
Sh,0. In Section 4.3.2 we show that L2-convergence may fail for Hh. However,
for the special case of discrete minimal surfaces, which corresponds to

Hh = 0,

we prove the following: if a sequence of discrete minimal surfaces converges to a
smooth limit surface in Hausdorff distance such that their normal fields converge,
too; then the limit surface is minimal in the classical sense (Theorem 7).

Although existence and regularity of minimal surfaces spanning a given
boundary is a well-studied problem, it remains a challenge to explicitly construct
minimal surfaces with prescribed boundary data. Pinkall and the second au-
thor [25] suggested an algorithm for numerically approximating area-minimizing
polyhedral surfaces by sequentially solving the Dirichlet problem with respect
to the metric of the current iterate. For the same purpose Dziuk [11] used
a discretization of the mean curvature flow. Similarly, Ken Brakke’s ”Surface
Evolver” [5] produces numerical approximations of area-minimizing surfaces.

1As usual, h denotes mesh size (for example, length of longest edge) of Mh.
2It appears that Gauss curvature cannot be treated in our sense.
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Later, various examples of explicitly computable discrete minimal surfaces were
discovered [16, 19, 26, 27, 28, 31]. However, it is an open problem whether
one can find discrete minimal surfaces arbitrarily close to a given smooth (and
possibly unstable) minimal surface. Dziuk and Hutchinson [12] give a positive
answer to this problem for the case of minimal surfaces having the topology of
a disk, and Pozzi [29] extends their result to annuli3. Related to the approxi-
mation of smooth minimal surfaces by discrete minimal ones is the problem of
designing a converging refinement scheme of discrete minimal surfaces yielding
a smooth minimal surface in the limit. The convergence result of Theorem 7
provides a step into this direction.

Große-Brauckmann and the second author [18] constructed examples of com-
pact constant mean curvature (CMC) surfaces of low genus numerically, based
on a discrete version of the conjugate surface construction [24]. It is an inter-
esting question whether the convergence results of the current paper can help
to prove that these numerical examples yield smooth CMC surfaces.

The Dirichlet problem is treated in Section 4.2. We prove that the solutions
un to the Dirichlet problems ∆nun = f on Mn converge to the solution u of
the Dirichlet problem ∆u = f on M in H1

0(M) (Theorem 4). Here ∆n is the
Laplace-Beltrami operator of the approximating polyhedral surface Mn, and ∆
is the Laplacian of the smooth limit surface M . A slight extension of an ar-
gument of Dziuk [10] then shows convergence of the associated finite element
discretization.

Related work. It is impossible to do justice to the various results concern-
ing discretization of smooth differential geometry here. One central question of
such a discrete theory is: what is the best way to describe discrete geometric
objects? Certainly, a good discrete theory is one which preserves essential prop-
erties of the continuous theory. Interesting connections in this direction have
recently been explored by Bobenko, Hoffmann, Mercat, Pinkall, Springborn,
and Suris, see e.g. [3, 4, 21]. There are several other approaches towards such
a discrete theory: Alexandrov [1] and Reshetnyak [30] developed the theory
of manifolds of bounded curvature. Thurston [35] and Schramm [32] used cir-
cle packings to approximate holomorphic maps and proved a discrete Riemann
mapping theorem. Federer [13] and Fu [14] developed geometric measure theory,
Banchoff [2] studied discrete Morse theory, Stone [34] related global topology
of PL-manifolds to their local geometry, Brehm and Kühnel [6] treated approx-
imations of polyhedra by smooth surfaces, Cheeger, Müller and Schrader [7]
employed Lipschitz-Killing curvatures, and Morvan and Cohen-Steiner [8, 22]
recently used the normal cycle to construct a discrete shape operator.

3Recently Bobenko et al. [3] provided a different (’non-linear’) view of discrete mean cur-
vature. They show that their approach allows for finding discrete minimal surfaces arbitrarily
close to smooth ones.
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2 Approximating smooth surfaces

2.1 Polyhedral surfaces

By a polyhedral surface Mh we mean a geometric simplicial complex having the
topology of a 2-manifold and consisting of flat Euclidean triangles which are
isometrically glued along their common edges. For technical reasons we only
consider finite triangulations as well as orientable surfaces in this article; we
also request that Mh ⊂ R3 be isometrically embedded. If γ : [a, b] → Mh is
a continuous curve, then the length of γ is the supremum over all partitions
Z = {t0 = a ≤ t1 ≤ ... ≤ tn = b} of [a, b]:

l(γ) = sup
Z

n∑

i=1

dR3(γ(ti−1), γ(ti)),

where dR3 denotes the Euclidean distance of R3. Let p and q be two points in
Mh. Then the distance d(p, q) between p and q is defined as

d(p, q) := inf
γ

l(γ), (1)

the infimum taken over all continuous curves γ : [a, b] → Mh. Following Gro-
mov [17], Mh equipped with this metric is called a length space. On individual
triangles the length metric coincides with the induced flat metric from ambient
R3. Across an edge of two adjacent triangles this metric is still flat since one
can rotate those triangles about their common edge until they become coplanar.
The situation changes at vertices where the metric exhibits cone points, cf. [36].

θ

Figure 1: A neighborhood of a vertex with total vertex angle θ equipped with
the length metric is isometric to a metric cone with cone angle θ.

Definition 1 (metric cone). The set Cθ := {(r, ϕ)| 0 ≤ r; ϕ ∈ R/θZ}/∼ to-
gether with the (infinitesimal) metric

ds =
√

dr2 + r2 dϕ2 (2)

is called a metric cone with cone angle θ. Here (0, ϕ1) ∼ (0, ϕ2) for any pair
(ϕ1, ϕ2). The cone point is the coset consisting of all points (0, ϕ) ∈ Cθ.

Henceforth we will refer to the cone metric induced by (2) as gMh
in order

to indicate its dependence on the polyhedral surface Mh. The metric gMh
is the

infinitesimal version of the length metric defined by (1).
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2.2 Normal graph and shortest distance map

This section introduces the shortest distance map as an auxiliary tool for com-
paring a smooth surface to a polyhedral surface nearby. Considering this map
for comparing two surfaces has been common practice [10, 22, 23].

Definition 2. Let M ⊂ R3 be a closed subset. The medial axis of M is the set
of those points in R3 which do not have a unique closest neighbor in M . The
reach of M is the distance of M to its medial axis.

