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Abstract
We consider the problem of routing a data packet through the visibility graph of a polygonal
domain P with n vertices and h holes. We may preprocess P to obtain a label and a routing
table for each vertex. Then, we must be able to route a data packet between any two vertices p
and q of P , where each step must use only the label of the target node q and the routing table
of the current node.

For any fixed ε > 0, we present a routing scheme that always achieves a routing path that
exceeds the shortest path by a factor of at most 1 + ε. The labels have O(logn) bits, and the
routing tables are of size O((ε−1 +h) logn). The preprocessing time is O(n2 logn+hn2 +ε−1hn).
It can be improved to O(n2 + ε−1n) for simple polygons.
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1 Introduction

Routing is a crucial problem in distributed graph algorithms [11, 22]. We would like to
preprocess a given graph G in order to support the following task: given a data packet that
lies at some source node p of G, route the packet to a given target node q in G that is
identified by its label. We expect three properties from our routing scheme: first, it should be
local, i.e., in order to determine the next step for the packet, it should use only information
stored with the current node of G or with the packet itself. Second, the routing scheme
should be efficient, meaning that the packet should not travel much more than the shortest
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10:2 Routing in Polygonal Domains

path distance between p and q. The ratio between the length of the routing path and the
shortest path in the graph is also called stretch. Third, it should be compact: the total space
requirement should be as small as possible.

There is an obvious solution: for each node v of G, we store at v the complete shortest
path tree for v. Thus, given the label of a target node w, we can send the packet for one
more step along the shortest path from v to w. Then, the routing scheme will have perfect
efficiency, sending each packet along a shortest path. However, this method requires that
each node stores the entire topology of G, making it not compact. Thus, the challenge lies in
finding the right balance between the conflicting goals of compactness and efficiency.

Thorup and Zwick introduced the notion of a distance oracle [30]. Given a graph G, the
goal is to construct a compact data structure to quickly answer distance queries for any two
nodes in G. A routing scheme can be seen as a distributed implementation of a distance
oracle [24].

The problem of constructing a compact routing scheme for a general graph has been
studied for a long time [1, 3, 7–9, 23, 24]. One of the most recent results, by Roditty and
Tov, dates from 2016 [24]. They developed a routing scheme for a general graph G with
n vertices and m edges. Their scheme needs to store a poly-logarithmic number of bits
with the packet, and it routes a message from s to t on a path with length O(k∆ +m1/k),
where ∆ is the shortest path distance between s and t and k > 2 is any fixed integer. The
routing tables use mnO(1/

√
logn) total space. In general graphs, any efficient routing scheme

needs to store Ω(nc) bits per node, for some constant c > 0 [22]. Thus, it is natural to ask
whether there are better algorithms for specialized graph classes. For instance, trees admit
routing schemes that always follow the shortest path and that store O(logn) bits at each
node [10,25,29]. Moreover, in planar graphs, for any fixed ε > 0, there is a routing scheme
with a poly-logarithmic number of bits in each routing table that always finds a path that is
within a factor of 1 + ε from optimal [28].

Another approach is called geometric routing. Here, the graph is embedded in a geometric
space and the routing algorithm has to determine the next vertex for the data packet based
on the knowledge of the source and target vertex, the current vertex, and its neighbourhood,
see for instance [5,6] and references therein. A recent result by Bose et al. [6] is very close
to our setting. They show that under certain conditions, no geometric routing scheme can
achieve stretch o(

√
n).

Here, we consider the class of visibility graphs of a polygonal domain P with h holes and
n vertices. Two vertices p and q in P are connected by an edge if and only if they can see
each other, i.e., if and only if the line segment between p and q is contained in the (closed)
region P . The problem of computing a shortest path between two vertices in a polygonal
domain has been well-studied in computational geometry [2, 4, 12, 13, 16, 17, 19–21,26, 27, 31].
Nevertheless, to the best of our knowledge, prior to our work there have been no routing
schemes for visibility graphs of polygonal domains that fall into our model. For any ε > 0,
our routing scheme needs O((ε−1 + h) logn) bits in each routing table, and for any two
vertices s and t, it produces a routing path that is within a factor of 1 + ε of optimal. This
constitutes a dramatic improvement over traditional geometric routing. Thus, we believe
that it makes sense to look for compact routing schemes for geometrically defined graphs.

