
Approximate k-flat Nearest Neighbor Search

Wolfgang Mulzer
∗

Freie Universität Berlin
mulzer@inf.fu-berlin.de

Huy L. Nguyễn
Simons Institute
hlnguyen@

cs.princeton.edu

Paul Seiferth
∗

Freie Universität Berlin
pseiferth@inf.fu-

berlin.de

Yannik Stein
†

Freie Universität Berlin
yannikstein@inf.fu-

berlin.de

ABSTRACT
Let k ≥ 0 be an integer. In the approximate k-flat nearest
neighbor (k-ANN) problem, we are given a set P ⊂ Rd of
n points in d-dimensional space and a fixed approximation
factor c > 1. Our goal is to preprocess P so that we can ef-
ficiently answer approximate k-flat nearest neighbor queries:
given a k-flat F , find a point in P whose distance to F is
within a factor c of the distance between F and the closest
point in P . The case k = 0 corresponds to the well-studied
approximate nearest neighbor problem, for which a plethora
of results are known, both in low and high dimensions. The
case k = 1 is called approximate line nearest neighbor. In
this case, we are aware of only one provably efficient data
structure, due to Andoni, Indyk, Krauthgamer, and Nguy˜̂en
(AIKN) [2]. For k ≥ 2, we know of no previous results.

We present the first efficient data structure that can han-
dle approximate nearest neighbor queries for arbitrary k. We
use a data structure for 0-ANN-queries as a black box, and
the performance depends on the parameters of the 0-ANN
solution: suppose we have a 0-ANN structure with query
time O(nρ) and space requirement O(n1+σ), for ρ, σ > 0.

Then we can answer k-ANN queries in time O(nk/(k+1−ρ)+t)

and space O(n1+σk/(k+1−ρ) + n logO(1/t) n). Here, t > 0 is
an arbitrary constant and the O-notation hides exponential
factors in k, 1/t, and c and polynomials in d.

Our approach generalizes the techniques of AIKN for 1-
ANN: we partition P into clusters of increasing radius, and
we build a low-dimensional data structure for a random pro-

∗Partially supported by DFG Grants MU 3501/1 & MU
3501/2.
†Supported by the DFG within the RTG ‘Methods for Dis-
crete Structures’ (GRK 1408).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
STOC’15, June 14–17, 2015, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3536-2/15/06 ...$15.00.
http://dx.doi.org/10.1145/2746539.2746559 .

jection of P . Given a query flat F , the query can be an-
swered directly in clusters whose radius is “small” compared
to d(F, P) using a grid. For the remaining points, the low
dimensional approximation turns out to be precise enough.
Our new data structures also give an improvement in the
space requirement over the previous result for 1-ANN: we
can achieve near-linear space and sublinear query time, a
further step towards practical applications where space con-
stitutes the bottleneck.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations

General Terms
Algorithms, Theory

Keywords
approximate nearest neighbors, k-flat, high dimensions

1. INTRODUCTION
Nearest neighbor search is a fundamental problem in com-

putational geometry, with a countless number of applica-
tions in databases, information retrieval, computer vision,
machine learning, signal processing, etc. [10]. Given a set
P ⊂ Rd of n points in d-dimensional space, we would like
to preprocess P so that for any query point q ∈ Rd, we can
quickly find the point in P that is closest to q.

When the dimension d is “small”, there are efficient so-
lutions [7, 17]. As d increases, these algorithms quickly be-
come inefficient: either the query time approaches linear or
the space grows exponentially with d. This phenomenon is
usually called the “curse of dimensionality”. Nonetheless, if
one is satisfied with just an approximate nearest neighbor
whose distance to the query point q lies within some factor
c = 1 + ε, ε > 0, of the distance between q and the actual
nearest neighbor, there are efficient solutions even for high
dimensions. Several methods are known, offering trade-offs
between the approximation factor, the space requirement,
and the query time (see, e.g., [1, 3] and its references).