Figure 2: Illustration of several branches of the medial axis of a smooth shape.

If M ⊂ R3 is a smooth embedded surface (possibly with boundary) then its
medial axis corresponds to the locus of centers of spheres touching M in at least
two points without intersecting M (see Figure 2). In this case the reach of M
is the infimum over the radii of such spheres. The reach of a smooth surface M
is hence bounded above by the radii of osculating spheres:

reach(M) ≤ inf
p∈M

1
|κ|max(p)

, (3)

where |κ|max(p) denotes the maximum absolute value of the normal curvatures
at p ∈ M . Note that a compact and smoothly embedded surface M always has
positive reach. For a general treatment of sets of positive reach we refer to the
classical text of Federer [13].

Definition 3 (normal graph). A polyhedral surface Mh is a normal graph over
a smooth surface M if its distance to M is strictly less than the reach of M , and
the map Φ : M → Mh which takes p ∈ M to the intersection point Φ(p) ∈ Mh

of the normal line through p with the polyhedral surface Mh is a bijection onto
the image up to, and including, the (possibly non-empty) boundary, ∂M .4

The shortest distance map Φ splits into a tangential and a normal component:

Φ(p) = I(p) + φ(p) ·N(p), (4)

where I : M → R3 denotes the embedding, N is the oriented normal of M , and
φ is the scalar-valued (signed) distance function.

4Specifically, this implies that we require the image of M under Φ to be contained in Mh,
i.e. Φ(M) ⊂ Mh. However, if ∂M 6= ∅, we do not require that Φ(M) = Mh.
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Figure 3: Mh is a normal graph over M . The map Φ takes p ∈ M to the
intersection of the normal line through p with the polyhedral surface Mh. The
inverse Φ−1 thus realizes the shortest distance from Φ(p) ∈ Mh to M .

2.3 The metric distortion tensor

The shortest distance map Φ allows to pull back the polyhedral metric gMh
on

Mh to an (almost everywhere defined) metric gA on the smooth surface M .

Definition 4 (metric distortion tensor). There exists a symmetric positive def-
inite 2 × 2 matrix field A(p), p ∈ M , uniquely defined M -almost everywhere,
such that

gA(X, Y ) = g(A(X), Y ) = gMh
( dMΦ(X), dMΦ(Y )) a.e. (5)

for all vector fields X, Y on the smooth surface (M, g).

The metric distortion tensor A is smooth on the pre-image of the interior of
triangles of Mh. The next theorem shows that A only depends on the distance
between M and Mh, the angles between their normals, and the curvatures of
the smooth surface M . A similar result can be found in [23].

Theorem 1 (geometric splitting of metric distortion tensor). Let Mh be a
polyhedral surface which is a normal graph over an embedded smooth surface
M . Let N denote the normal field of M , and let Nh denote the pullback under
Φ of the normal field of Mh. Then the metric distortion tensor A satisfies

A = P ◦Q−1 ◦ P a.e., (6)

a decomposition into symmetric positive definite 2× 2 matrix fields P and Q on
M which can be diagonalized (possibly in different ON-frames) such that

P =
(

1− φ · κ1 0
0 1− φ · κ2

)
, (7)

Q =
( 〈N, Nh〉2 0

0 1

)
, (8)

where κ1 and κ2 denote the principal curvatures of the smooth manifold M and
φ is as in equation (4).
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Remark 1. The matrix field P is pointwise a.e. positive definite by the assump-
tion that Mh is in the reach of M since inequality (3) implies 1− φ · κi > 0.

Proof of Theorem 1. It suffices to consider a single triangle T of Mh. Denote
by Ψ = Φ−1 : Mh → M the inverse of the shortest distance map. For any map
f : M → R let fT = f ◦Ψ|T : T → R denote its pullback to T . Then

Ψ|T = IMh
− φT ·NT .

Here IMh
is the embedding of Mh into R3. Note that NT stands for the pullback

of the normal field N of M to the triangle T , rather than for the normal field to
T . Let d denote the outer differential on T . Differentiating Ψ and using that
dNT = dMN ◦ dΨ = −S ◦ dΨ yields

dΨ = (Id− φ · S)−1 ◦ (Id−NT · dφT ) : TT → TM,

where S = − dMN is the Weingarten operator on M . Setting

P := (Id− φ · S) : TM → TM,

Q̃ := (Id−NT · dφT ) : TT → TM,

we obtain dΨ = P−1 ◦ Q̃ and hence dMΦ = Q̃−1 ◦P . For each p ∈ M we define
a symmetric positive definite operator Q on TpM by

〈Q−1(X), Y 〉R3 = 〈Q̃−1(X), Q̃−1(Y )〉R3 .

The definition of the metric distortion tensor A and the symmetry of P yield

〈A(X), Y 〉R3 = 〈dMΦ(X), dMΦ(Y )〉R3

= 〈PQ−1P (X), Y 〉R3 ,

and a straightforward calculation delivers that P and Q can be diagonalized as
claimed.

Corollary 1 (area distortion). Under the assumptions of Theorem 1, the vol-
ume elements of M and Mh satisfy

dvolMh

dvolM
= (det A)1/2 =

1 + φ2 K− φ H
〈N, Nh〉 a.e., (9)

where K denotes the Gauss curvature, and H denotes the scalar mean curvature
of M .

Proof. Equation (9) follows immediately from the explicit representation of the
distortion tensor A in Theorem 1, and by using that K = κ1 · κ2 as well as
H = κ1 + κ2.

Corollary 2 (length distortion). The infinitesimal distortion of length satisfies

min
i

(1− φ · κi) ≤ dlMh

dlM
≤ maxi(1− φ · κi)

〈N,Nh〉 a.e. (10)

Proof. This follows from bounding the smallest and largest eigenvalue of A.
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C
Ch

Figure 4: The shortest distance map may induce isometry between non-
congruent shapes. Left: the shortest distance map of the half unit circle C
induces an isometry to a circle Ch of radius 1/2. Right: by patching together
pieces of the left picture one obtains an isometry between the unit circle and
what could be called a dented circle.