2 Preliminaries

Let G = (V,E) be an undirected, connected and simple graph. In our model, G is embedded
in the Euclidean plane: a node p = (px, py) ∈ V corresponds to a point in the plane, and an
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edge {p, q} ∈ E is represented by the line segment pq. The length |pq| of an edge {p, q} is
given by the Euclidean distance between the points p and q. The length of a shortest path
between two nodes p, q ∈ V is denoted by d(p, q).

Now, we formally define a routing scheme for G. Each node p of G is assigned a label
`(p) ∈ {0, 1}∗ that identifies it in the network. Furthermore, we store with p a routing table
ρ(p) ∈ {0, 1}∗. The routing scheme works as follows: the packet contains the label `(q) of
the target node q, and initially it is situated at the start node p. In each step of the routing
algorithm, the packet resides at a current node p′ ∈ V . It may consult the routing table
ρ(p′) of p′ and the label `(q) of the target to determine the next node q′ to which the packet
is forwarded. The node q′ must be a neighbor of p′ in G. This is repeated until the packet
reaches its destination q. The scheme is modeled by a routing function f : ρ(V )× `(V )→ V .

In the literature, there are varying definitions for the notion of a routing scheme [15,24,32].
For example, we may sometimes store additional information in the header of a data packet
(it travels with the packet and can store information from past vertices). Similarly, the
routing function sometimes allows the use of an intermediate target label. This is helpful
for recursive routing schemes. Here, however, we will not need any of these additional
capabilities.

As mentioned, the routing scheme operates by repeatedly applying the routing function.
More precisely, given a start node p ∈ V and a target label `(q), the scheme produces the
sequence of nodes p0 = p and pi = f(ρ(pi−1), `(q)), for i ≥ 1. Naturally, we want routing
schemes for which every packet reaches its desired destination. More precisely, a routing
scheme is correct if for any p, q ∈ V , there exists a finite k = k(p, q) ≥ 0 such that pk = q

(and pi 6= q for 0 ≤ i < k). We call p0, p1, . . . , pk the routing path between p and q. The
routing distance between p and q is defined as dρ(p, q) =

∑k
i=1 |pi−1pi|.

The quality of the routing scheme is measured by several parameters: (i) the label size
L(n) = max|V |=n maxp∈V |`(p)|, (ii) the table size T (n) = max|V |=n maxp∈V |ρ(p)|, (iii) the
stretch ζ(n) = max|V |=n maxp 6=q∈V dρ(p, q)/d(p, q), and (iv) the preprocessing time.

Let P be a polygonal domain with n vertices. The boundary ∂P of P consists of h pairwise
disjoint simple closed polygonal chains: one outer boundary and h− 1 hole boundaries, or h
hole boundaries with no outer boundary. All hole boundaries lie inside the outer boundary,
and no hole boundary lies inside another hole boundary. In both cases, we say that P has
h holes. The interior induced by a hole boundary and the exterior of the outer boundary
are not contained in P . We denote the (open) interior of P by intP , i.e., intP = P \ ∂P .
We make no general position assumption on P . Let ni, 0 ≤ i ≤ h − 1, be the number of
vertices on the i-th boundary of P . For each boundary i, we number the vertices from 0 to
ni − 1, in clockwise order, if i is a hole boundary, or in counterclockwise order if i is the
outer boundary. The kth vertex of the ith boundary is denoted by pi,k.

Two points p and q in P can see each other in P if and only if pq ⊂ P . In particular,
note that the line segment pq may touch ∂P . The visibility graph of P , VG(P ), has the same
vertices as P and an edge between two vertices if and only if they see each other in P . We
show the following main theorem:

I Theorem 2.1. Let ε > 0, and let P be a polygonal domain with n vertices and h holes. There
is a routing scheme for VG(P ) with stretch ζ(n) = 1+ε, label size L(n) = O(logn) and routing
table size T (n) = O((ε−1 + h) logn). The preprocessing time is O(n2 logn+ hn2 + ε−1hn).
If P is a simple polygon, the preprocessing time can be improved to O(n2 + ε−1n).

