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Abstract11

We consider the problem of routing a data packet through the visibility graph of a polygonal12

domain P with n vertices and h holes. We may preprocess P to obtain a label and a routing table for13

each vertex of P . Then, we must be able to route a data packet between any two vertices p and q of14

P , where each step must use only the label of the target node q and the routing table of the current15

node.16

For any fixed ε > 0, we present a routing scheme that always achieves a routing path whose length17

exceeds the shortest path by a factor of at most 1 + ε. The labels have O(log n) bits, and the routing18

tables are of size O((ε−1 + h) log n). The preprocessing time is O(n2 log n). It can be improved to19

O(n2) for simple polygons.20

1 Introduction21

Routing is a crucial problem in distributed graph algorithms [23, 34]. We would like to preprocess a22

given graph G in order to support the following task: given a data packet that lies at some source node23

p of G, route the packet to a given target node q in G that is identified by its label. We expect three24

properties from our routing scheme: first, it should be local, i.e., in order to determine the next step for25

the packet, it should use only information stored with the current node of G or with the packet itself.26

Second, the routing scheme should be efficient, meaning that the packet should not travel much more27

than the shortest path distance between p and q. The ratio between the length of the routing path and28

the shortest path in the graph is also called stretch factor. Third, it should be compact: the total space29

requirement should be as small as possible.30

Here is an obvious solution: for each node v of G, we store at v the complete shortest path tree for v.31

Thus, given the label of a target node q, we can send the packet for one more step along the shortest32

path from v to q. Then, the routing scheme will have perfect efficiency, sending each packet along a33

shortest path. However, this method requires that each node stores its entire shortest path tree, making34

it not compact. Thus, the challenge lies in finding the right balance between the conflicting goals of35

compactness and efficiency.36
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BB was supported in part by DFG project MU/3501-2. MC, AvR and MR were supported by JST ERATO Grant Number
JPMJER1201, Japan. MK was supported in part by KAKENHI Nos. 15H02665 and 17K12635, Japan. WM was supported
in part by ERC StG 757609. PS was supported in part by DFG project MU/3501-1. YS was supported by the DFG within
the research training group ‘Methods for Discrete Structures’ (GRK 1408) and by GIF grant 1161.
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Thorup and Zwick introduced the notion of a distance oracle [42]. Given a graph G, the goal is to37

construct a compact data structure to quickly answer distance queries for any two nodes in G. A routing38

scheme can be seen as a distributed implementation of a distance oracle [36].39

The problem of constructing a compact routing scheme for a general graph has been studied for a40

long time [1,3,16,18,21,35,36]. One of the most recent results, by Roditty and Tov, dates from 2016 [36].41

They developed a routing scheme for a general graph G with n vertices and m edges. Their scheme needs42

to store a poly-logarithmic number of bits with the packet, and it routes a message from p to q on a43

path with length O(k∆ +m1/k), where ∆ is the shortest path distance between p and q and k > 2 is any44

fixed integer. The routing tables use mnO(1/
√

logn) total space. In general graphs, any routing scheme45

with constant stretch factor needs to store Ω(nc) bits per node, for some constant c > 0 [34]. Thus, it is46

natural to ask whether there are better algorithms for specialized graph classes. For instance, trees admit47

routing schemes that always follow the shortest path and that store O(logn) bits at each node [22,37,41].48

Moreover, in planar graphs, for any fixed ε > 0, there is a routing scheme with a poly-logarithmic number49

of bits in each routing table that always finds a path that is within a factor of 1 + ε from optimal [40].50