Remark 2 (dented circle). Even if the metric distortion induced by the short-
est distance map equals the identity (so that the surfaces are isometric) the
surfaces need not be congruent. We give an example of this fact for pla-
nar curves; the extension to surfaces is obtained by considering cylinders with
cross-sections equal to these planar curves. Consider the half unit circle C =
{(cos t, sin t) : t ∈ [0, π]}. Any normal graph Ch over C can be written as

Ch =
{
((1− φ(t)) · cos t, (1− φ(t)) · sin t) ∈ R2 : t ∈ [0, π]

}
,

where φ is the (signed) distance from C to Ch along the unit circle’s (inward)
normal N . Setting

φ(t) := 1− sin t,

one readily checks that Ch becomes a circle of radius 1/2 with center (0, 1/2),
compare Figure 4. The inner product between the normals N of C and Nh of
Ch is given by

〈N, Nh〉 = sin t = 1− φ(t). (11)

Let κ = 1 denote the curvature of C. As a special case of (6), the metric
distortion between the two planar curves C and Ch with respect to the shortest
distance map Φ is given by

a =
1− φ · κ
〈N, Nh〉 =

1− φ

〈N,Nh〉 = 1. (12)

Hence, in this case, the metric distortion is the identity, although the shapes of
C and Ch are clearly not congruent.

3 Convergence

Under the assumption of convergence of a sequence {Mn} of polyhedral sur-
faces to a smooth surface M in Hausdorff distance, we show that the following
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conditions are equivalent: (i) convergence of normals, (ii) convergence of metric
distortion tensors, (iii) convergence of area, and (iv) convergence of the Laplace-
Beltrami operators. The proof is based on translating properties (ii)-(iv) into
corresponding properties of the metric distortion tensor A. We will throughout
use the shortest distance map Φ to pull several objects of interest back from
the polyhedral surface Mh to the smooth compact embedded surface M . Before
treating convergence, we set up the relevant terminology. Throughout we write
‖ · ‖∞ as shorthand for ‖ · ‖L∞(M).

3.1 Terminology

Hausdorff distance. Let M1,M2 ⊂ R3 be two non empty sets. Then the
Hausdorff distance between M1 and M2 is defined as

dH(M1,M2) = inf {ε > 0 |M1 ⊂ Uε(M2) and M2 ⊂ Uε(M1)} ,

where Uε(M) =
{
p ∈ R3 | ∃q ∈ M : dR3(p, q) < ε

}
.

Totally normal convergence. Let {Mn} be a sequence of normal graphs over
M . For each n let Nn = NMn ◦Φn be the pullback of the normal field of Mn to
M . The sequence {Mn} is said to converge normally to M if ‖Nn −N‖∞ → 0.
It converges totally normally if additionally dH(Mn, M) → 0.

Convergence of metric tensors. Each polyhedral surface Mn in the approx-
imating sequence induces a metric gAn on the limit surface M determined by
the respective distortion tensor An. Let ‖An‖∞ = ess supp∈M ‖An(p)‖op. Con-
vergence of metric tensors is defined as ‖An − Id‖∞ → 0.

Sobolev norms and spaces. Let Mh be a normal graph over M , so that Mh

induces the polyhedral metric gA on M . In addition to the standard L2-norm on
the smooth reference surface M , the metric gA yields another norm on L2(M).
These norms are given by

‖u‖2L2 =
∫

M

u2 dvol, (13)

‖u‖2L2
A

=
∫

M

u2(det A)1/2 dvol, (14)

respectively, where dvol is the volume form on M induced by the Riemannian
metric g. Similarly, let H1

0(M) ⊂ L2(M) be the space of weakly differentiable
functions u on M which either vanish along the (non empty) boundary of M
or for which

∫
M

udvol = 0 if M has no boundary. The space H1
0(M) can be

equipped with the two norms5,

‖u‖2H1
0

=
∫

M

g(∇u,∇u) dvol, (15)

‖u‖2H1
0,A

=
∫

M

g(A−1∇u,∇u)(det A)1/2 dvol, (16)

5Definition (16) is justified by the equality ∇A = A−1∇.
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where ∇ denotes the gradient on M induced by the metric g. Compactness
of M implies that (13), (14) and (15), (16) induce equivalent (but not equal)
norms. To distinguish these spaces as normed spaces, we shall write L2(M),
L2

A(M), H1
0(M), and H1

0,A(M), respectively. We often drop the argument M .

Remark 3. Before moving on, we issue two warnings. The first warning concerns
the case of empty boundary, ∂M = ∅. In this case the spaces H1

0 and H1
0,A

can be identified but are strictly speaking not equal since u ∈ H1
0,A implies∫

M
u(det A)1/2 dvol = 0 but not necessarily

∫
M

udvol = 0. Nonetheless, we are
in the sequel silently going to identify u ∈ H1

0,A with

[u] = u− 1
|M |

∫

M

udvol,

which certainly lies in H1
0. This identification is justified since the norms defined

by (15) and (16) vanish on constants.
The second warning concerns the case of non-empty boundary, ∂M 6= ∅.

Here H1
0 and H1

0,A are equal as sets (but equipped with different norms). How-
ever, in this case the image of M under the shortest distance map Φ is contained
in, but may not necessarily be equal to, Mh (compare Definition 3). In partic-
ular, Φ(∂M) may not be equal to ∂Mh—so that H1

0,A(M) may not be equal
to H1

0(Mh). Still, we can identify H1
0,A(M) with a subspace of H1

0(Mh) since
u ∈ H1

0,A(M) implies u ◦ Φ−1 ∈ H1
0(Mh), and,

‖u‖H1
0,A(M) = ‖u ◦ Φ−1‖H1

0(Mh),

which holds by construction.

Laplace-Beltrami operators. The metrics g and gA both induce a Laplace-
Beltrami operator on M . The weak form of these operators is given by

〈∆u|v〉 = −
∫

M

g(∇u,∇v) dvol, (17)

〈∆Au|v〉 = −
∫

M

g(A−1∇u,∇v)(det A)1/2 dvol, (18)

respectively, where 〈·|·〉 denotes the pairing betweenH1
0(M) and its dualH−1(M).

Both ∆u and ∆Au are elements of H−1(M) and act on H1
0(M) as bounded lin-

ear functionals6. Convergence of these operators is understood in the operator
norm (denoted by ‖ · ‖op) of linear bounded maps between the spaces H1

0(M)
and H−1(M).