ISAAC 2017
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3 Cones in Polygonal Domains

Let P be a polygonal domain with n vertices and h holes. Furthermore, let t > 2 be a
parameter, to be determined later. Following Yao [33], we subdivide the visibility polygon of
each vertex in P into t cones with a small enough apex angle. This will allow us to achieve
small stretch and compact routing tables.

p

p′

α

r0(p)

r2(p)r3(p)

rt(p)

r1(p)

C2(p)

α/t

Figure 1 The cones and rays of a vertex p with apex angle α.

Let p be a vertex in P and p′ the clockwise neighbor of p if p is on the outer boundary,
or the counterclockwise neighbor of p if p lies on a hole boundary. We denote with r the ray
from p through p′. To obtain our cones, we rotate r by certain angles. Let α be the inner
angle at p. For j = 0, . . . , t, we write rj(p) for the ray r rotated clockwise by angle j · α/t.

Now, for j = 1, . . . , t, the cone Cj(p) has apex p, boundary rj−1(p) ∪ rj(p), and opening
angle α/t; see Figure 1. For technical reasons, we define rj(p) not to be part of Cj(p),
for 0 ≤ j < t, whereas we consider rt(p) to be part of Ct(p). Furthermore, we write
C(p) = {Cj(p) | 1 ≤ j ≤ t} for the set of all cones with apex p. Since the opening angle of
each cone is α/t ≤ 2π/t and since t > 2, each cone is convex.

I Lemma 3.1. Let p be a vertex of P and let {p, q} be an edge of VG(P ) that lies in the
cone Cj(p). Furthermore, let s be a vertex of P that lies in Cj(p), is visible from p, and that
is closest to p. Then, d(s, q) ≤ |pq| − (1− 2 sin(π/t)) |ps|.

Cj(p)

≤ 2π
t

s
s′

q

p

γ

Figure 2 Illustration of Lemma 3.1. The points s and s′ have the same distance to p. The dashed
line represents the shortest path from s to q.
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Proof. Let s′ be the point on the line segment pq with |ps′| = |ps|; see Figure 2. Since p
can see q, we have that p can see s′ and s′ can see q. Furthermore, s can see s′, because p
can see s and s′ and we chose s to be closest to p, so the triangle ∆(p, s, s′) cannot contain
any vertices or (parts of) edges of P in its interior. Now, the triangle inequality yields
d(s, q) ≤ |ss′|+ |s′q|. Let β be the inner angle at p between the line segments ps and ps′.
Since both segments lie in the cone Cj(p), we get β ≤ 2π/t. Thus, the angle between s′p
and s′s is γ = π/2− β/2. Using the sine law and sin 2x = 2 sin x cosx, we get

|ss′| = |ps| · sin βsin γ = |ps| · sin β
sin ((π/2)− (β/2)) = |ps| · 2 sin(β/2) cos(β/2)

cos(β/2) ≤ 2|ps| sin(π/t).

Furthermore, we have |s′q| = |pq| − |ps′| = |pq| − |ps|. Thus, the triangle inequality gives

d(s, q) ≤ 2|ps| sin(π/t) + |pq| − |ps| = |pq| − (1− 2 sin(π/t)) |ps|.

J

4 The Routing Scheme

Let ε > 0, and let P be a polygonal domain with n vertices and h holes. We describe a
routing scheme for VG(P ) with stretch factor 1 + ε. The idea is to compute for each vertex
p the corresponding set of cones C(p) and to store a certain interval of indices for each cone
Cj(p) in the routing table of p. If an interval of a cone Cj(p) contains the target vertex t, we
proceed to the nearest neighbor of p in Cj(p); see Figure 3. We will see that this results in a
routing path with small stretch.

p

rj−1(p)

rj(p)

qs

Figure 3 The idea of the routing scheme. The first edge on a shortest path from p to q (red)
is contained in Cj(p). The routing algorithm will route the packet from p to s (green), the closest
vertex to p in Cj .

In the preprocessing phase, we first compute the label of each vertex pi,k. The label of
pi,k is the binary representation of i, concatenated with the binary representation of k, that
is, `(pi,k) = (i, k). Thus, all labels are distinct binary strings of length dlog he+ dlogne.