Similar results are also available for unit disk graphs [26], and for metric spaces with bounded doubling51

dimension [29].52

Another approach is called geometric routing. Here, the graph is embedded in a geometric space, and53

the routing algorithm has to determine the next vertex for the data packet based on the location of the54

source and the target vertex, the current vertex, and its neighbourhood, see for instance [9, 10] and the55

references therein. The most notable difference between geometric routing and our setting is that in56

geometric routing, vertices are generally not allowed to store routing tables, so that routing decisions are57

based solely on the geometric information available at the current vertex (and possibly information stored58

in the message). We note that the location of the source vertex may or may not be needed, depending on59

the routing algorithm. For example, the routing algorithm for triangulations by Bose and Morin [13] uses60

the line segment between the source and the target for its routing decisions. A recent result by Bose et61

al. [10] is very close to our setting. They show that when vertices do not store any routing tables (i.e.,62

each vertex stores only the edges that can be followed from it), no geometric routing scheme can achieve63

stretch factor o(
√
n). This lower bound applies regardless of the amount of information that may be64

stores in the message.65

Here, we consider the class of visibility graphs of a polygonal domain. Let P be such a polygonal66

domain with h holes and n vertices. Two vertices p and q in P are connected by an edge if and only if they67

can see each other, i.e., if and only if the line segment between p and q is contained in the (closed) region68

P . We note that this definition implies that the visibility graph contains the shortest path between any69

two vertices of the polygonal domain. The problem of computing a shortest path between two vertices in70

a polygonal domain has been well-studied in computational geometry [2,4,24,25,27,28,30,31,33,38,39,43].71

Nevertheless, to the best of our knowledge, prior to our work there have been no routing schemes for72

visibility graphs of polygonal domains that fall into our model.73

When we relax the requirement on the length of the path, we enter the domain of spanners: given a74

graphG, a subgraphH ofG is a k-spanner ofG if for all pairs of vertices p and q inG, dH(p, q) ≤ k·dG(p, q),75

for k ≥ 1. The spanning properties of various geometric graphs have been studied extensively in the76

literature (see [15,32] for a comprehensive overview). We briefly mention the results that are most closely77

related to the approach we will take here, namely Yao-graphs [45] and Θ-graphs [17]. Intuitively, these78

graphs form geometric networks where each vertex connects to its nearest visible vertex in a certain79

number of different directions (a formal definition is given in Section 3). Both types of graphs are spanners,80

where the stretch factor depends on the number of cones used [5–8,14,19,20]. These graphs have also81

been considered for geometric routing purposes. For example, Bose et al. [9] gave an optimal geometric82

routing algorithm for the half-Θ6-graph (the Θ-graph with six cones where edges are added in every83

other cone). When considering obstacles, Θ-graphs have recently been used to route on (subgraphs of)84

the visibility graph [10–12], though these algorithms do not provide a bound on the total length of the85

routing path, only on the number of edges followed by the routing scheme. However, as mentioned earlier,86

these geometric routing schemes cannot achieve a stretch factor of o(
√
n), as they are not allowed to store87

routing tables at the vertices.88
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We introduce a routing scheme that, for any ε > 0, needs O((1/ε+ h) logn) bits in each routing table,89

and for any two vertices p and q, it produces a routing path that is within a factor of 1 + ε of optimal.90

This shows that by allowing a routing table at each vertex, we can do much better than in traditional91

geometric routing, achieving a stretch factor that is arbitrarily close to 1.92

2 Preliminaries93

Let G = (V,E) be an undirected, connected and simple graph. In our model, G is embedded in the94

Euclidean plane: a node p = (px, py) ∈ V corresponds to a point in the plane, and an edge {p, q} ∈ E is95

represented by the line segment pq. The length |pq| of an edge {p, q} is the Euclidean distance between96

the points p and q. The length of a shortest path between two nodes p, q ∈ V is denoted by d(p, q).97

We formally define a routing scheme for G. Each node p of G is assigned a label `(p) ∈ {0, 1}∗ that98

identifies it in the network. Furthermore, we store with p a routing table ρ(p) ∈ {0, 1}∗. The routing99

scheme works as follows: the packet contains the label `(q) of the target node q, and initially it is situated100

at the start node p. In each step of the routing algorithm, the packet resides at a current node p′ ∈ V . It101

may consult the routing table ρ(p′) of p′ and the label `(q) of the target to determine the next node q′ to102

which the packet is forwarded. The node q′ must be a neighbor of p′ in G. This is repeated until the103

packet reaches its destination q. The scheme is modeled by a routing function f : ρ(V )× `(V )→ V .104