3.2 Equivalent conditions for convergence

Theorem 2 (equivalent conditions for convergence). Let M ⊂ R3 be a compact
embedded smooth surface, and let {Mn} be a sequence of polyhedral surfaces
which are normal graphs over M and which converge to M in Hausdorff distance.
Then the following conditions are equivalent:

6If u ∈ C∞(M), then certainly ∆u ∈ C∞(M) as well, but ∆Au need not even be in
L2(M) since the metric distortion tensor A is usually discontinuous; in fact, the distributional
components of ∆Au (located at the pre-image of the edges of Mh) must not be neglected.
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i ‖Nn −N‖∞ → 0 (normal convergence).

ii ‖An − Id‖∞ → 0 (metric convergence).

iii ‖dvoln − dvol‖∞ → 0 (convergence of area).

iv ‖∆n −∆‖op → 0 (convergence of Laplace-Beltrami operators).

Proof. The proof is based on translating conditions (ii), (iii) and (iv) into corre-
sponding properties of the metric distortion tensors An: convergence of metric
tensors by definition means ‖An − Id‖∞ → 0, convergence of area measure
is equivalent to ‖det An‖∞ → 1, and Lemma 1 provides conditions for con-
vergence of Laplace-Beltrami operators. Each single of these conditions can
now be shown to be equivalent to the convergence of normals. To see this, let
An = Pn ◦Q−1

n ◦ Pn as in Theorem 1, and let Ān = (detAn)1/2A−1
n . We claim

that

‖An − Id‖∞ → 0 ⇐⇒ ‖ det An‖∞ → 1 ⇐⇒ ‖Ān − Id‖∞ → 0
⇐⇒ ‖tr(Ān − Id)‖∞ → 0

are all equivalent conditions to normal convergence. Indeed, by assumption the
surfaces converge in Hausdorff distance, so that ‖Pn− Id‖∞ → 0, and from the
diagonalization

Qn =
( 〈N, Nn〉2 0

0 1

)
,

one obtains that the above algebraic expressions involving An converge if and
only if 〈N, Nn〉 → 1 in L∞ - which is normal convergence. To complete the
proof of the theorem, it remains to show Lemma 1.

Remark 4. The prerequisite in Theorem 2 that Hausdorff distance must tend
to zero cannot be dropped: in Remark 2 we described an example where the
metric tensors converge (are equal) but the surfaces themselves do not.

Lemma 1 (convergence of Laplace-Beltrami operators). Let Mh ⊂ R3 be an
embedded compact polyhedral surface which is a normal graph over a smooth em-
bedded surface M . Let A be the metric distortion tensor and Ā := (det A)1/2A−1.
Then

1
2
‖tr(Ā− Id)‖∞ ≤ ‖∆A −∆‖op ≤ ‖Ā− Id‖∞. (19)

Proof. The upper bound is a straightforward application of definitions (17),
(18), and Hölder’s inequality. To prove the lower bound, let K ⊂ M be the pre-
image under the shortest distance map Φ of the 1-skeleton of Mh (its edges and
vertices). Then K is a measure zero set. For an arbitrary (but fixed) p ∈ M \K
we will construct a family of functions {fε} ⊂ H1

0(M) such that

lim
ε→0

|〈(∆A −∆)fε|fε〉|
‖fε‖2H1

0

=
1
2
tr(Ā− Id)(p). (20)

This will prove the lower bound since it implies

‖∆A −∆‖op ≥ 1
2

sup
p∈M\K

tr(Ā− Id)(p).

12



To construct such a family, let Dε(p) ⊂ M\K be a small ε-disk around p, and
define in polar coordinates (r, ϕ) (induced by the exponential map expp(r, ϕ) :
TpM → M)

fε(r, ϕ) =
{

ε− r for r < ε
0 else.

Then fε ∈ H1
0 (if M has empty boundary take fε − 1

|M |
∫

fε). By the Gauss
lemma, expp is a radial isometry so that g(∇fε,∇fε) = 1 on Dε(p) \ {p}. By
construction, ∇fε = 0 on M \Dε(p). It follows that

‖fε‖2H1
0

=
∫

M

g(∇fε,∇fε) dvol = |Dε(p)|.

Moreover,

〈(∆A −∆)fε|fε〉 = −
∫

M

g((Ā− Id)∇fε,∇fε) dvol,

so that (20) is equivalent to

lim
ε→0

1
|Dε(p)|

∫

Dε(p)

g(Ā∇fε,∇fε) dvol =
1
2
tr(Ā)(p). (21)

In a first step we are going to prove (21) for the case of constant metric and
constant Ā. In a second step the general case will be deduced.

1. Step. Let dvolp denote the volume form on the tangent space TpM induced
by gp, and let ∂r denote the unit radial vector field on TpM . The coefficients
of gp in polar coordinates are given by

(gp)12 = 0, (gp)11 = 1, (gp)22 = r2.

The matrix Āp := Ā(p) acts as a linear map from TpM to itself with eigenvalues
λ and 1/λ (since det Āp = 1). On the disk of radius ε, Bε(0) ⊂ TpM , we have

∫

Bε(0)

gp(Āp∂r, ∂r) dvolp =
∫ ε

0

∫ 2π

0

(λ cos2 ϕ +
1
λ

sin2 ϕ)r dr dϕ

=
1
2
(λ +

1
λ

) · |Bε(0)|

=
1
2
trĀp · |Bε(0)|,

proving (21) for the case of the constant g = gp and constant Ā = Āp.

2. Step. To complete the proof, we show that for ε → 0 one has

1
|Dε(p)|

∫

Dε(p)

g(Ā∇fε,∇fε) dvol −→ 1
|Bε(0)|

∫

Bε(0)

gp(Āp∂r, ∂r) dvolp.

Define a 2-form ω0 on Bε(0) ⊂ Tp(M) and a 2-form ω1 on Dε(p) by

ω0 = gp(Āp∂r, ∂r) dvolp

ω1 = g(Ā∇fε,∇fε) dvol.

13



Let Ā∗ be the pullback of Ā, let ω∗1 denote the pullback of ω1, and let dvol∗

denote the pullback of the volume form dvol from Dε(p) to Bε(0). Since expp

is a radial isometry (so that d expp(∂r) = ∇fε), it follows that

ω∗1 = gp(Ā∗∂r, ∂r) dvol∗.