Let p be a vertex in P . Throughout this section, we will write C and Cj instead of C(p)
and Cj(p). The routing table of p is constructed as follows: first, we compute a shortest
path tree T for p. For a vertex s of P , let Ts be the subtree of T with root s, and denote the
set of all vertices on the i-th hole in Ts by Is(i). The following well-known observation lies
at the heart of our routing scheme. For space reasons, we omit the proof from this extended
abstract.

ISAAC 2017



10:6 Routing in Polygonal Domains

I Observation 4.1. Let q1 and q2 be two vertices of P . Let π1 be the shortest path in T from
p to q1, and π2 the shortest path in T from p to q2. Let l be the lowest common ancestor of
q1 and q2 in T . Then, π1 and π2 do not cross or touch in a point x with d(p, x) > d(p, l).

p s

q1

q2

a

s̃

r
b

H1

H2

Figure 4 The shortest path from p to a (green) crosses the shortest path from p to q1 (red). This
gives a contradiction by Observation 4.1.

I Lemma 4.2. Let e = (p, s) be an edge in T . Then, the indices of the vertices in Is(i)
form an interval. Furthermore, let f = (p, s′) be another edge in T , such that e and f are
consecutive in the cyclic order around p in T . Then, the indices of the vertices in Is(i)∪ Is′(i)
are again an interval.

Proof. For the first part of the lemma, suppose that the indices for Is(i) do not form an
interval. Then, there are two vertices q1, q2 ∈ Is(i) such that if we consider the two polygonal
chains H1 and H2 with endpoints q1 and q2 that constitute the boundary of hole i, there
are two vertices a, b /∈ Is(i) with a ∈ H1 and b ∈ H2 (see Figure 4). Let π1 and π2 be the
shortest paths in T from s to q1 and from s to q2. Let r be the last common vertex of π1 and
π2, and suppose without loss of generality that H1, the subpath of π1 from r to q1, and the
subpath of π2 from r to q2 bound a region inside P . Then, there has to be a child s̃ of p in
T such that a ∈ Is̃(i) and such that the shortest path from s̃ to a intersects π1 ∪ π2. Since p
is the lowest common ancestor of a and q1 and of a and q2, this contradicts Observation 4.1.

The proof for the second part of the lemma is almost identical. We assume for the sake
of contradiction that the indices in Is(i)∪ Is′(i) do not form an interval, and we find vertices
q1, q2 ∈ Is(i) ∪ Is′(i) such that if we split the boundary of hole i into two chains H1 and H2
between q1 and q2, there are two vertices a, b /∈ Is(i)∪ Is′(i) with a ∈ H1 and b ∈ H2. Again,
let π1 be the shortest path in T from s to q1 and π2 the shortest path in T from s to q2,
and consider the least common ancestor r of q1 and q2 in T . Without loss of generality, we
assume that the region R bounded by H1, the subpath of π1 from r to q1, and the subpath of
π2 from r to q2 lies inside P . Now, the lowest common ancestor r may be p, but since s and
s′ are consecutive in the cyclic order around p, the other children of p are either all inside or
all outside R. In either case, we can derive a contradiction to Observation 4.1 by noting that
either the shortest path from s to a or the shortest path from s to b has to cross π1 ∪ π2. J

Lemma 4.2 indicates how to construct the routing table ρ(p) for p. We set

t = π/ arcsin
(

1
2 (1 + ε−1)

)
, (1)
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and we construct a set C of cones for p as in Section 3. Let Cj ∈ C be a cone, and let Πi be
a hole boundary or the outer boundary. We define Cj uΠi as the set of all vertices q on Πi

for which the first edge of the shortest shortest path from p to q lies in Cj . By Lemma 4.2,
the indices of the vertices in Cj u Πi form a (possibly empty) cyclic interval [k1, k2]. If
Cj uΠi = ∅, we do nothing. Otherwise, if Cj uΠi 6= ∅, there is a vertex r ∈ Cj closest to p,
and we add the entry (i, k1, k2, r) to ρ(p). This entry needs dlog he+ 3 · dlogne bits.