In the literature, there are varying definitions for the notion of a routing scheme [26, 36, 44]. For105

example, we may sometimes store additional information in the header of a data packet (it travels with106

the packet and can store information from past vertices). Similarly, the routing function sometimes allows107

the use of an intermediate target label. This is helpful for recursive routing schemes. Here, however, we108

will not need any of these additional capabilities.109

As mentioned, the routing scheme operates by repeatedly applying the routing function. More precisely,110

given a start node p ∈ V and a target label `(q), the scheme produces the sequence of nodes p0 = p and111

pi = f(ρ(pi−1), `(q)), for i ≥ 1. Naturally, we want routing schemes for which every packet reaches its112

desired destination. More precisely, a routing scheme is correct if for any p, q ∈ V , there exists a finite113

k = k(p, q) ≥ 0 such that pk = q (and pi 6= q for 0 ≤ i < k). We call p0, p1, . . . , pk the routing path114

between p and q. The routing distance between p and q is defined as dρ(p, q) =
∑k
i=1 |pi−1pi|.115

The quality of the routing scheme is measured by several parameters:116

1. the label size maxp∈V |`(p)|,117

2. the table size maxp∈V |ρ(p)|,118

3. the stretch factor maxp 6=q∈V dρ(p, q)/d(p, q), and119

4. the preprocessing time.120

Let P be a polygonal domain with n vertices. The boundary ∂P of P consists of h pairwise disjoint121

simple closed polygonal chains: one outer boundary and h− 1 hole boundaries, or h hole boundaries with122

no outer boundary. All hole boundaries lie inside the outer boundary, and no hole boundary lies inside123

another hole boundary. In both cases, we say that P has h holes. The interior induced by any hole124

boundary and the exterior of the outer boundary are not contained in P . We denote the (open) interior125

of P by intP , i.e., intP = P \ ∂P . We assume that P is in general position: no three vertices of P lie126

on a common line, and for each pair of vertices in P , the shortest path between them is unique. Let ni,127

0 ≤ i ≤ h− 1, be the number of vertices on the i-th boundary of P . For each boundary i, we number the128

vertices from 0 to ni − 1, in clockwise order if i is a hole boundary, or in counterclockwise order if i is the129

outer boundary. The kth vertex of the ith boundary is denoted by pi,k.130

Two points p and q in P can see each other in P if and only if pq ⊂ P . By our general position131

assumption, pq touches ∂P only if pq is itself an edge of P . The visibility graph of P , VG(P ), has the132

same vertices as P and an edge between two vertices if and only if they see each other in P . We show the133

following main theorem:134
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Theorem 2.1. Let P be a polygonal domain with n vertices and h holes. For any ε > 0, we can construct135

a routing scheme for VG(P ) with labels of O(logn) bits and routing tables of O((1/ε+ h) logn) bits per136

vertex. For any two sites p, q ∈ P , the scheme produces a routing path with stretch factor at most 1 + ε.137

The preprocessing time is O(n2 logn). If P is a simple polygon, the preprocessing time reduces to O(n2).138

3 Cones in Polygonal Domains139

Let P be a polygonal domain with n vertices and h holes. Furthermore, let t ≥ 3 be an integer parameter,140

to be determined later. Following Yao [45] and Clarkson [17], we subdivide the visibility polygon of each141

vertex in P into t cones with a small enough apex angle. This will allow us to construct compact routing142

tables that support a routing algorithm with small stretch factor.143

p

p′

α

r0(p)

r2(p)r3(p)

rt(p)

r1(p)

C2(p)

α/t

Figure 1: The cones and rays of a vertex p with apex angle α.

Let p be a vertex in P and p′ the clockwise neighbor of p if p is on the outer boundary, or the144

counterclockwise neighbor of p if p lies on a hole boundary. We denote with r(p) the ray from p through145

p′. To obtain our cones, we rotate r(p) by certain angles. Let α be the inner angle at p. For j = 0, . . . , t,146

we write rj(p) for the ray r(p) rotated clockwise by angle j · α/t.147

Now, for j = 1, . . . , t, the cone Cj(p) has apex p, boundary rj−1(p) ∪ rj(p), and opening angle α/t;148

see Figure 1. For technical reasons, we define rj(p) not to be part of Cj(p), for 1 ≤ j < t, whereas we149