From this, and since Ā and the metric are continuous on Dε(p), we obtain

‖ω∗1 − ω0‖∞,Bε(0) −→ 0 and
|Bε(0)|
|Dε(p)| −→ 1.

Hence
∣∣∣∣∣

1
|Dε(p)|

∫

Dε(p)

ω1 − 1
|Bε(0)|

∫

Bε(0)

ω0

∣∣∣∣∣

=

∣∣∣∣∣
1

|Dε(p)|
∫

Bε(0)

ω∗1 −
1

|Bε(0)|
∫

Bε(0)

ω0

∣∣∣∣∣

≤
∣∣∣∣

1
|Dε(p)| −

1
|Bε(0))|

∣∣∣∣
∫

Bε(0)

|ω∗1 |+
1

|Bε(0)|
∫

Bε(0)

|ω∗1 − ω0|

≤
∣∣∣∣
|Bε(0)|
|Dε(p)| − 1

∣∣∣∣ ‖ω∗1‖∞,Bε(0) + ‖ω∗1 − ω0‖∞,Bε(0) −→ 0,

proving our claim.

4 Applications of normal convergence

In this section the general convergence result of Theorem 2 is applied to show
convergence of minimizing geodesics, convergence of solutions to the Dirichlet
problem in H1

0, as well as convergence of mean curvature vectors in H−1. Based
on the splitting of the metric distortion tensor from Theorem 1, estimates are
made explicit in terms of pointwise distance, deviation of normals, curvature
properties of the smooth limit surface M , and (where appropriate) shapes of
the triangles of the polyhedral surface Mh

7.

4.1 Convergence of geodesics

Definition 5 (minimizing geodesic). A minimizing geodesic in a metric space
(V, d) is a continuous curve γ : [a, b] → V such that d(γ(t), γ(t′)) = |t′ − t| for
all t and t′ in the interval [a, b].

The Hopf-Rinow theorem for metrically complete length spaces [17] asserts
that any two points can be connected by a minimizing geodesic. This ensures
that the infimum over all curves which was used in (1) to define the distance
between two points is actually attained as a minimum.

7We do not provide estimates in terms of mesh size, such as O(h) (except in Theorem 5).
However, it is not hard to obtain such estimates for inscribed meshes (i.e., meshes whose
vertices lie on the smooth limit surface) based on Theorem 1 and the triangle shapes of the
approximating polyhedra.
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Theorem 3 (convergence of geodesics). Let {Mn} be a sequence of polyhedral
surfaces converging totally normally to a smooth surface M . Let p, q ∈ M ,
and let γn be a minimizing geodesic connecting Φn(p) to Φn(q) on Mn. Then
each accumulation point of {γn} in the compact-open topology on C0(R,R3) is
a minimizing geodesic on M . The set of such accumulation points is not empty.
In particular, there exists a minimizing geodesic γ on M and a subsequence of
minimizing geodesics {γni

} on Mni
such that γni

→ γ uniformly.

Proof. We consider all objects to be defined on the smooth reference surface M
by using the pull-backs via Φn. In particular, we will (by abuse of notation)
refer to γn as the minimizing gn-geodesic between p and q on M . Let An denote
the metric distortion tensor corresponding to gn, and let

cn := ‖A−1
n ‖−1/2

∞ and cn := ‖An‖1/2
∞ .

If β is a Lipschitz curve on M , then the gn-length ln(β) and the g-length l(β)
are related by

cn · l(β) ≤ ln(β) ≤ cn · l(β).

The geodesic distance between the points p and q on M equals the infimum over
the lengths of all Lipschitz curves connecting these points. The last inequality
therefore implies

cn · d(p, q) ≤ dn(p, q) ≤ cn · d(p, q).

Hence, if γn is a minimizing geodesic connecting p and q in the gn-metric, then

cn · d(p, q) ≤ dn(p, q) = ln(γn) ≤ cn · l(γn),
cn · d(p, q) ≥ dn(p, q) = ln(γn) ≥ cn · l(γn).

This implies

cn

cn
· d(p, q) ≤ l(γn) ≤ cn

cn

d(p, q).

By the assumption of totally normal convergence we have cn → 1 and cn → 1,
so that

l(γn) → d(p, q). (22)

Now, assume γ is an accumulation point of {γn}. Since the length functional
l : C0(R,R3) → R is lower semi-continuous, (22) implies

l(γ) ≤ lim inf l(γn) = d(p, q).

Hence γ is indeed a minimizing geodesic connecting p to q. It remains to show
that the set of such accumulation points is not empty. Note that

d(γn(t), γn(t′)) ≤ 1
cn

· dn(γn(t), γn(t′)) =
1
cn

· |t− t′|,

for each t, t′ in the domain of γn. Hence the family {γn} is equicontinuous. Since
|t − t′| is bounded by supn diam(Mn) ≤ supn cn · diam(M), it follows from the
Arzelà-Ascoli theorem that there is an accumulation point in the compact-open
topology on C0(R,R3).
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4.2 Convergence of the Dirichlet problem

Let {Mn} be a sequence of polyhedral surfaces (possibly with boundary) which
converge to the compact smooth surface M totally normally. We prove that the
solutions un to the respective Dirichlet problems ∆nun = f on Mn converge to
the solution u of the Dirichlet problem ∆u = f in H1

0(M) (Theorem 4). Fur-
thermore we treat convergence of the corresponding finite element discretiza-
tions based on an argument by Dziuk [10] (Theorem 5).

Let the polyhedral surface Mh be a normal graph over the compact smooth
surface M , so that Mh induces a polyhedral metric gA on M . We consider the
variational formulation of the Dirichlet problem instead of its classical formula-
tion. As before, we use the shortest distance map to define our objects on the
smooth surface M . Let f ∈ L2, so that f ∈ L2

A. The Dirichlet problem is to
find the solution u ∈ H1

0, respectively uA ∈ H1
0,A, such that

−〈∆u|v〉 = (f, v)L2 ∀ v ∈ H1
0, (23)

−〈∆AuA|v〉 = (f, v)L2
A

∀ v ∈ H1
0,A. (24)

We let

E : H1
0(M) ↪→ L2(M)

be the natural compact embedding, and let

CE := sup
v∈H1

0(M)

‖E(v)‖L2(M)

‖v‖H1
0(M)

(25)

denote the operator norm of E. Since we use the inner product (∇·,∇·)L2(M)

on H1
0(M), it follows that CE is the Poincaré constant of M .

