Übungsblatt 4

Aufgaben für Dienstag 7. Oktober 2025

Aufgabe 1. Geben Sie die Potenzmenge der Menge $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ an.

Aufgabe 2. Entscheiden Sie (und begründen Sie) für die folgenden Aussagen über \emptyset , $\{\emptyset\}$ und Potenzmengen:

- (i) $\varnothing \in \mathcal{P}(\varnothing)$
- (iv) $\{\emptyset\} \subseteq \mathcal{P}(\emptyset)$
- (vii) $\{\emptyset\} \subseteq \mathcal{P}(\mathcal{P}(\{\emptyset\}))$

- (ii) $\varnothing \subseteq \mathcal{P}(\varnothing)$
- $(\mathbf{v}) \varnothing \in \mathcal{P}(\mathcal{P}(\{\varnothing\}))$
- (iii) $\{\emptyset\} \in \mathcal{P}(\emptyset)$
- (vi) $\{\emptyset\} \in \mathcal{P}(\mathcal{P}(\{\emptyset\}))$

Aufgabe 3. Bilden Sie die Negation der folgenden Aussagen:

- (i) Es gibt eine Menge A, so dass für alle Mengen X gilt: A ist nicht Element von X oder X ist die leere Menge.
- (ii) Jede Menge X hat die Eigenschaft: Wenn X leer ist, dann existiert eine Menge A, die Element von X ist.

Aufgabe 4. Es sei $X = \{1, 2\}$. Welche der folgenden Mengen ist Graph einer Abbildung von X nach X?

$$\{(1,1),(2,1),(1,2)\}, \{(1,1)\}, \{(1,2),(2,1)\}, A \times A, \{(1,1),(2,2)\}$$

Aufgabe 5. Geben Sie alle Abbildungen an:

(i) von \emptyset nach Y,

(iii) von $\{\emptyset\}$ nach Y,

(ii) von X nach \emptyset ,

(iv) von X nach $\{\emptyset\}$

Aufgabe 6. Es sei $X = \{0\}, Y = \{1, 2\}.$

- (i) Geben Sie die Pfeildiagramme aller Abbildungen von X nach X, von X nach Y, von Y nach X und von Y nach Y an.
- (ii) Welche dieser Abbildungen sind injektiv, surjektiv oder bijektiv?
- (iii) Geben Sie bei bijektiven Abbildungen die Umkehrabbildung an.

Aufgabe 7.

- (i) Geben Sie alle Abbildungen von $X = \{0, 1, 2\}$ nach $Y = \{0, 1\}$ an.
- (ii) Welche dieser Abbildungen sind injektiv, surjektiv oder bijektiv?
- (iii) Geben Sie bei bijektiven Abbildungen die Umkehrabbildung an.

Aufgabe 8. Schreiben Sie die Bedingungen der Injektivität und der Surjektivität mit Hilfe von Quantoren, und bilden Sie jeweils die Negation.

Aufgabe 9. Es sei $\mathbb{R}^+ := \{ x \in \mathbb{R} \mid x > 0 \}$. Für $x \in \mathbb{R}$ sei $q(x) := x^2$. Ist q injektiv, surjektiv oder bijektiv, wenn: (bestimmen Sie gegebenenfalls die Umkehrfunktion.)

(i) $q: \mathbb{R} \to \mathbb{R}$

(iii) $q: \mathbb{R}^+ \to \mathbb{R}$

(ii) $q: \mathbb{R} \to \mathbb{R}^+$

(iv) $a: \mathbb{R}^+ \to \mathbb{R}^+$

Aufgabe 10. Welche der folgenden Abbildungen sind injektiv, surjektiv oder sogar bijektiv? Bestimmen Sie bei bijektiven Abbildungen die Umkehrabbildung:

- (i) $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^3$
- (vii) $f: \mathbb{R} \to \mathbb{R}_0^+$ mit f(x) = |x 1|
- (ii) $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^4$
- (iii) $f: \mathbb{R} \to \mathbb{R}_0^+$ mit $f(x) = x^4$
- $(ix) f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = \sqrt{x}$ $(ix) f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = \sqrt{|x|}$ $(x) f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$
- (iv) $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = -x 1
- (x) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{1\}$ mit $f(x) = 1 \frac{1}{x}$
- (v) $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^2 x$
- (xi) $f: \mathbb{R} \to \mathbb{Z}$ mit f(x) = |x|
- (vi) $f: \mathbb{R} \to \mathbb{R}_0^+$ mit f(x) = |x|
- (xii) $f: \mathbb{R} \to [0,1]$ mit f(x) = x |x|

Aufgabe 11. Untersuchen Sie die folgenden Abbildungen auf Injektivität und Surjektivität. Bestimmen Sie im Fall der Bijektivität die Umkehrabbildung, im Fall der Injektivität nach geeigneter Verkleinerung des Wertebereichs:

- (i) $f: \mathbb{R} \to \mathbb{R}$, definiert durch f(x) = ax + b mit $a, b \in \mathbb{R}$,
- (ii) $g: \mathbb{R} \setminus \{b\} \to \mathbb{R}$, definiert durch $g(x) = \frac{x-a}{x-b}$ mit $a, b \in \mathbb{R}$,
- (iii) $h: \mathcal{P}(X) \to \mathcal{P}(X)$ (Potenzmenge), definiert durch $h(A) = X \setminus A$ für alle $A \in \mathcal{P}(X)$.

Aufgabe 12. Es sei $f: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ definiert durch $f(x) = \sqrt{x}$ und $g: \mathbb{R}_0^+ \to \mathbb{R}_0^+$ durch $q(x) = x^2 + 2x + 1$. Berechnen Sie $g \circ f$ und $f \circ g$.

Aufgabe 13. Es sei $f: A \to B$, $q: B \to C$. Dann gilt:

- (i) $g \circ f$ injektiv $\Rightarrow f$ injektiv
- (iii) $g \circ f$ bijektiv $\Rightarrow f$ injektiv und g sur-
- (ii) $g \circ f$ surjektiv $\Rightarrow g$ surjektiv
- jektiv

Aufgabe 14. Geben Sie für die folgenden Funktionen den möglichst großen Definitionsbereich und Wertebereich an, sodass sie bijektiv sind, und bestimmen Sie jeweils die Umkehrfunktion:

- (i) $f(x) = -\frac{1}{2}x + 7$ (iv) $i(x) = (x+5)^3 10$ (vii) $p(x) = \frac{x}{5x-2}$ (ii) $g(x) = 1 \frac{2}{x}$ (v) $j(x) = \frac{x+3}{x-2}$ (viii) $q(x) = \frac{2x^2-x}{x}$ (vi) $k(x) = (x-4)^2$