consider rt(p) to be part of Ct(p). Furthermore, we write C(p) = {Cj(p) | 1 ≤ j ≤ t} for the set of all150

cones with apex p. Since the opening angle of each cone is α/t ≤ 2π/t and since t ≥ 3, each cone is151

convex.152

The following proof is similar to the one given by Clarkson [17] and Narasimhan and Smid [32], though153

the former shows only that the construction leads to an O(1/ε)-spanner instead of showing a more precise154

bound in terms of the number of cones.155

Lemma 3.1. Let p be a vertex of P and let {p, q} be an edge of VG(P ) that lies in the cone Cj(p).156

Furthermore, let s be a vertex of P that lies in Cj(p), is visible from p, and that is closest to p. Then,157

d(s, q) ≤ |pq| − (1− 2 sin(π/t)) |ps|.158

Proof. Let s′ be the point on the line segment pq with |ps′| = |ps|; see Figure 2. Since p can see q, we159

have that p can see s′ and s′ can see q. Furthermore, s can see s′, because p can see s and s′ and we160

chose s to be closest to p, so the triangle ∆(p, s, s′) cannot contain any vertices or (parts of) edges of P161

in its interior. Now, the triangle inequality yields d(s, q) ≤ |ss′|+ |s′q|. Let β be the inner angle at p162
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Cj(p)

≤ 2π
t

s
s′

q

p

γ

Figure 2: Illustration of Lemma 3.1. The points s and s′ have the same distance to p. The dashed line
represents the shortest path from s to q.

between the line segments ps and ps′. Since both segments lie in the cone Cj(p), we get β ≤ 2π/t. Thus,163

the angle between s′p and s′s is γ = π/2− β/2. Using the sine law and sin 2x = 2 sin x cosx, we get164

|ss′| = |ps| · sin β
sin γ = |ps| · sin β

sin ((π/2)− (β/2)) = |ps| · 2 sin(β/2) cos(β/2)
cos(β/2) ≤ 2|ps| sin(π/t).165

Furthermore, we have |s′q| = |pq| − |ps′| = |pq| − |ps|. Thus, the triangle inequality gives166

d(s, q) ≤ 2|ps| sin(π/t) + |pq| − |ps| = |pq| − (1− 2 sin(π/t)) |ps|,167

as claimed.168

4 The Routing Scheme169

Let ε > 0, and let P be a polygonal domain with n vertices and h holes. We describe a routing scheme170

for VG(P ) with stretch factor 1 + ε. The idea is to compute for each vertex p the corresponding set of171

cones C(p) and to store a certain interval of indices for each cone Cj(p) in the routing table of p. If an172

interval of a cone Cj(p) contains the target vertex t, we proceed to the nearest neighbor of p in Cj(p); see173

Figure 3. We will see that this results in a routing path with small stretch factor.174

p

rj−1(p)

rj(p)

qs

Figure 3: The idea of the routing scheme. The first edge on a shortest path from p to q (red) is contained
in Cj(p). The routing algorithm will route the packet from p to s (green), the closest vertex to p in Cj .

In the preprocessing phase, we first compute the label of each vertex pi,k. The label of pi,k is the175

binary representation of i, concatenated with the binary representation of k. Thus, all labels are distinct176

binary strings of length dlog he+ dlogne.177

Let p be a vertex in P . Throughout this section, we will write C and Cj instead of C(p) and Cj(p).178

The routing table of p is constructed as follows: first, we compute a shortest path tree T for p. For179
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a vertex s of P , let Ts be the subtree of T with root s, and denote the set of all vertices on the i-th180

hole in Ts by Is(i). The following well-known observation lies at the heart of our routing scheme. For181

completeness, we include a proof.182

Observation 4.1. Let q1 and q2 be two vertices of P . Let π1 be the shortest path in T from p to q1, and183

π2 the shortest path in T from p to q2. Let l be the lowest common ancestor of q1 and q2 in T . Then, π1184

and π2 do not cross or touch in a point x with d(p, x) > d(p, l).185

Proof. Suppose first that π1 touches π2 in a point x with d(p, x) > d(p, l). The edges of T are line186

segments, so this can only happen if x is a vertex. But then T would contain a cycle, which is impossible.187

