
EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Routing in Simple Polygons

Matias Korman∗ Wolfgang Mulzer† André van Renssen‡,§ Marcel Roeloffzen‡,§ Paul Seiferth†

Yannik Stein† Birgit Vogtenhuber¶ Max Willert†

Abstract

A routing scheme R in a network G = (V,E) is an
algorithm that allows to send messages from one node
to another in the network. We are first allowed a pre-
processing phase in which we assign a unique label to
each node p ∈ V and a routing table with additional
information. After this preprocessing, the routing al-
gorithm itself must be local (i.e., we can only use the
information from the label of the target and the rout-
ing table of the node that we are currently at).

We present a routing scheme for routing in simple
polygons: for any ε > 0 the routing scheme provides
a stretch of 1 + ε, labels have O(log n) bits, the corre-
sponding routing tables are of size O(ε−1 log n), and
the preprocessing time is O(n2 + ε−1n). This im-
proves the best known strategies for general graphs
by Roditty and Tov (Distributed Computing 2016).

1 Introduction

Routing is the act of sending a message from a node
to its desired target. We would like to design a rout-
ing protocol that, for any network, can send messages
from any node to any target. Although the problem is
easy in small networks, it provides a significant chal-
lenge for large networks [1].

There are two key features of a routing scheme.
First of all, it must be local: while the message is at a
particular node, it can only use information stored in
the memory of that node. In order to save storage, we
would like that the amount of information that each
node stores is relatively small. Second, the routing
scheme should be efficient, meaning that the message
should not travel much further than necessary.

A straight-forward solution is to explicitly store the
whole network in each node. Routing can then be
solved with a single source shortest path query, send-
ing the message one step forward, and repeating the
process until we eventually reach the final target. This

∗Tohoku University, Sendai, Japan. Partially supported
by the ELC project (MEXT KAKENHI No. 12H00855 and
15H02665).
†Department of Computer Science, Freie Universität Berlin,

Germany
‡National Institute of Informatics (NII), Tokyo, Japan.
§JST, ERATO, Kawarabayashi Large Graph Project.
¶Institute for Software Technology, Graz University of Tech-

nology, Graz, Austria.

is clearly local and efficient, but it requires a large
amount of storage. Thus, the aim is to obtain some
trade-off between the amount of information stored at
each node, and the ratio between the distance trav-
elled by messages and the shortest possible path for
them in the network.

For general graphs, this problem has been well-
studied since the 1980’s [5, 6]. The most recent result
is from Roditty and Tov [7] who developed a rout-
ing scheme for general graphs G with n nodes and
m edges. The scheme has poly-logarithmic header
size and routes a message from p to q on a path with
length O(k∆ + m1/k) for any integer k > 2, where
∆ is the distance of the shortest path between p and
q in G. Their routing tables use mnO(1/

√
logn) total

space, which is asymptotically optimal [5].
In this paper we provide a better algorithm, albeit

for a specialized graph class: the visibility graphs of
polygons. Given a simple polygon P of n vertices, we
connect two vertices by an edge if and only if they can
see each other (i.e., the segment connecting them is
contained in P). Although many shortest path prob-
lems in polygons have been considered [2, 4], there are
no routing schemes for visibility graphs of polygons.
In this paper we present the first routing scheme for
this graph class. For n vertices and any ε > 0, the
routing scheme needs at most O(ε−1 log n) bits for the
routing table of each vertex and produces a routing
path with stretch 1 + ε. Therefore, for this class, our
results provide a more efficient routing scheme than
the one of Roditty and Tov [7].

2 Preliminaries

We model a network with an undirected, connected
and simple graph G = (V,E). We assume it is embed-
ded in the Euclidean plane: a node p = (px, py) ∈ V
corresponds to a point and an edge {p, q} ∈ E is rep-
resented by the segment pq. We denote by |pq| the
Euclidean distance between the points p and q and
call |pq| the weight of the corresponding edge. The
length of a shortest path in G connecting two points
p, q ∈ V is denoted by d(p, q). From now on, we as-
sume that G is the visibility graph of the n vertices of
P (and thus, d encodes the geodesic distance in P).

There are several definitions for routing schemes
for a network [3, 7]. In the following we introduce a
restricted standard model that is comparable to the

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

33rd European Workshop on Computational Geometry, 2017

other definitions. Each node in G has a unique tag,
called label, that identifies the node in the network, as
well as some additional information stored in a routing
table. Starting at any node p ∈ V , the routing scheme
uses only the information of p’s routing table (and the
target’s label) to compute a node adjacent to p where
the message is forwarded to. This process is repeated
until it reaches the target.