Theorem 4 (consistency error of Dirichlet problem). The solutions to the
Dirichlet problems satisfy

‖u− uA‖H1
0
≤ CE ·

(
(CA − 1) + cA · CA

∥∥∥1− (detA)1/2
∥∥∥
∞

)
· ‖f‖L2 .

Here CA := ‖(det A)1/2A−1‖∞, and cA = 1 for the case ∂M 6= ∅, whereas
cA = 1 + ‖detA1/2‖∞‖detA−1/2‖∞ for the case ∂M = ∅.
Proof. We only detail the proof for the case ∂M 6= ∅. In this case the spaces
H1

0 and H1
0,A are equal as sets, and by equations (17) and (18), the Dirichlet

problems take the form
∫

M

g(∇u,∇v) dvol =
∫

M

fv dvol, (26)
∫

M

g(Ā∇uA,∇v) dvol =
∫

M

fv(det A)1/2 dvol, (27)

which has to hold for all v ∈ H1
0. As before, we let Ā := (det A)1/2A−1.

Subtracting (27) from (26) and dividing by ‖∇v‖L2 gives
(∇u− Ā∇uA,∇v

)
L2

‖∇v‖L2
≤ CE‖1− (detA)1/2‖∞‖f‖L2 . (28)
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Writing

∇u−∇uA = Ā−1(∇u− Ā∇uA) + (Id− Ā−1)∇u,

and using (28) gives

‖u− uA‖H1
0

= sup
v∈H1

0

(∇u−∇uA,∇v)L2

‖∇v‖L2

≤ CE‖Ā−1‖∞‖1− (detA)1/2‖∞‖f‖L2 + ‖Id− Ā−1‖∞‖u‖H1
0
.

By (26) we have ‖u‖H1
0
≤ CE‖f‖L2 . The final estimate for the case of non-

empty boundary, ∂M 6= ∅, follows from the fact that the 2×2 matrix field Ā has
pointwise positive eigenvalues and det Ā = 1 so that CA = ‖Ā‖∞ = ‖Ā−1‖∞,
and

‖Id− Ā−1‖∞ = ‖Ā‖∞ − 1 = CA − 1.

The case ∂M = ∅ is similar; a slight technical difficulty is due to the fact that
in this case v ∈ H1

0 does not imply v ∈ H1
0,A, see Remark 3.

Corollary 3 (convergence of Dirichlet problem). Let f ∈ L2(M). If the se-
quence of polyhedral surfaces {Mn} converges totally normally to the smooth
surface M , then the solutions to the Dirichlet problems (24) on Mn converge in
H1

0(M) to the solution of the Dirichlet problem (23) on M .

Proof. Let CA := ‖(det A)1/2A−1‖∞ as in Theorem 4. Using Theorem 1 one
readily checks that totally normal convergence implies CA → 1 as well as ‖1−
(detA)1/2‖∞ → 0, so that Theorem 4 guarantees convergence in H1

0(M).

4.2.1 Discretization of the Dirichlet problem: the cotan formula

Since Mh is comprised of flat triangles, it is natural to approximate the solution
uA to the Dirichlet problem (24) by a piecewise linear finite element solution uh.
To obtain uh, recall that a Galerkin scheme is defined by restricting the space
of test functions as well as the space of solutions of the Dirichlet problem to the
same finite-dimensional subspace Sh,0. We quickly review how to compute uh

explicitly if Sh,0 is spanned by linear Lagrange basis functions.

Definition 6 (linear Lagrange basis). For vertices p, q ∈ Mh define

φp(q) :=
{

1 for q = p
0 for q 6= p,

and extended φp to all of Mh by linear interpolation on triangles. The finite
element space Sh,0 is spanned by the basis {φp | p ∈ Mh \ ∂Mh} corresponding
to inner vertices.

Every uh ∈ Sh,0 can be written as uh =
∑

q uq
hφq with coefficients uq

h. Let

∆pq := −
∫

Mh

gMh
(∇Mh

φp,∇Mh
φq) dvolMh

and bp :=
∫

Mh

f · φp dvolMh
.
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α pq

β pq

q

p

Figure 5: Only the angles αpq and βpq enter into the expression for ∆pq.

Then the Dirichlet problem becomes a finite linear problem: find the vector (uq
h)

satisfying
∑

q

∆pqu
q
h = bp. (29)

One readily verifies the cotan representation of ∆pq:

Lemma 2 (cotan formula). The non-zero entries of the discrete Laplace-Beltrami
operator, ∆pq, on a polyhedral surface Mh are given by

∆pq =
1
2
(cotαpq + cot βpq) and ∆pp = −

∑
q∼p

∆pq, (30)

if p and q share an edge, and where αpq and βpq denote the angles opposite to
edge (pq) in the two triangles adjacent to (pq), see Figure 5. The notation q ∼ p
stands for all vertices q sharing an edge with p.

The cotan representation was introduced by Pinkall and Polthier in [25] as a
discretization of the Laplace-Beltrami operator on polyhedral surfaces embed-
ded in R3 in the context of discrete minimal surfaces. For the case of planar
triangulated domains this formula goes back at least to Duffin [9].
Assumptions. Let uh ∈ Sh,0 denote the piecewise linear solution to the finite
Dirichlet problem (29) on Mh, and let u be the solution to the Dirichlet problem
(23) on the smooth surface M . In order to prove that uh → u, we need two
technical assumptions. First, we assume u ∈ H2(M), and that u satisfies

|u|H2(M) ≤ c‖f‖L2(M).

This a priori estimate depends on typical regularity assumptions: it holds if
f ∈ L2(M) and ∂M = ∅ (by classical regularity theory, see [15]), but depends
on boundary properties of M if ∂M 6= ∅. Second, we assume that uh ∈ H1

0(M).
This can be achieved, for example, if f supported sufficiently far away from the
boundary, ∂M .