Next, suppose that π1 and π2 cross in a point x with d(p, x) > d(p, l). Suppose further that x lies on188

the edge e1 = (s1, t1) of π1 and the edge e2 = (s2, t2) of π2; see Figure 4. Without loss of generality, we189

have d(l, s1) + |s1x| ≤ d(l, s2) + |s2x|. Since x ∈ intP , there is a δ > 0 such that the disk D with center x190

and radius δ is contained in P . Now consider the intersection y1 of ∂D with s1x and the intersection y2191

of ∂D with xt2. We have y1y2 ⊂ D ⊂ P , and the triangle inequality yields |y1x|+ |xy2| > |y1y2|. Hence,192

the path s1y1y2t2 is a shortcut from l to t2, a contradiction to π2 being a shortest path.193

p

q2

q1

s2

t2
s1

t2

x
l

y1
y2

D

Figure 4: Two shortest paths that originate in p cannot cross.

p s

q1

q2

a

s̃

r
b

H1

H2

Figure 5: The shortest path from p to a (green) crosses the shortest path from p to q1 (red). This gives a
contradiction by Observation 4.1.

Lemma 4.2. Let e = (p, s) be an edge in T . Then, the indices of the vertices in Is(i) form an interval.194

Furthermore, let f = (p, s′) be another edge in T , such that e and f are consecutive edges in T around195

p.1 Then, the indices of the vertices in Is(i) ∪ Is′(i) are again an interval.196

1By this, we mean that there is no other edge of T incident to p in the cone that is spanned by e and f and that extends
into the interior of P .
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Proof. For the first part of the lemma, suppose that the indices for Is(i) do not form an interval. Then,197

there are two vertices q1, q2 ∈ Is(i) such that if we consider the two polygonal chains H1 and H2 with198

endpoints q1 and q2 that constitute the boundary of hole i, there are two vertices a, b /∈ Is(i) with a ∈ H1199

and b ∈ H2 (see Figure 5). Let π1 and π2 be the shortest paths in T from s to q1 and from s to q2. Let r200

be the last common vertex of π1 and π2, and let π̃1 be the subpath of π1 from r to q1 and π̃2 the subpath201

of π2 from r to q2. Consider the set D of (open) connected components of P \ (π̃1 ∪ π̃2). Any vertex of P202

that is on the boundary of two different components of D must lie on π̃1 ∪ π̃2. Hence, p, a, and, b each lie203

on the boundary of exactly one component in D, and the components Da and Db with a and b on the204

boundary are distinct. Suppose without loss of generality that p 6∈ ∂Da. Then, there has to be a child s̃205

of p in T such that a ∈ Is̃(i) and such that the shortest path from s̃ to a crosses π1 ∪ π2. Since p is the206

lowest common ancestor of a and q1 and of a and q2, this contradicts Observation 4.1.207

The proof for the second part is very similar. We assume for the sake of contradiction that the indices208

in Is(i)∪ Is′(i) do not form an interval, and we find vertices q1, q2 ∈ Is(i)∪ Is′(i) such that if we split the209

boundary of hole i into two chains H1 and H2 between q1 and q2, there are two vertices a, b /∈ Is(i)∪ Is′(i)210

with a ∈ H1 and b ∈ H2. Furthermore, we may assume that a 6= p and b 6= p, because otherwise q1 and211

q2 would be the two vertices of P that share an edge with p, and thus q1 and q2 would be the only two212

children of p in T and Is(i) ∪ Is′(i) would be an interval. Let π1 be the shortest path in T from s to q1213

and π2 the shortest path in T from s′ to q2, and consider the lowest common ancestor r of q1 and q2 in214

T (now r might be p). Let π̃1 be the subpath of π1 from r to q1 and π̃2 the subpath of π2 from r to q2.215

Consider the set D of (open) connected components of P \ (π̃1 ∪ π̃2). As before, any vertex that lies on216

the boundaries of two distinct components of D must belong to π̃1 ∪ π̃2, so a and b are on the boundaries217

of two uniquely defined distinct components in D. We call these components Da and Db. Now, s and s′218

are consecutive around p, so at least one of Da and Db contains no other child of p in T on its boundary.219