Definition 2.1 A routing scheme R = (l, ρ, f) of a
graph G consists of the following elements: a label
l(p) ∈ {0, 1}∗ and a routing table ρ(p) ∈ {0, 1}∗ for
each node p ∈ V , as well as a routing function f : V ×
{0, 1}∗ → V .

The transition function f models the behaviour of
the routing scheme. For any two nodes p, q ∈ V ,
consider the sequence of points given by p0 = p and
pi = f(pi−1, l(q)) for i ≥ 1 (i.e., the nodes visited in
the routing scheme from p to q). We say that a routing
scheme R is correct if for any p, q ∈ V there exists a
k = k(p, q) ≥ 0 such that pk = q and pi 6= q for i < k.
We call p0, p1, . . . , pk the routing path between p and
q. The routing distance between p and q is defined as
dρ(p, q) =

∑k
i=1 |pi−1pi|.

The quality of the routing scheme is measured by
several parameters:

• label size L(n) = max|V |=n maxp∈V |l(p)|,
• table size T (n) = max|V |=n maxp∈V |ρ(p)|,

• stretch ζ(n) = max|V |=n maxp 6=q∈V
dρ(p,q)
d(p,q) ,

• and preprocessing time (i.e., time spent in com-
puting the labels and routing tables).

Let P be a polygon with n vertices (which need not be
in general position). Two points p, q ∈ P can see each
other if and only if pq ⊂ P . Note that p and q can
see each other even if the line segment pq touches the
boundary of P . The visibility graph VG(P) of P is
the graph whose vertex set is the vertex set of P . Two
vertices are connected with an edge in VG(P) if in P
they see each other. In this paper we show that for any
ε > 0 we can construct a routing scheme with ζ(n) =
1 + ε, L(n) = O(log n) and T (n) = O(ε−1 log n). The
preprocessing time is O(n2 + ε−1n).

3 Cones in Polygons

Let P be a polygon with n vertices and let t > 2.
Our approach is inspired by the Yao Graph construc-
tion [8].

Let p be a vertex of the polygon, p′ the clockwise
next vertex of P , α be the inner angle at p, and
ε0 := 2π

αt . We denote with r the ray emanating from
p through p′. Next, we rotate this ray as follows: let

ri(p) := rotate r clockwise by angle α ·min (i · ε0, 1)

p

p′

α

r0(p)

r2(p)r3(p)

rdε−10 e(p)

r1(p)

C2(p)

αε0

Figure 1: The cones and rays of a vertex p with inner
angle α.

for i ∈ {0, 1, . . . , dε−10 e}. Let Ci(p) be the closed cone
with apex p and boundary ri−1(p) and ri(p) (see Fig-
ure 1). We also set C(p) as the set containing all such
cones (that is, C(p) = {Ci(p) | 1 ≤ i ≤ dε−10 e}). By
construction, the apex angle of each cone is at most
αε0 = 2π/t and hence all cones are convex.

Lemma 3.1 Let p be a vertex in P and {p, q} an
edge of VG(P) in the cone Ci(p). Furthermore, let s
be the closest vertex in Ci(p) to p. Then the following
inequality holds:

d(s, q) ≤ |pq| −
(

1− 2 sin
π

t

)
|ps|.

Ci(p)

β≤ 2π
t

s
s′

q

p

γ

Figure 2: Illustration of Lemma 3.1. The points s
and s′ have the same distance to p. The dashed line
represents the shortest path from s to q.

Proof. Let s′ be the point on the line segment pq
such that |ps′| = |ps| (see Figure 2). Since p can see
q, also s′ can see q. Since s is the closest vertex to p
in the cone, s can see s′. Now the triangle inequality
yields d(s, q) ≤ |ss′|+ |s′q|. Let β and γ be the angles
at p and s′ in the triangle ∆(p, s, s′). Since ∆(p, s, s′)
is in Ci(p), we have β ≤ 2π/t. Further, ∆(p, s, s′) is
isosceles and thus γ ≥ π/2 − π/t. Applying the sine
law and sin 2x = 2 sinx cosx, we get

|ss′| ≤ 2|ps| sin π
t
.

