
EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Finding Triangles and Computing the Girth in Disk Graphs∗

Haim Kaplan† Wolfgang Mulzer‡ Liam Roditty§ Paul Seiferth‡

Abstract

Let S ⊂ R2 be a set of n point sites, where each
s ∈ S has an associated radius rs > 0. The disk graph
D(S) of S is the graph with vertex set S and an edge
between two sites s and t if and only if |st| ≤ rs + rt,
i.e., if the disks with centers s and t and radii rs and
rt, respectively, intersect. Disk graphs are useful to
model sensor networks.

We study the problems of finding triangles and of
computing the girth in disk graphs. These problems
are notoriously hard for general graphs, but better
solutions exist for special graph graph classes, such
as planar graphs. We obtain similar results for disk
graphs. In particular, we observe that the unweighted
girth of a disk graph can be computed in O(n log n)
worst-case time and that a shortest (Euclidean) trian-
gle in a disk graph can be found in O(n log n) expected
time.

1 Introduction

Disk graphs are geometrically defined graphs that
show up in many applications and are defined as fol-
lows. We are given a set S ⊂ R2 of n point sites in the
plane, such that each s ∈ S has an associated radius
rs > 0. Let the disk corresponding to s, denoted by
Ds, be the closed disk with center s and radius rs.
The disk graph for S, D(S), is the graph with vertex
set S in which two sites s and t are connected by an
(undirected) edge if any only if Ds∩Dt 6= ∅ (or equiv-
alently if any only if |st| ≤ rs + rt). In a weighted disk
graph, the weight of an edge (s, t) is equal to |st|: the
Euclidean distance between s and t.

Even though disk graphs may be dense, it turns out
that many algorithmic problems can be solved faster
in disk graphs than in general graphs. For example,
we can compute the BFS-tree from any given site in
an unweighted disk graph in O(npolylog(n)) expected
time [2,9], and we can approximate the shortest paths
distances in a weighted disk graph by a sparse spanner
that can be constructed in O(n polylog(n)) expected
time [6, 9].

We give fast and simple algorithms for two classic
problems when restricting the input to disk graphs.

∗Supported by GIF project 1161&DFG project MU/3501-1.
†Tel Aviv University, Israel. haimk@post.tau.ac.il
‡Institut für Informatik, Freie Universität Berlin, Germany

{mulzer,pseiferth}@inf.fu-berlin.de
§Bar Ilan University, Israel. liamr@macs.biu.ac.il

These problems are known to be challenging in gen-
eral graphs. Our first problem is to determine whether
a given graph contains a triangle (i.e., a complete sub-
graph on three vertices), and, if so, to find a triangle
that minimizes the sum of its edge lengths (in the
weighted case). For general unweighted graphs, the
problem can be solved in O(nω) time using fast ma-
trix multiplication [7, 8] (where ω < 2.37287 is the
matrix multiplication exponent). However, if we in-
sist on combinatorial algorithms that do not use al-
gebraic techniques, the fastest known algorithm runs
in O(n3 polyloglog(n)/ log4 n) time [11]. In planar
graphs, the problem can be solved in O(n) time [4].
In the weighted case for general graphs, progress has
been made only very recently [10].

The second problem is computing the girth, which
is the length of a shortest cycle in G. Again, the
best result for general unweighted graphs relies on fast
matrix multiplication [8], while for planar graphs, the
unweighted girth can be computed in linear time [4].

As we will see, these problems are easier for disk
graphs. Indeed, finding triangles in disk graphs is
almost a trivial problem. By using the intimate con-
nection between disk graphs and planar graphs and
some known results for planar graphs, we can extend
our observations regarding triangles in disk graphs to
an algorithm that computes the unweighted girth of
disk graphs. Computing the length of a shortest tri-
angle is a bit more difficult, but we can exploit the
geometric structure of disk graphs to solve the deci-
sion version of this problem in O(n log n) time. Then
we use Chan’s framework for randomized geometric
optimization algorithms [3] to solve the optimization
problem in the same expected time.

2 Computing the Unweighted Girth

First, we consider the unweighted girth in disk graphs.
Given a disk graph D(S), we would like to find a cycle
in D(S) with the smallest number of edges. It turns
out that this problem is closely related to the problem
of computing the girth in planar graphs. The follow-
ing simple property of disk graphs is the key to our
algorithm. It has been observed before by Evens et
al. [5]. For completeness, we include a proof.