Let it be Da. Then, the shortest path from p to a must cross π1 ∪ π2, contradicting Observation 4.1.220

Lemma 4.2 indicates how to construct the routing table ρ(p) for p. We set221

t =
⌈
π/ arcsin

(
1

2 (1 + 1/ε)

)⌉
, (1)222

and we construct a set C of cones for p as in Section 3. Let Cj ∈ C be a cone, and let Πi be a hole223

boundary or the outer boundary. We define Cj uΠi as the set of all vertices q on Πi for which the first224

edge of the shortest path from p to q lies in Cj . By Lemma 4.2, the indices of the vertices in Cj u Πi225

form a (possibly empty) cyclic interval [k1, k2]. If Cj u Πi = ∅, we do nothing. Otherwise, if Cj u Πi 6= ∅,226

there is a vertex r ∈ Cj closest to p, and we add the entry (i, k1, k2, `(r)) to ρ(p). This entry needs227

2 · dlog he+ 3 · dlogne bits.228

Now, the routing function f : ρ(V ) × `(V ) → V is quite simple. Given the routing table ρ(p) for229

the current vertex p and a target label `(q) = (i, k), indicating vertex k on hole i, we search ρ(p) for an230

entry (i, k1, k2, `(r)) with k ∈ [k1, k2]. By construction, this entry is unique. We return r as the next231

destination for the packet (see Figure 3).232

5 Analysis233

We analyze the stretch factor of our routing scheme and give upper bounds on the size of the routing234

tables and the preprocessing time. Let ε > 0 be fixed, and let 1 + ε be the desired stretch factor. We set235

t as in (1). First, we bound t in terms of ε. This immediately gives |C(p)| ∈ O(1/ε), for every vertex p.236

Lemma 5.1. We have t ≤ 2π (1 + 1/ε) + 1.237

Proof. For x ∈ (0, 1/2], we have sin x ≤ x, so for z ∈ [2,∞), we get that sin(1/z) ≤ 1/z. Applying238

arcsin(·) on both sides, this gives 1/z ≤ arcsin(1/z) ⇔ 1/ arcsin(1/z) ≤ z. We set z = 2(1 + 1/ε) and239

multiply by π to derive the desired inequality.240
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5.1 The Routing Table241

Let p be a vertex of P . We again write C for C(p) and Cj instead of Cj(p). To bound the size of ρ(p), we242

need some properties of holes with respect to cones. For i = 0, . . . , h− 1, we write m(i) for the number of243

cones Cj ∈ C with Cj uΠi 6= ∅. Then, ρ(p) contains at most |ρ(p)| ≤ O
(∑h−1

i=0 m(i) logn
)
bits. We say244

that Πi is stretched for the cone Cj if there are indices 0 ≤ j1 < j < j2 < t such that Cj1 uΠi, Cj uΠi245

and Cj2 u Πi are non-empty. If Πi is not stretched for any cone of p, then m(i) ≤ 2. We prove the246

following lemma:247

Lemma 5.2. For every cone Cj ∈ C, there is at most one boundary Πi that is stretched for Cj.248

Proof. Let Πi be a hole boundary that is stretched for Cj . There are indices j1 < j < j2 and vertices249

q ∈ Cj1 uΠi, r ∈ Cj uΠi, and s ∈ Cj2 uΠi. We subdivide P into three regions Q, R and S: the boundary250

of Q is given by the shortest path from p to r, the shortest path from p to q, and the part of Πi from r251

to q not containing s. Similarly, the region R is bounded by the shortest path from p to r, the shortest252

path from p to s and the part of Πi between r and s that does not contain q. Finally, S is the closure of253

P \ (Q ∪R). The interiors of Q, R, and S are pairwise disjoint; see Figure 6.254

q

r

p

s

Q

R

S

S

Πi

Π

t

Figure 6: The shortest paths from p to q, r, s (blue). The hole Π contains t and lies in Q.