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Together with |s′q| = |pq| − |ps′| = |pq| − |ps|, the
triangle inequality from before gives the desired esti-
mation. �

4 The Routing Scheme

Let ε > 0 and P be a polygon with vertices p1, . . . , pn
in this order. We describe a routing scheme for VG(P)
with stretch 1 + ε. For each each vertex p, we will
partition the other vertices into intervals and assign
one interval to each cone. Given a target vertex q,
we look for the cone Ci(p) whose associated interval
contains q, and transmit the message to the nearest
neighbour in Ci(p).

Preprocessing In the preprocessing phase we do as
follows. First, we assign to each vertex pj of P the
binary representation of j as its label, Which needs
O(log n) bits. For the routing table of a vertex p, we
first compute the visibility polygon vis(p). This com-
putation provides a sequence of consecutive points
v0v1 . . . vk with p = v0 = vk+1. Each point of this
sequence is either a vertex of P or the first proper
intersection of a ray from p towards a reflex ver-
tex. Notice that, as we walk clockwise along the vis-
ibility polygon, the angle spanned by the ray r0(p)
and the edge {p, vj} increases monotonically. We set
t := π/ arcsin

(
0.5/

(
1 + ε−1

))
and use the subdivi-

sion of vis(p) described in Section 3. This subdivision
provides a set C(p) with a certain number of cones.
The following obvious lemma specifies this number.

Lemma 4.1 We have t ≤ 2π
(
1 + ε−1

)
.

The ray ri(p) intersects vis(p) at one or more points.
Let zi be the intersection point that is closest to p and
ei the edge of P containing it. All points zi and edges
ei can be obtained by going once through the sequence
v0v1 . . . vk (see Figure 3).

p

ri−1(p)

ri(p)

ei−1

ei

si

zi−1

zi

Figure 3: The boundaries of Ci(p) hit the boundary
of P in the points zi−1 and zi. The vertex si is the
point in Ci(p) with shortest distance to p.

For all cones Ci(p) ∈ C(p), we start from zi−1, walk
clockwise along the boundary of P until we meet zi,

and collect all the visited vertices. If we take the in-
dices modulo n, the collection forms an interval called
I(i). Among I(i) we look for the vertex si with small-
est distance to p. We store the interval boundaries of
I(i) together with the label of the vertex si in the
routing table of p. This requires O(log n) bits as well.
Hence, by Lemma 4.1, the size of each routing table
is O(ε−1 log n) bits.

Routing phase The routing strategy is simple: when
routing from a vertex p to a target q, we search in
the routing table of p for the index i whose associated
interval I(i) contains the label of q, and then transmit
the message to si. The following lemma proves that
the algorithm is well defined.

Lemma 4.2 Let p, q be two vertices of P and (p, q′)
the first edge on the shortest path from p to q. If
q ∈ I(i), then q′ ∈ Ci(p).

Proof. Suppose that q′ /∈ Ci(p). Since q is in I(i),
the shortest path π from p to q has to cross pzi−1 or
pzi at least twice. The first intersection is p itself. Let
z be the last intersection and let π′ be the subpath of
π from p to z via q′. By the triangle inequality, |pz|
is strictly smaller than the length of π′ (see Figure 4).
Thus, we can find a shortcut from p to z and hence a
shorter path from p to q. �

q

p

q′ z

Figure 4: The red line is the “shortest” path from p
to q with q′ as first step, whereas the green dashed
line represents a shortcut from p to z.

5 Analysis

The aim of this section is to show that for any polygon
P and ε > 0 the stretch 1 + ε is always preserved.
First, we show that our routing strategy decreases
the distance to the target.

Lemma 5.1 Let p and q be two vertices in P , and let
s be the next vertex computed by the routing scheme
from p to q. Then we have d(s, q) ≤ d(p, q)−|ps|/(1+ε).

33rd European Workshop on Computational Geometry, 2017

Proof. Our routing strategy routes from p to a vertex
s = si that is the closest in some cone Ci(p). By
Lemma 4.2, we know that the next vertex q′ on the
shortest path from p to q is also contained in Ci(p).
Thus, by Lemma 3.1 and the triangle inequality we
obtain

d(s, q) ≤ d(s, q′) + d(q′, q)

≤ |pq′| −
(

1− 2 sin
π

t

)
|ps|+ d(q′, q)

= d(p, q)−
(

1− 2 sin
π

t

)
|ps|

= d(p, q)− |ps|/(1 + ε).

