Übungsblatt 6

Aufgaben für Freitag 10. Oktober 2025

Aufgabe 1.

- (i) In Berlin sind die Telefonnummern siebenstellig. Für wie viele Anschlüsse reichen die Telefonnummern aus? (Beachten Sie, dass am Anfang keine 0 stehen darf.)
- (ii) In einer Stadt mit 200 000 Einwohnern besitzt jeder dritte ein Telefon. Die Telefonnummern bestehen aus den Ziffern 0 bis 9, wobei die 0 nicht als erste Ziffer vorkommen darf. Wie viele Stellen müssen die Telefonnummern mindestens haben?
- (iii) Wie viele sechsstellige Telefonnummern gibt es, bei denen jede Ziffer höchstens einmal vorkommt? (Beachten Sie, dass am Anfang keine 0 stehen darf.)

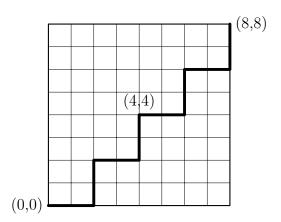
Aufgabe 2. Bei einem Radrennen nehmen 10 Fahrer teil.

- (i) Alle erreichen unterschiedliche Zeiten. Auf wie viele Arten können die ersten drei Plätze belegt werden?
- (ii) Wie viele Möglichkeiten gibt es, wenn auch die Fälle berücksichtigt werden, in denen zwei oder mehr Fahrer gleichzeitig das Ziel erreichen?

Aufgabe 3.

- (i) Wie viele dreistellige Zahlen (erste Ziffer keine Null) gibt es, deren Ziffern alle gerade (ungerade) sind?
- (ii) Wie viele dreistellige Zahlen haben eine gerade Einerziffer, eine ungerade Zehnerziffer und eine durch 3 teilbare Hunderterziffer?
- (iii) Wie viele dreistellige Zahlen bestehen aus drei verschiedenen Ziffern?
- **Aufgabe 4.** Sechs verschieden gefärbte Kugeln sollen in 10 durchnummerierte Kästchen gelegt werden, wobei in einem Kästchen höchstens eine Kugel liegen darf. Wie viele Arten gibt es, die Kugeln unterzubringen?
- **Aufgabe 5.** Auf wie viele Arten kann man 8 Türme auf ein Schachbrett setzen, ohne dass sie sich gegenseitig bedrohen?
- Aufgabe 6. Wie viele verschiedene Möglichkeiten gibt es, die Karten eines Skatspiels auf die drei Spieler und den Skat zu verteilen?

Aufgabe 7. Ein Raster mit Koordinaten von (0,0) bis (8,8) ist gegeben. A wohnt in (0,0) und arbeitet in (8,8). Sein Kollege B wohnt in (4,4). A fährt jeden Morgen zur Arbeit und nimmt B mit. Wie viele Wege kann A nehmen, ohne einen Umweg zu fahren?



Aufgabe 8. Wie viele Teiler hat die Zahl $1960 = 2^3 \cdot 5 \cdot 7^2$?

Aufgabe 9. Bei wie vielen aller möglichen Tipps eines (6 aus 49)-Zahlenlottos sind mindestens zwei der angekreuzten Zahlen benachbart?

Aufgabe 10. 10 Ehepaare veranstalten eine Tanzparty. Wie viele Tanzpaare sind möglich, wenn Ehepaare nicht miteinander tanzen dürfen?

Aufgabe 11.

- (i) Beweisen Sie, dass in einem Körper das neutrale Element der Multiplikation eindeutig bestimmt ist.
- (ii) Zeigen Sie, dass in einem Körper K die Gleichung ax = b mit $a, b \in K$, $a \neq 0$, genau eine Lösung hat, nämlich $x = a^{-1}b$.
- (iii) In einem Körper ist das zu $a \neq 0$ multiplikativ inverse Element eindeutig bestimmt.

Aufgabe 12. In einem Körper gilt:

(i)
$$1 \cdot 1 = 1$$
 (ii) $(a^{-1})^{-1} = a$ (iii) $(ab)^{-1} = a^{-1}b^{-1}$

Aufgabe 13. Beweisen Sie für $a, b \in \mathbb{R}$:

- (i) Wenn $a^2 = b^2$, dann a = b oder a = -b.
- (ii) $a^3 + b^3 = (a+b)(a^2 ab + b^2)$.
- (iii) Finden Sie eine Faktorisierung von $a^n + b^n$ für ungerades n.

Aufgabe 14. Für $K = \{0, 1, 2, 3, 4\}$ bestimmen Sie zwei innere Verknüpfungen (Addition + und Multiplikation ·), so dass $(K, +, \cdot)$ ein Körper ist.