Suppose there is another boundary Π that is stretched for Cj . Then, Π must lie entirely in either Q,255

R, or S. We discuss the first case, the other two are symmetric. Since Π is stretched for Cj , there is256

an index j′ > j and a vertex t ∈ Cj′ u Π. Consider the shortest path π from p to t. Since j′ > j, the257

first edge of π lies in R or S, and π has to cross or touch the shortest path from p to q or from p to258

r. Furthermore, by definition, we have Cj ∩ Cj′ = {p} and Cj1 ∩ Cj′ = {p}. Therefore, p is the lowest259

common ancestor of all three shortest paths, and Observation 4.1 leads to a contradiction.260

For i = 0, . . . , h− 1, let s(i) be the number of cones in C for which Πi is stretched. By Lemma 5.2, we261

get
∑h−1
i=0 s(i) ≤ |C(p)| ∈ O(1/ε). Since m(i) ≤ s(i) + 2, we conclude262

|ρ(p)| ∈ O
(
h−1∑
i=0

m(i) logn
)

= O

(
h−1∑
i=0

(s(i) + 2) logn
)

= O ((|C(p)|+ 2h) logn) = O ((1/ε+ h) logn) .263

5.2 The Stretch Factor264

Next, we bound the stretch factor. First, we prove that the distance to the target decreases after the first265

step. This will then give the bound on the overall stretch factor.266

Lemma 5.3. Let p and q be two vertices in P . Let s be the next vertex computed by the routing scheme267

for a data packet from p to q. Then, d(s, q) ≤ d(p, q)− |ps|/(1 + ε).268

Proof. By construction of ρ(p), we know that the next vertex q′ on the shortest path from p to q lies in
the same cone as s. Hence, by the triangle inequality and Lemma 3.1, we obtain

d(s, q) ≤ d(s, q′) + d(q′, q) ≤ |pq′| − (1− 2 sin(π/t)) |ps|+ d(q′, q)

= d(p, q)− (1− 2 sin(π/t)) |ps| ≤ d(p, q)−
(

1− 1
1 + 1/ε

)
|ps| (definition of t)

= d(p, q)− |ps|/(1 + ε),
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as desired.269

Lemma 5.3 immediately shows the correctness of the routing scheme: the distance to the target q270

decreases strictly in each step and there is a finite number of vertices, so there is a k = k(p, q) ≤ n so that271

after k steps, the packet reaches q. Using this, we can now bound the stretch factor of the routing scheme.272

Lemma 5.4. Let p and q be two vertices of P . Then, dρ(p, q) ≤ (1 + ε)d(p, q).273

Proof. Let π = p0p1 . . . pk be the routing path from p = p0 to q = pk. By Lemma 5.3, we have274

d(pi+1, q) ≤ d(pi, q)− |pipi+1|/(1 + ε). Thus,275

dρ(p, q) =
k−1∑
i=0
|pipi+1| ≤ (1 + ε)

k−1∑
i=0

(d(pi, q)− d(pi+1, q)) = (1 + ε) (d(p0, q)− d(pk, q)) = (1 + ε)d(p, q),276

as claimed.277

5.3 The Preprocessing Time278

Finally, we discuss the details of the preprocessing algorithm and its time complexity.279

Lemma 5.5. The preprocessing time for our routing scheme is O(n2 logn+ n/ε) for polygonal domains280

and O(n2 + n/ε) for simple polygons.281

Proof. Let p be a vertex of P . We compute the shortest path tree T for p. In polygonal domains, this282

takes O(n logn) time using the algorithm of Hershberger and Suri [25], and in simple polygons, this needs283

O(n) time, using the algorithm of Guibas et al. [24]. We perform a circular sweep around p to find for284

each cone Cj ∈ C the set Xj of the children of p in T that lie in Cj . This requires O(n+ 1/ε) steps.285