�

Since the distance to the target decreases at each
step, this implies that our routing scheme terminates.
We now bound the stretch of the routing scheme.

Lemma 5.2 Let p and q be two vertices of P . Then
we have dρ(p, q) ≤ (1 + ε)d(p, q), where dρ(p, q) is the
length of the routed path.

Proof. Let π = p0p1 . . . pk be the path from p =
p0 to q = pk computed by the routing scheme. By
Lemma 5.1 we have d(pi+1, q) ≤ d(pi, q)−|pipi+1|/(1+
ε). Thus, we have

dρ(p, q) =

k−1∑
i=0

|pipi+1|

≤ (1 + ε)

k−1∑
i=0

(d(pi, q)− d(pi+1, q))

= (1 + ε) (d(p0, q)− d(pk, q))

= (1 + ε)d(p, q)

since p0 = p and pk = q. This finishes the proof for
the bound on the stretch. �

Thereby, we obtain our main theorem.

Theorem 5.3 Let P be a simple polygon with n ver-
tices. For any ε > 0 we can preprocess P into a rout-
ing scheme for VG(P) with labels of O(log n) bits and
routing tables of O(ε−1 log n) bits. For any two ver-
tices p, q ∈ P , the scheme produces a routing path
with stretch ≤ (1 + ε)d(p, q). The preprocessing time
is O(n2 + ε−1n).

Proof. The stretch and size bounds follow from pre-
vious arguments. We focus on the preprocessing time
bound. For any vertex p ∈ P let L be the sequence of
vertices v0v1 . . . vk of vis(p) calculated in time O(n).
Using L, we can find all intersection points zi and cor-
responding edges ei of P in time O(n + ε−1). Thus,
for each ray ri(p), we can find the boundaries of ei
in amortized constant time. Once the edges ei are

computed, we can find the interval boundaries of I(i)
in constant time. The point within the interval I(i)
with smallest distance to p can be found by going
once through I(i) in O(|I(i)|) time. For all cones of
one vertex, this step takes O(n+ ε−1) in total. In the
end, we do the same procedure for all vertices and
obtain the running time O(n2 + ε−1n). �

6 Conclusion

We still have various open questions for the routing
schemes for polygons. First of all, it would be interest-
ing, if there is a routing scheme that approximates the
hop-distance in polygons, where each pair of adjacent
vertices has edge weight 1. Using our routing scheme
we can find examples, where the stretch is in Ω(n).
Further, it would be interesting to know whether the
preprocessing time or the size of the routing table can
be improved, perhaps using a recursive strategy.

The routing scheme extends to polygonal domains
with h holes: we now need to apply the same strat-
egy to each vertex p, cone Ci(p) and the h+ 1 simple
polygons that form the boundary of P . This increases
the size of the routing table to O(ε−1h log n) and pre-
processing time to O(n2 log n+hn2 + ε−1hn). This is
impractical for large values of h, and thus we wonder
whether a better strategy exists for this case.

References

[1] Silvia Giordano and Ivan Stojmenovic. Position based
routing algorithms for ad hoc networks: A taxon-
omy. In Ad hoc wireless networking, pages 103–136.
Springer-Verlag, 2004.

[2] John Hershberger and Subhash Suri. An optimal algo-
rithm for Euclidean shortest paths in the plane. SIAM
J. Comput., 28(6):2215–2256, 1999.

[3] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and
Paul Seiferth. Routing in unit disk graphs. In Proc.
12th Latin American Symp. Theoretical Inf. (LATIN),
pages 536–548, 2016.

[4] Joseph S. B. Mitchell. A new algorithm for shortest
paths among obstacles in the plane. Annals of Math-
ematics and Artificial Intelligence, 3(1):83–105, 1991.

[5] David Peleg and Eli Upfal. A trade-off between space
and efficiency for routing tables. J. ACM, 36(3):510–
530, 1989.

[6] Liam Roditty and Roei Tov. New routing techniques
and their applications. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Com-
puting, pages 23–32. ACM, 2015.

[7] Liam Roditty and Roei Tov. Close to linear space
routing schemes. Distributed Computing, 29(1):65–74,
2016.

[8] Andrew Chi-Chih Yao. On constructing minimum
spanning trees in k-dimensional spaces and related
problems. SIAM J. Comput., 11(4):721–736, 1982.