Now, the routing function f : ρ(V )× `(V )→ V is quite simple. Given a current vertex
p and a target label `(t) = (i, k), we search the routing table ρ(p) for an entry (i, k1, k2, r)
with k ∈ [k1, k2]. By construction, this entry is unique. We then forward the packet from p

to the neighbor r (see Figure 3).

5 Analysis

We analyze the stretch factor of our routing scheme and give upper bounds on the size of the
routing tables and the preprocessing time. Let ε > 0 be fixed, and let 1 + ε be the desired
stretch factor. We set t as in (1). First, we bound t in terms of ε. This immediately gives
that |C(p)| ∈ O(ε−1), for every vertex p.

I Lemma 5.1. We have t ≤ 2π
(
1 + ε−1) .

Proof. For x ∈ (0, 1/2], we have sin x ≤ x, so for z ∈ [2,∞), we get that sin(1/z) ≤ 1/z.
Applying arcsin(·) on both sides, this gives 1/z ≤ arcsin(1/z)⇔ 1/ arcsin(1/z) ≤ z. We set
z = 2(1 + ε−1) and multiply by π to derive the desired inequality. J

5.1 The Routing Table
Let p be a vertex of P . We again write C for C(p) and Cj instead of Cj(p). To bound the
size of ρ(p), we need some properties of holes with respect to cones. For i = 0, . . . , h− 1, we
write m(i) for the number of cones Cj ∈ C with Cj uΠi 6= ∅. Then, ρ(p) contains at most
|ρ(p)| ≤ O

(∑h−1
i=0 m(i) logn

)
bits. We say that Πi is stretched for the cone Cj if there are

indices 0 ≤ j1 < j < j2 < t such that Cj1 uΠi, Cj uΠi and Cj2 uΠi are non-empty. If Πi is
not stretched for any cone of p, then m(i) ≤ 2. We prove the following lemma:

I Lemma 5.2. For every Cj ∈ C, there is at most one boundary that is stretched for Cj.

Proof. Let Πi be a hole boundary that is stretched for Cj . There are indices j1 < j < j2 and
vertices q ∈ Cj1 uΠi, r ∈ Cj uΠi, and s ∈ Cj2 uΠi. We subdivide P into three regions Q, R
and S: the boundary of Q is given by the shortest path from p to r, the shortest path from
p to q, and the part of Πi from r to q not containing s. Similarly, the region R is bounded
by the shortest path from p to r, the shortest path from p to s and the part of Πi between r
and s that does not contain q. Finally, S is the closure of P \ (Q∪R). The interiors of Q, R,
and S are pairwise disjoint; see Figure 5.

Suppose there is another boundary Π that is stretched for Cj . Then, Π must lie entirely
in either Q, R, or S. We discuss the first case, the other two are symmetric. Since Π is
stretched for Cj , there is an index j′ > j and a vertex t ∈ Cj′ u Π. Consider the shortest
path π from p to t. Since j′ > j, the first edge of π lies in R or S, and π has to cross or
touch the shortest path from p to q or from q to r. Furthermore, by definition, we have
Cj ∩Cj′ = {p} and Cj1 ∩Cj′ = {p}. Therefore, p is the lowest common ancestor of all three
shortest paths, and Observation 4.1 leads to a contradiction. J

ISAAC 2017



10:8 Routing in Polygonal Domains

q

r
p

s

Q

R

S

S

Πi

Π

t

Figure 5 The shortest paths from p to q, r, s (blue). The hole Π contains t and lies in Q.

For i = 0, . . . , h− 1, let s(i) be the number of cones in C for which Πi is stretched. By
Lemma 5.2, we get

∑h−1
i=0 s(i) ≤ |C(p)| ∈ O(ε−1). Since m(i) ≤ s(i) + 2, we conclude

|ρ(p)| ∈ O
(
h−1∑
i=0

m(i) logn
)

= O
(
h−1∑
i=0

(s(i) + 2) logn
)

= O ((|C(p)|+ 2h) logn) = O
(
(ε−1 + h) logn

)
.

5.2 The Stretch Factor
Next, we bound the stretch factor. First, we prove that the distance to the target decreases
after the first step. This will then give the bound on the overall stretch.