Lemma 1 Let D(S) be a disk graph that is not plane.
(By this we mean that the embedding obtained by
connecting each pair of adjacent sites s and t by a

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

33rd European Workshop on Computational Geometry, 2017

ts

u
x

v

Du

Dv

Ds

Dt
α

Figure 1: If D(S) is not plane, then three disks inter-
sect in a common point.

straight segment between s and t, has at least one
pair of segments that cross in their relative interior.)
Then, there are three sites whose disks intersect in a
common point.

Proof. Suppose that the two edges st and uv inter-
sect at a point x. The sites s, t, u, and v are pairwise
distinct, and without loss of generality, we may as-
sume that: (i) x ∈ Ds ∩ Du; (ii) rs ≥ ru; (iii) the
edge st lies on the x-axis, with s to the left of t; and
(iv) the site u lies above the x-axis, and the site v lies
below the x-axis; see Figure 1.

Now consider the arc α = Du ∩ ∂Ds. If α = ∅, we
are done, since then Du ⊂ Ds, and Ds∩Du∩Dv 6= ∅.
Furthermore, α must contain a point below the x-
axis, because v lies below the x-axis and otherwise we
would hence have Ds∩Du∩Dv 6= ∅. Since u is above
the x-axis and since rs ≥ ru, α must intersect the x-
axis. This intersection must be to the left of s, since
otherwise we would have Ds ∩ Dt ∩ Du 6= ∅. Again
since rs ≥ ru, it follows that u lies to the left of s.
Now we see that α contains no point that lies below
the x-axis and to the right of s. From this and the
fact that x lies to the right of s, we can conclude that
uv ∩ ∂Du ∈ Ds, and hence Ds ∩Du ∩Dv 6= ∅. �

By Lemma 1, we know that if D(S) is not plane,
then the girth is 3. On the other hand, if D(S) is
plane, and if the embedding is available, the girth can
be found in O(n) time. More precisely, we can use the
following result by Chang and Lu [4].

Theorem 2 (Theorem 1.1 in [4]) LetG be an un-
weighted planar graph with n vertices. The girth of
G can be computed in O(n) time.

Combining Lemma 1 and Theorem 2, we immedi-
ately obtain a fast algorithm for computing the girth
in disk graphs.

Theorem 3 Let D(S) be a disk graph with n ver-
tices. We can compute the unweighted girth of D(S)
in O(n log n) worst-case time.

Proof. We use a standard sweep-line algorithm to
compute the arrangement of the disks corresponding
to S [1]. The intersections of the disk boundaries are
reported one by one, and the total time to report the
first m intersections is O(n log n+m log n) [1]. Since
every edge in D(S) corresponds to two unique inter-
section points, it follows that as soon as 6n − 13 in-
tersection points have been reported, it must be the
case that D(S) is not plane, and hence, by Lemma 1,
the girth is 3. Otherwise, we obtain an explicit rep-
resentation of D(S), and we can test in O(n) time
whether is it plane. If this is not the case, we again
output that the girth is 3. Finally, if D(S) is plane,
we determine the unweighted girth in O(n) time using
Theorem 2. �

3 Finding a Shortest Triangle

Now we consider the situation where each edge in
D(S) is weighted according to its Euclidean length.
We would like to find a shortest triangle in D(S), i.e.,
a triangle that minimizes the sum of its edge lengths.
First, we focus on the decision problem: given a pa-
rameter W > 0, does D(S) contain a triangle with
weight at mostW? Once an algorithm for the decision
problem is available, a solution for the optimization
problem will follow through a straightforward appli-
cation of Chan’s randomized framework for geometric
optimization problems [3]. In the end, we will prove
the following theorem.

Theorem 4 Let D(S) be a disk graph with n ver-
tices, where the edges are weighted according to their
Euclidean lengths. We can compute a shortest trian-
gle in D(S) in O(n log n) expected time, if it exists.

3.1 The Decision Problem

Let S ⊂ R2 and a weight W > 0 be given. To decide
if D(S) contains a triangle with weight at most W ,
we proceed as follows. We classify the sites as small
and large, depending on their associated radius. This
yields four possibilities for our desired triangle. To
investigate each such possibility, we use a grid whose
cells have a diameter proportional to W . First, we
consider only triangles where all three vertices are
small and lie in the same grid cell. This can be done
using the tools from the previous section. If no cell
contains such a triangle, we can show that the graph
must be sparse and that we need to check only few
further triangles. Details follow.

The Four Cases. Set ` = W/(12
√

2). We say that
a site s ∈ S is small, if rs < `, and large, otherwise.
Depending on the number of small and large vertices,
we classify the triangles in D(S) into four types:

(SSS) 3 small vertices, 0 large vertices

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

2`

(0, 0)

(0, 2`)

(2`, 0)

(2`, 2`)

Figure 2: The four shifted grids, with a cell from each
grid shown in red, orange, green, and blue, respec-
tively. Every square with side length at most 2` is
wholly contained in a single grid cell.