For each cone Cj , we find the child r ∈ Xj that is closest to p. We traverse all subtrees of T that are286

rooted at some child in Xj , and we collect the set Vj of all their vertices. We group the vertices in Vj287

according to the hole boundaries they belong to. This takes O(|Vj |) time, using the following bucketing288

scheme: once for the whole algorithm, we set up an array B of buckets with h entries, one for each hole289

boundary. Each bucket consists of a linked list, initially empty. This gives a one-time initialization cost290

of O(h). When processing the vertices of Vj , we create a linked list N of non-empty buckets, also initially291

empty. For each v ∈ Vj , we add v into its corresponding bucket B[i]. If v is the first vertex in B[i], we292

add i to N . This takes O(|Vj |) time in total, and it leads to the desired grouping of Vj . Once we have293

processed Vj , we use N in order to reset all the buckets we used to empty, in another O(|Vj |) steps.294

Now, for each hole i, let Vj,i be the set of all vertices on Πi that lie in Vj . By Lemma 4.2, Vj,i is a295

cyclic interval. To determine its endpoints, it suffices to identify one vertex on hole i that is not in Vj,i (if296

it exists). After that, a simple scan over Vj,i gives the desired interval endpoints in O(|Vj,i|) additional297

time. To find this vertex in O(|Vj,i|) time, we use prune and search: let L = {pi,k ∈ Vj,i | k < dni/2e}298

and R = Vj,i \ L. We determine |L| and |R| by scanning Vj,i, and we distinguish three cases. First, if299

|L| = dni/2e and |R| = bni/2c, all vertices of hole i lie in the Vj , and we are done. Second, if |L| < dni/2e300

and |R| < bni/2c, then at least one of pi,0, pi,dni/2e−1, pi,dni/2e, and pi,ni−1 is not in Vj,i. Another scan301

over Vj,i reveals which one it is. In the third case, exactly one of the two sets L, R contains all possible302

vertices, whereas the other one does not. We recurse on the latter set. This set contains at most |Vj,i|/2303

elements, so the overall running time for the recursion is O(|Vj,i|).304

It follows that we can handle a single cone Cj in time O(|Vj |), so the total time for processing p is305

O(n logn+ 1/ε) in polygonal domains and O(n+ 1/ε) in simple polygons. Since we repeat for each vertex306

of P , the claim follows.307

Combining the last two lemmas with Section 4, we get our main theorem.308

Theorem 2.1. Let P be a polygonal domain with n vertices and h holes. For any ε > 0 we can construct309

a routing scheme for VG(P ) with labels of O(logn) bits and routing tables of O((1/ε+ h) logn) bits per310

vertex. For any two sites p, q ∈ P , the scheme produces a routing path with stretch factor at most 1 + ε.311

The preprocessing time is O(n2 logn). If P is a simple polygon, the preprocessing time reduces to O(n2).312
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Proof. First, note that we may assume that ε = Ω(1/n), otherwise, the theorem follows trivially from313

storing a complete shortest path tree in each routing table. Thus, 1/ε = O(n), and by Lemma 5.5, the314

preprocessing time is O(n2 logn) for polygonal domains, and O(n2) for simple polygons. The claim on315

the label size follows from the discussion at the beginning of Section 4, the size of the routing tables is316

given in Section 5.1, and the stretch factor is proved in Lemma 5.4.317

6 Conclusion318

We gave an efficient routing scheme for the visibility graph of a polygonal domain. Our scheme produces319

routing paths whose length can be made arbitrarily close to the optimum.320

Several open questions remain. First of all, we would like to obtain an efficient routing scheme for the321

hop-distance in polygonal domains P , where each edge of VG(P ) has unit weight. This scenario occurs322

for routing in a wireless network: here, the main overhead is caused by forwarding a packet at a base323

station, whereas the distance that the packet has to cross is negligible for the travel time. For our routing324

scheme, we can construct examples where the stretch factor is Ω(n); see Figure 7. Moreover, it would be325

interesting to improve the preprocessing time or the size of the routing tables, perhaps using a recursive326

strategy.

p q
Cj

Figure 7: In this polygon, p and q can see each other, so their hop-distance is 1. Our routing scheme
routes from one spire to the next, giving stretch factor Θ(n).

327

A final open question concerns routing schemes in general: how do we model the time needed by a328

data packet to travel through the graph, including the processing times at the vertices? In particular, it329

would be interesting to consider a model in which each vertex has a fixed processing time until it knows330

the next vertex for the current packet. This would lead to a sightly different, but important, measure for331

routing schemes.332
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