I Lemma 5.3. Let p and q be two vertices in P . Let s be the next vertex computed by the
routing scheme for a data packet from p to q. Then, d(s, q) ≤ d(p, q)− |ps|/(1 + ε).

Proof. By construction of ρ(p), we know that the next vertex q′ on the shortest path from p

to q lies in the same cone as s. Hence, by the triangle inequality and Lemma 3.1, we obtain

d(s, q) ≤ d(s, q′) + d(q′, q) ≤ |pq′| −
(

1− 2 sin π
t

)
|ps|+ d(q′, q)

= d(p, q)−
(

1− 2 sin π
t

)
|ps| = d(p, q)−

(
1− 1

1 + ε−1

)
|ps| (definition of t)

= d(p, q)− |ps|/(1 + ε).

J

Lemma 5.3 immediately implies the correctness of the routing scheme: since the distance
to the target q decreases strictly in each step and since there is a finite number of vertices,
there is a k = k(p, q) ≤ n such that after k steps, the packet arrives at q. Using this, we can
now bound the stretch factor of the routing scheme.

I Lemma 5.4. Let p and q be two vertices of P . Then, dρ(p, q) ≤ (1 + ε)d(p, q).

Proof. Let π = p0p1 . . . pk be the routing path from p = p0 to q = pk. By Lemma 5.3, we
have d(pi+1, q) ≤ d(pi, q)− |pipi+1|/(1 + ε). Thus,

dρ(p, q) =
k−1∑
i=0
|pipi+1| ≤ (1 + ε)

k−1∑
i=0

(d(pi, q)− d(pi+1, q))

= (1 + ε) (d(p0, q)− d(pk, q)) = (1 + ε)d(p, q).

J
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5.3 The Preprocessing Time
Finally, we discuss the details of the preprocessing algorithm and its time complexity.

I Lemma 5.5. The preprocessing time for our routing scheme is O(n2 logn+ hn2 + ε−1hn).

Proof. Let p be a vertex of P . We compute the shortest path tree T for p. Using the
algorithm of Hershberger and Suri [13], this can be done in time O(n logn). Now, we perform
a post-order traversal of T to compute the intervals for each child of p. Given a node q,
the post-order traversal provides at most h different intervals. For each hole, we compute
the union of the intervals among the children. Lemma 4.2 shows that the union of these
intervals is again an interval, and it can be found in time O(h outdeg(q)), where outdeg(q) is
the number of q’s children in T . In total, the post-order traversal needs O(hn) time.

Let q1, . . . , qk be the children of p, and let α1, . . . , αk be the angles between the ray r0(p)
and the edges (p, qi), i = 1, . . . , k. By construction, the qi are sorted by increasing angle
αi. Into this sorted sequence, we insert the rays rj(p), and we call the resulting sequence L.
By Lemma 5.1, the sequence L has O(ε−1 + outdeg(p)) elements. We scan through L, and
between each two consecutive rays rj−1(p) and rj(p), we join all the corresponding intervals
for each hole. Again by Lemma 4.2, this gives a set of intervals. Finally, we compute the
vertex closest to p in each cone, and we store the appropriate entries in the routing table ρ(p).
This last step takes time O(h(ε−1 + outdeg(p))) = O(hε−1 + hn). Thus, the preprocessing
time for p is O(n logn+ hn+ hε−1), for a total of O(n2 logn+ hn2 + ε−1hn). J

Combining the last two lemmas with Section 4, we get the following theorem.

I Theorem 5.6. Let P be a polygonal domain with n vertices and h holes. For any ε > 0
we can construct a routing scheme for VG(P ) with labels of O(logn) bits and routing tables
of O((ε−1 + h) logn) bits. For any two sites p, q ∈ P , the scheme produces a routing path
with stretch factor at most 1 + ε. The preprocessing time is O(n2 logn+ hn2 + ε−1hn).

6 Improvement for Simple Polygons

We show how to improve the preprocessing time for polygons without holes. Let P be a
simple polygon with n vertices, and let 1+ε, ε > 0, be the stretch factor. The previous section
computes a shortest path tree for each vertex, which leads to O(n2 logn) preprocessing time.
In simple polygons, we can use a different technique to avoid this large overhead in the
preprocessing phase. The routing function, the vertex labels, and the structure of the routing
tables remain unchanged.