(SSL) 2 small vertices, 1 large vertex

(SLL) 1 small vertex, 2 large vertices,

(LLL) 0 small vertices, 3 large vertices.

Next, we define an appropriate grid that helps us to
detect triangles of type (SSS).

The Grid. Let G1 be the grid whose cells are
pairwise disjoint, axis-parallel squares with diameter
W/3. The cells of G1 partition the plane, and G1

is aligned such that the origin (0, 0) is a vertex of
G1. Observe that the cells of G1 have side length
4` = W/(3

√
2). We want to ensure that any triangle

of type (SSS) in D(S) is completely contained in a sin-
gle grid cell. For this, we make three copies G2, G3,
and G4 of G1 and we shift them by 2` (half the side
length of a cell) in x-direction, in y-direction, and in
both x- and y-direction, respectively. In other words,
G2 has (2`, 0) as a vertex, G3 has (0, 2`) as a vertex,
and G4 has (2`, 2`) as a vertex, see Figure 2.

Lemma 5 Let ∆ be a triangle formed by three ver-
tices a, b, c ∈ R2 such that each edge of ∆ has length
at most 2`. Then, there is a cell σ ∈ G1∪G2∪G3∪G4

with a, b, c ∈ σ.

Proof. By assumption, we can enclose ∆ with a
square of side length 2`. By construction, this square
must be completely contained in cell of one of the four
grids, see Figure 2. �

It follows immediately that any triangle of
type (SSS) lies in a single grid cell, as desired.

Finding Triangles Inside Grid Cells. Next, we search
for triangles that are completely contained in one
grid cell. (These are not necessarily triangles of
type (SSS).) For this, we go through all nonempty

grid cells σ ∈
⋃4

i=1Gi, and we search for a triangle
in the disk graph D(S ∩ σ) induced by the sites lying
in σ. This can be done using Theorem 3. Since the
grid cells have diameter W/3, any such triangle has
weight at most W . Thus, we can return YES if a tri-
angle is found. If we do not find any triangles, we can
conclude by Lemma 5 that D(S) has no triangle of
type (SSS). Since each site lies in a constant number
of grid cells, and since we can compute the grid cells
for a given site in O(1) time, the total running time
for this step is O(n log n). A simple volume argument
yields the following lemma.

Lemma 6 Let σ ∈
⋃4

i=1Gi be a nonempty grid cell,
and suppose that σ does not contain a triangle. Then,
σ contains O(1) large sites.

Proof. Suppose that σ contains at least 19 large
sites. We partition σ into 3 × 3 congruent squares
with side length (4/3)`. Each square has diameter
(4
√

2/3)` < 2`, and by the pigeonhole principle, there
is at least one square τ with at least d19/9e = 3 large
sites. Since the associated radius of a large site is
at least `, the large sites in τ form a triangle in σ,
contrary to our assumption. �

Triangles of Type (LLL). Now suppose that no tri-
angle from D(S) is contained in a single grid cell. To
find triangles of type (LLL), we iterate through all
large sites s ∈ S. Let σ ∈ G1 be the grid cell contain-
ing s. We define the neighborhood N(σ) of σ as the
5× 5 block of cells in G1 that is centered at σ. Since
the diameter of a grid cell is W/3, any pair u, v ∈ S of
sites that form a triangle with s of weight at most W
must be contained in N(σ). Let S` ⊆ S denote the
large sites. By Lemma 6, we have |N(σ)∩S`| = O(1).
Thus, we can check in constant time whether s par-
ticipates in a triangle of type (LLL). Hence, the total
time to detect triangles of type (LLL) is O(n).

Triangles of Type (SLL). This case is similar to the
algorithm for triangles of type (LLL). This time, we
iterate over all small sites s ∈ S. For each small
s ∈ S, we check all pairs of large vertices contained
in N(σ) ∩ S`, where σ ∈ G1 is the cell containing s.
This requires O(n) time.

Triangles of Type (SSL). Now, consider an edge e =
ab ∈ D(S) between two small sites a and b. The
edge e has length at most 2`, and by construction
it is completely contained in a single grid cell σ ∈⋃4

i=1Gi. To check if e participates in a triangle of

33rd European Workshop on Computational Geometry, 2017

type (SSL) with weight at most W , we check all O(1)
large vertices in S` ∩N(σ).