Theorem 5 (convergence of cotan representation). Let the polyhedral surface
Mh be a normal graph over the smooth surface M such that the above assump-
tions are satisfied. Let η > 0 be a positive number such that under the shortest
distance map

‖∠(N, Nh)‖∞ ≤ η · h and ‖φ‖∞ ≤ η · h. (31)
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Then there exists a number C > 0 which is a function of M , η, and the aspect
ratio8 of the triangles of Mh (but not of h) such that

‖u− uh‖L2 + h‖u− uh‖H1
0
≤ Ch2‖f‖L2 if ∂M 6= ∅,

‖u− uh‖L2/R + h‖u− uh‖H1
0
≤ Ch2‖f‖L2 if ∂M = ∅.

Here ‖u‖L2/R is the L2-norm of the unique representative of [u] ∈ L2/R having
zero mean.

We omit the proof of the last theorem; it is based on the same arguments
as those of Dziuk [10] who treats meshes all of whose vertices lie on the limit
surface M , called inscribed meshes. For inscribed meshes the constant η in (31)
only depends on M and the aspect ratio of the triangles of Mh.

4.3 Convergence of Mean Curvature

In this section we show that mean curvature vectors converges in the sense of
distributions or functionals, that is, as elements of the Sobolev space H−1(M)
(Theorem 6). This result is used to show: if a sequence of discrete minimal
surfaces converges totally normally to a smooth surface then the limit surface is
minimal in the classical sense (Theorem 7). Finally, we give a counterexample
to the convergence of mean curvature vectors in L2.

Let I : M → R3 and IMh
: Mh → R3 denote the embeddings of M and Mh,

respectively. Set Ih = IMh
◦ Φ : M → R3. The weak mean curvature vectors

are (vector-valued) functionals, i.e. elements of
(H−1

)3, given by

H = ∆I and HA = ∆AIh, (32)

respectively. We define the norm of these vector-valued functionals by

‖H‖H−1 = sup
0 6=u∈H1

0

‖〈H|u〉‖R3

‖u‖H1
0

.

Theorem 6 (approximation of weak mean curvature). Let Mh be a normal
graph over the smooth surface M . Then

‖H −HA‖H−1 ≤
√
|M | · (CA − 1 + CA‖Id− dΦ‖∞) , (33)

where CA = ‖(det A)1/2A−1‖∞, |M | is the total area of M , and ‖Id − dΦ‖∞
denotes the essential supremum over the pointwise operator norm of the operator
(Id− dΦ)(p) : TpM → R3.

Proof. We apply the triangle inequality to

H −HA = ∆I −∆AIh = (∆I −∆AI) + (∆AI −∆AIh).

For any vector field X on M one has 〈∇I,X〉R3 = X, and 〈∇Ih, X〉R3 = dΦ(X)
almost everywhere. Applying (17), (18), and Hölder’s inequality we obtain

‖〈∆I −∆AI|u〉‖R3 =
∥∥∥∥
∫

M

(A−1(det A)1/2 − Id)∇udvol

∥∥∥∥
R3

≤
√
|M | · (CA − 1) · ‖u‖H1

0
,

8The aspect ratio of a triangle T is commonly defined as the ratio of the radius of the circle
which circumscribes T to the radius of the circle which is inscribed into T .
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and similarly

‖〈∆AI −∆AIh|u〉‖R3 =
∥∥∥∥
∫

M

〈
(∇I −∇Ih), A−1(detA)1/2∇u

〉
dvol

∥∥∥∥
R3

=
∥∥∥∥
∫

M

(Id− dΦ)(A−1(detA)1/2)∇udvol

∥∥∥∥
R3

≤
√
|M | · CA · ‖Id− dΦ‖∞ · ‖u‖H1

0
,

proving the claim.

Corollary 4 (convergence of weak mean curvature). If a sequence of polyhedral
surfaces {Mn} converges totally normally to the smooth surface M , then the
corresponding mean curvature functionals converge in H−1(M).

Proof. The assumption of totally normal convergence yields CA → 1. It remains
to show that ‖Id − dΦ‖∞ → 0. Consider a single triangle T of Mh. Let
NT = N ◦ Φ−1 denote the pullback of the normal field N on M to the triangle
T . From the proof of Theorem 1 we know that dΦ = Q̃−1 ◦P, where P is as in
(7), and Q̃ is given by Q̃(Y ) = Y −NT · 〈NT , Y 〉. Totally normal convergence
implies P → Id as well as Q̃ → Id, and hence dΦ → Id almost everywhere.

4.3.1 Discrete minimal surfaces

Following [25] we consider discrete minimal surfaces as stationary points for
the area functional within the class of polyhedral surfaces having the same
underlying simplicial complex, and the same piecewise linear boundary. In [25],
Pinkall and the second author considered a numerical flow for finding discrete
minimal surfaces. To date a rich pool of explicitly computable discrete minimal
surfaces has been discovered [16, 19, 26, 27, 28, 31]. In this section we show
that if a sequence of discrete minimal surfaces converges to a smooth surface
totally normally, then the smooth limit surface must be a minimal surface in the
classical sense. Let HMh

= ∆Mh
IMh

denote Mh’s distributional mean curvature
vector9. A polyhedral surface Mh is discrete minimal if

〈HMh
|φp〉 =

1
2

∑
q∼p

(q − p)(cot αpq + cot βpq) = 0 (34)

for all p ∈ Mh \ ∂Mh (compare Figure 5 for notation). The notation q ∼ p
stands for all vertices q connected to p by a single edge. In other words, discrete
minimality implies that the distribution HMh

∈ (H−1(Mh)
)3 vanishes if paired

with any uh ∈ Sh,0. However, this does not imply that HMh
= 0. Discrete

minimality is thus a weaker condition than HMh
= 0. In spite of this we have

the following result:

Theorem 7 (convergence of discrete minimal surfaces). Let {Mn} be a sequence
of discrete minimal surfaces whose triangles have bounded aspect ratio. If M
is smooth and Mn → M totally normally then M is a minimal surface in the
classical sense.

9We need to distinguish between HMh
and HA since in the case ∂M 6= ∅, we may have

H1
0,A(M) ( H1

0(Mh), see Remark 3.
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Figure 6: Discrete catenoid as an example of an explicitly computable discrete
minimal surface (cf. Polthier and Rossman [28]).