Let p be a vertex of P . We compute the visibility polygon vis(p) for p. This gives a
sequence V of points v0, v1, . . . vm with p = v0 = vm. Some points of V may not be vertices
of P . We assume that V is sorted clockwise. Then, the sequence α1, α2, . . . , αm−1 of the
angles αj between the ray r0(p) and the edges {p, vj}, j = 1, . . . ,m− 1, is increasing. For
j = 1, . . . , t− 1, let wj be the intersection point of rj(p) and vis(p) that is closest to p. The
sequence of edges ej of P that contain the points wj can be found in O(n) time by traversing
the sorted sequence V ; see Figure 6.

Next, let Cj ∈ C be a cone. Recall that Cj is bounded by the rays rj−1(p) and rj(p).
The vertices related to Cj are determined as follows: starting from wj−1, we walk along
the boundary of P , until we meet wj . During the walk, we collect all the visited vertices.
This set forms a (possibly empty) interval I(j). We let s be the vertex in I(j) with the
smallest distance to p. As before, we add the endpoints of I(j) together with s to ρ(p). This
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p

rj−1(p)

rj(p)

ej−1

ej

s

wj−1

wj

Figure 6 The boundaries of Cj hit ∂P in the points wj−1 and wj . The vertex s is the vertex in
Cj with smallest distance to p.

needs 3 · dlogne bits. By Lemma 5.1, the routing table ρ(p) has O(ε−1 logn) bits, as in the
previous section. To show correctness, we need the following lemma.

I Lemma 6.1. Let p and q be two vertices of P , and let (p, q′) bet the first edge on the
shortest path from p to q. If q ∈ I(j), then q′ ∈ Cj.

Proof. Suppose that q′ /∈ Cj . Since q ∈ I(j), the shortest path π from p to q has to meet
pwi−1 or pwi at least twice. The first intersection is p itself. Let a 6= p be the second
intersection, and π′ the subpath of π from p to a. By the triangle inequality |pa| is strictly
smaller than the length of π′; see Figure 7. This contradicts the fact that π is a shortest
path from p to q. J

q

p

q′ a

Figure 7 The red curve is the “shortest” path from p to q with q′ as first step, whereas the green
dashed line represents a shortcut from p to a.

Thus, we obtain our main theorem for simple polygons.

I Theorem 6.2. Let P be a simple polygon with n vertices. For any ε > 0, we can construct
a routing scheme for VG(P ) with labels of dlogne bits and routing tables of O(ε−1 logn) bits.
For any two vertices p, q ∈ P , the scheme produces a routing path with stretch 1 + ε. The
preprocessing time is O(n2 + ε−1n).

Proof. Let p be a vertex of P . First, we compute the visibility polygon of the vertex p. This
needs time O(n) [14, 18]. Let V be the vertices of vis(p), sorted by increasing angle. Using
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V , we can find in time O(n+ ε−1) all the intersection points wj and the edges ej of P that
contain them. Finally, let Cj be a cone. We can find in constant time the endpoints of I(j)
and in O(|I(j)|) time the vertex s in I(j) with the smallest distance to p. This step costs
O(n+ ε−1) time in total over all cones. The total running time is O(n2 + ε−1n). J

7 Conclusion

We gave an efficient routing scheme for the visibility graph of a polygonal domain. Our
scheme produces routing paths whose length can be made arbitrarily close to the optimum.

Several open questions remain. First of all, we would like to obtain an efficient routing
scheme for the hop-distance in polygonal domains P , where each edge of VG(P ) has unit
weight. For our routing scheme, we can easily construct examples where the stretch is Ω(n);
see Figure 8. Moreover, it would be interesting to improve the preprocessing time or the size
of the routing tables, perhaps using a recursive strategy.

p q
Cj

Figure 8 In this polygon, p and q can see each other, so their hop-distance is 1. Our routing
scheme routes from one spire to the next, giving stretch Θ(n).

A final open question concerns routing schemes in general: what is the time needed by a
data packet to travel through the graph? In particular, it would be interesting to see how
much time a data packet needs at one single vertex until it knows the vertex where it is
forwarded. It would be a sightly different, but important measure for routing schemes.
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