Übungsblatt 5

Aufgaben für Mittwoch 8. Oktober 2025

Aufgabe 1. Geben Sie eine Bijektion zwischen \mathbb{N} und \mathbb{Z} an.

Aufgabe 2. Zeigen Sie: Die Menge der reellen Zahlen im Intervall [0, 1] überabzählbar unednlich ist. (Sie dürfen vorraussetzen, dass \mathbb{R} überabzählbar unendlich ist.)

Aufgabe 3. Begründen Sie, ob die folgenden Aussagen wahr oder falsch sind:

- (i) Es existiert eine Injektion $\mathbb{R} \to \mathbb{N}$
- (ii) $\mathbb{R} \setminus \mathbb{Q}$ ist überabzählbar
- (iii) $\mathbb{R} \times \mathbb{R}$ ist abzählbar

Aufgabe 4. Schreiben Sie mit Hilfe des Summenzeichens:

(i)
$$-5 - 2 + 1 + 4 + 7 + 10 + 13 + 16 + 19$$

(ii)
$$1+2+4+7+11+16+22+29+37$$

(iii)
$$1-4+7-10+13-16+19-22$$

(iv)
$$2^1 - 4^2 + 6^3 - 8^4 + 10^5 - 12^6 + 14^7 - 16^8$$

(iv)
$$2^{1} - 4^{2} + 6^{3} - 8^{4} + 10^{5} - 12^{6} + 14^{7} - 16^{8}$$

(v) $\frac{1}{4 \cdot 6} + \frac{1}{5 \cdot 7} + \frac{1}{6 \cdot 8} + \dots + \frac{1}{11 \cdot 13}$

Aufgabe 5. Vereinfachen Sie:

(i)
$$\sum_{n=2}^{100} \frac{n+1}{n-1} - \sum_{k=2}^{100} \frac{k+2}{k}$$

(ii)
$$2 \cdot \sum_{m=1}^{50} m + \sum_{r=1}^{50} (r^2 + 1)$$

(iii)
$$\sum_{j=2}^{200} \frac{1}{j(j+2)} - \sum_{i=2}^{100} \frac{1}{i^2 + 1}$$

Aufgabe 6. Beweisen Sie die Verallgemeinerung der 3. binomischen Formel:

$$a^{n+1} - b^{n+1} = (a^n + a^{n-1}b + \dots + b^n)(a-b)$$
 für alle $a, b \in \mathbb{R}, n \in \mathbb{N}$

Aufgabe 7. Beweisen Sie durch vollständige Induktion über $n \in \mathbb{N}$:

(i)
$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$$

(ii)
$$1^2 - 2^2 + 3^2 - 4^2 + \dots - (2n)^2 + (2n+1)^2 = (n+1)(2n+1)$$

(iii) Beweisen Sie b) mit Hilfe von a). Hinweis: $(2k)^2 = 4k^2$

(iv) Die Summe der ersten n ungeraden natürlichen Zahlen ist n^2

(v)
$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$

Aufgabe 8. Beweisen Sie für alle $n \in \mathbb{N}$: $\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$.

Aufgabe 9. Beweisen Sie durch vollständige Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \dots + \frac{2n+1}{n^2(n+1)^2} = 1 - \frac{1}{(n+1)^2}$$

Aufgabe 10. Beweisen Sie durch vollständige Induktion, dass $n^2 + n + 2$ für alle $n \in \mathbb{N}$ durch 2 teilbar ist.

Aufgabe 11. Beweisen Sie durch vollständige Induktion, dass $n^3 + (n+1)^3 + (n+2)^3$ durch 3 teilbar ist.

Aufgabe 12. Beweisen Sie: Das Produkt aus vier aufeinanderfolgenden natürlichen Zahlen ist durch 24 teilbar.

Aufgabe 13. Es sei $n \in \mathbb{N}$, $x \in \mathbb{R}$, 0 < x < 1. Dann gilt:

$$(1-x)^n < \frac{1}{1+nx}$$

Aufgabe 14. Beweisen Sie für $n \in \mathbb{N}$:

(i)
$$\sum_{i=1}^{n} \binom{i}{i-1} = \binom{n+1}{n-1}$$

(ii)
$$\sum_{i=0}^{n} \binom{r+i}{i} = \binom{r+n+1}{n}, \quad r \in \mathbb{R}$$

Aufgabe 15. Für welche natürlichen Zahlen gelten die folgenden Ungleichungen:

- 1. 2n < n!
- 2. $2n + 1 < n^2$
- 3. $n^2 < 2^n$

Beweisen Sie Ihre Behauptungen durch vollständige Induktion.