Proof. Let H denote the (smooth) mean curvature vector of the smooth limit
surface M . We are going to show that

〈H|u〉 =
∫

M

H · udvol = 0

for all u ∈ C∞0 (M) which are supported away from the boundary, ∂M . By Sn,0

we denote the finite element spaces (pulled back under Φn) induced by linear
Lagrange elements on the meshes Mn. Let un be the orthogonal projection of u
to Sn,0∩H1

0(M) with respect to the H1-inner product (∇u,∇v)L2(M). We have

‖〈H|u〉‖R3 ≤ ‖〈H|u− un〉‖R3 + ‖〈H|un〉‖R3 . (35)

We are going to show that the right hand side of (35) tends to zero as the mesh
size of Mn goes to zero. Since H is smooth, it follows that

‖〈H|u− un〉‖R3 =
∥∥∥∥
∫

M

H · (u− un) dvol

∥∥∥∥
R3

≤ ‖H‖L2(M) ‖u− un‖L2(M)

≤ ‖H‖L2(M) · CE · ‖u− un‖H1
0(M) ,

where CE is the Poincaré constant defined in (25). Since the aspect ratios of
the triangles of Mn are assumed to be bounded, and u ∈ C∞0 (M) is smooth
and supported away from the boundary, ∂M , it follows that the projections un

converge to u, i.e. ‖u−un‖H1
0(M) → 0 (the proof is analogous to the planar case;

for details see [37]).
To estimate the last term in (35), let HAn ∈ (H−1(M)

)3 denote the dis-
tributional mean curvature vector associated with An as defined in (32). By
assumption, HAn vanishes on Sn,0 ∩H1

0, so that 〈HAn |un〉 = 0. We obtain

‖〈H|un〉‖R3 = ‖〈H −HAn |un〉‖R3

≤ ‖H −HAn‖H−1(M) · ‖un‖H1
0(M)

≤ ‖H −HAn‖H−1(M) · ‖u‖H1
0(M).
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From Corollary 4 we know that ‖H −HAn‖H−1(M) → 0. From (35) we obtain
H = 0, as asserted.

4.3.2 Failure of convergence of mean curvature in L2

We have defined weak mean curvature vectors in the sense of distributions,
and Corollary 4 shows their convergence in H−1. In this section we define the
discrete mean curvature vector as the vector-valued PL-function associated with
the mean curvature functional. We show that these discrete mean curvature
vectors in general fail to converge in L2 (despite totally normal convergence of
the meshes). This failure of L2-convergence comes to no surprise considering
the various counterexamples to pointwise convergence of curvatures (see e.g. [20,
38, 39]). Although it has not been disproved that there exists a discrete notion
of mean curvature for polyhedra which converges pointwise almost everywhere
to the mean curvature of a general smooth limit surface, it seems plausible to
conjecture that such a notion does not exist (that is, without any additional
assumptions such as restrictions on the valence of vertices or a priori knowledge
of the normals of the limit surface).

Definition 7 (discrete mean curvature vector). Let HMh
= ∆Mh

IMh
denote

the distributional mean curvature vector of the polyhedral surface Mh. The
discrete mean curvature vector is the vector-valued PL-function Hh ∈ (Sh,0)

3

defined by

(Hh, uh)L2(Mh) = 〈HMh
|uh〉 ∀uh ∈ Sh,0.

In other words, the discrete mean curvature vector corresponds to the re-
striction of the full (distributional) mean curvature vector HMh

to the finite
element space Sh,0. Note that this definition is in accordance with our notion
of discrete minimality: a polyhedral surface is discrete minimal if and only if
Hh = 0.

Remark 5. Only because the dimension of Sh is finite, it is possible to associate
a discrete function in the above way to the mean curvature functional. There
is no infinite-dimensional analogue of this construction.

Example 1 (counterexample to L2-convergence). Denote by H the smooth mean
curvature vector of the smooth surface M , and let {Hn} denote the sequence
of discrete mean curvature vectors associated with the sequence of polyhedral
surfaces {Mn}. We show that in general ‖Hn − H‖L2 does not converge to
zero. Consider the cylinder M of height 2π and radius 1. We construct a
sequence, {Mn}, of polyhedral surfaces whose vertices lie on this cylinder and
which converges to M totally normally. Let the cylinder be parameterized as

x = cos u, y = sin u, z = v.

Let the vertices of Mn be given by

u =
iπ

n
i = 0, ..., 2n− 1

v =
{

2j sin π
2n j = 0, ..., 2n− 1

2π j = 2n
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Figure 7: Discrete mean curvature does not converge in L2 for a 4−8 tessellation
of a regular quad grid, because the ratio between the areas of the stencils of p4

and p8 does not converge to 1.

This corresponds (up the uppermost layer) to folding along the vertical lines a
regular planar quad-grid of edge length

hn = 2 sin
π

2n
.

In other words, all faces of Mn are rectangular (in fact quadratic except for the
uppermost layer). It will now depend on the tessellation pattern of this quad-
grid whether there is L2-convergence of discrete mean curvature or not. Indeed,
consider the regular 4 − 8 tessellation scheme depicted in Figure 7. There are
two kinds of vertices - those of valence 4 and those of valence 8. Call them p4

and p8, respectively. Let φp4 and φp8 denote the corresponding Lagrange basis
functions. Using the cotan-formula, it is easy to see that the coefficients of the
weak mean curvature satisfy

〈H|φp4〉 = 〈H|φp8〉 = −2
(
1− cos

π

n

)
· ∂r,

where ∂r denotes the (radial) outward cylinder normal field. By the symmetry
of the problem there exist constants an, bn ∈ R such that

Hn =
∑
p4

an · φp4 · ∂r +
∑
p8

bn · φp8 · ∂r + boundary contributions,

where the contributions from the boundary include all vertices one layer away
from the upper boundary (as symmetry breaks there). Set

λn := −
(
1− cos

π

n

)
.

One verifies that

an = 12 · λn

h2
n

· 4 + λn

8− λ2
n

and bn = 12 · λn

h2
n

· λn

λ2
n − 8

.

Since limn→∞(λn/h2
n) = −1/2, it follows that

lim
n→∞

an = −3 and lim
n→∞

bn = 0,
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so that asymptotically only the vertices of valence 4 but not those of valence 8
contribute to discrete mean curvature,

Hn ∼ −3
∑
p4

φp4 · ∂r + boundary contributions.

Hence, Hn is a family of PL-functions oscillating between −3 (at the vertices
of valence 4) and 0 (at the vertices of valence 8) with ever growing frequencies.
Such a family does not converge in L2.
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