We repeat this process for all edges of D(S) that
lie in a single grid cell, and we claim that this re-
quires O(n log n) time. Indeed, we know that no

grid cell σ ∈
⋃4

i=1Gi contains a triangle (other-
wise, we would have detected it previously). Then,
by Lemma 1, it follows that D(S ∩ σ) is plane, for

all grid cells σ ∈
⋃4

i=1Gi. In particular, D(S ∩ σ)
has O(|S ∩ σ|) edges and can be computed in time
O(|S ∩ σ| log |S ∩ σ|). Since each vertex is contained
in O(1) grid cells, the total time to detect triangles of
type (SSL) is O(n log n), as claimed.

Wrapping up. We summarize the previous discus-
sion with the next lemma.

Lemma 7 Let D(S) be a disk graph with n vertices,
and let W > 0. We can decide in O(n log n) worst-
case time whether D(S) contains a triangle of weight
at most W .

Finally, to solve the optimization problem, we em-
ploy the following general lemma due to Chan [3]. Let
Π be a problem space, and for a problem P ∈ Π, let
w(P) ∈ R be its optimum and |P | ∈ N be its size.

Lemma 8 (Lemma 2.1 in [3]) Let α < 1, ε > 0,
and r ∈ N be constants, and let δ(·) be a function
such that δ(n)/nε is monotone increasing in n. Given
any optimization problem P ∈ Π with optimum w(P),
suppose that within time δ(|P |), (i) we can decide
whether w(P) < t, for any given t ∈ R, and (ii) we
can construct r subproblems P1, . . . , Pr, each of size
at most dα|P |e, so that

w(P) = min{w(P1), . . . , w(Pr)}.

Then, we can compute w(P) in total expected time
O(δ(|P |)).

For the first condition of Lemma 8, we use Lemma 7.
For the second condition we construct four subsets
S0, . . . , S3 of S as follows: we enumerate the sites in
S as S = {s1, . . . , sn}, and we put each site si into all
sets Sj with j 6≡ i (mod 4). Then, for any three sites
a, b, c ∈ S, there is at least one subset Sj with a, b, c ∈
Sj . Hence, applying Lemma 8 with α = 3/4, ε = 1,
r = 4, and δ = O(n log n) establishes Theorem 4.

4 Conclusion

Once again, disk graphs prove to be a simple and
useful graph model where difficult algorithmic prob-
lems admit faster solutions. It would be interesting
to find a deterministic O(n log n) time algorithm for
finding a shortest triangle in a disk graph. Also, we
are currently working on extending our results to the

girth problem in weighted disk graphs and in directed
transmission graphs.

Acknowledgments. We like to thank Günther Rote
for helpful comments.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and
M. H. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag,
third edition, 2008.

[2] S. Cabello and M. Jejĉiĉ. Shortest paths in in-
tersection graphs of unit disks. Comput. Geom.
Theory Appl., 48(4):360–367, 2015.

[3] T. M. Chan. Geometric applications of a ran-
domized optimization technique. Discrete Com-
put. Geom., 22(4):547–567, 1999.

[4] H.-C. Chang and H.-I. Lu. Computing the girth
of a planar graph in linear time. SIAM J. Com-
put., 42(3):1077–1094, 2013.

[5] W. S. Evans, M. van Garderen, M. Löffler, and
V. Polishchuk. Recognizing a DOG is hard, but
not when it is thin and unit. In Proc. 8th FUN,
pages 16:1–16:12, 2016.

[6] M. Fürer and S. P. Kasiviswanathan. Spanners
for geometric intersection graphs with applica-
tions. J. of Computational Geometry, 3(1):31–64,
2012.

[7] F. Le Gall. Powers of tensors and fast matrix
multiplication. In Proc. 39th Internat. Symp.
Symbolic and Algebraic Comput. (ISSAC), pages
296–303, 2014.

[8] A. Itai and M. Rodeh. Finding a minimum cir-
cuit in a graph. SIAM J. Comput., 7(4):413–423,
1978.

[9] H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth,
and M. Sharir. Dynamic planar Voronoi dia-
grams for general distance functions and their
algorithmic applications. In Proc. 28th SODA,
pages 2495–2504, 2017.

[10] L. Roditty and V. Vassilevska Williams. Min-
imum weight cycles and triangles: Equivalences
and algorithms. In Proc. 52nd Annu. IEEE Sym-
pos. Found. Comput. Sci. (FOCS), pages 180–
189, 2011.

[11] H. Yu. An improved combinatorial algorithm
for Boolean matrix multiplication. In Proc.
42nd Internat. Colloq. Automata Lang. Program.
(ICALP), pages 1094–1105, 2015.