From a practical perspective, it is important to keep both
the query time and the space small. Ideally, we would like al-
gorithms with almost linear (or at least sub-quadratic) space
requirement and sub-linear query time. Fortunately, there
are solutions with these guarantees. These methods include
locality sensitive hashing (LSH) [11, 12] and a more recent
approach that improves upon LSH [3]. Specifically, the lat-

ter algorithm achieves query time n7/(8c2)+O(1/c3) and space

n1+7/(8c2)+O(1/c3), where c is the approximation factor.
Often, however, the query object is more complex than a

single point. Here, the complexity of the problem is much
less understood. Perhaps the simplest such scenario occurs
when the query object is a k-dimensional flat, for some small
constant k. This is called the approximate k-flat nearest
neighbor problem [2]. It constitutes a natural generalization
of approximate nearest neighbors, which corresponds to k =
0. In practice, low-dimensional flats are used to model data
subject to linear variations. For example, one could capture
the appearance of a physical object under different lighting
conditions or under different viewpoints [4].

So far, the only known algorithm with worst-case guar-
antees is for k = 1, the approximate line nearest neighbor
problem. For this case, Andoni, Indyk, Krauthgamer, and
Nguy˜̂en (AIKN) achieve sub-linear query time dO(1)n1/2+t

and space dO(1)nO(1/ε2+1/t2), for arbitrarily small t > 0.
For the “dual” version of the problem, where the query is a
point but the data set consists of k-flats, three results are
known [4,14,15]. The first algorithm is essentially a heuristic
with some control of the quality of approximation [4]. The
second algorithm provides provable guarantees and a very
fast query time of (d + logn + 1/ε)O(1) [14]. The third re-
sult, due to Mahabadi, is very recent and improves the space
requirement of Magen’s result [15]. Unfortunately, these al-
gorithms suffer from high space requirements, thus limiting
their applicability in practice. In fact, even the basic LSH
approach for k = 0 is already too expensive for large datasets
and additional theoretical work and heuristics are required
to reduce the memory usage and make LSH suitable for this
setting [13,18]. For k ≥ 2, we know of no previous results.

Our results. We present the first efficient data structure
for general approximate k-flat nearest neighbor search. Sup-
pose we have a data structure for (1−1/ logn)c-approximate
point nearest neighbors with query time O(nρ+d logn) and
space O(n1+σ + d logn), for some constants ρ, σ > 0. Then

our algorithm achieves query time O(dO(1)nk/(k+1−ρ)+t) and

space O(dO(1)n1+σk/(k+1−ρ)+n logO(1/t) n), where t > 0 can
be made arbitrarily small. The constant factors for the query
time depend on k, c, and 1/t. Our main result is as follows.

Theorem 1.1. Fix k ∈ N and an approximation factor
c > 1. Suppose we have a data structure for (1− 1/ logn)c-
approximate point nearest neighbors with query time O(nρ+
d logn) and space O(n1+σ + d logn), for constants ρ, σ > 0.
Let P ⊂ Rd be a d-dimensional n-point set. For any t > 0,
we can construct a randomized data structure with space
O(dO(1)n1+kσ/(k+1−ρ) + n logO(1/t) n) that answers the fol-

lowing queries in O(dO(1)nk/(k+1−ρ)+t) expected time: given
a k-flat F ⊂ Rd, find a point p ∈ P with d(p, F) ≤ cd(P, F).

Table 1 gives an overview of some approximate point near-
est neighbor structures that can be used in Theorem 1.1.
The result by AINR gives the current best query perfor-
mance for large enough values of c. For smaller c, an ap-

Data Structure ρ σ

AINR [3] 7
8
c−2 +O(c−3) 7

8
c−2 +O(c−3)

LSH1 [1, Thm. 3.2.1] 1/c2 1/c2

LSH2 [1, Thm 3.4.1] O(1/c2) 0

Table 1: Overview of relevant ANN structures.

proach using locality sensitive hashing (LSH1) might be
preferable. With another variant of locality sensitive hash-
ing (LSH2), the space can be made almost linear, at the
expense of a slightly higher query time. The last result (and
related results, e.g., [13]) is of particular interest as the mem-
ory consumption is a major bottleneck in practice. It also
improves the previous algorithm by AIKN for line queries.

Along the way towards Theorem 1.1, we present a novel
data structure for k-flat near neighbor reporting when the
dimension d is constant. The space requirement in this
case is Od(n logO(d) n) and the time needed for a query is

Od(n
k/(k+1) logd−k−1 n + |R|), where R is the answer set.

This data structure may be of independent interest and may
lead to further applications. Our results provide a vast gen-
eralization of the result in AIKN and shows for the first
time that it is possible to achieve provably efficient nearest
neighbor search for higher-dimensional query objects.

Our techniques. Our general strategy is similar to the
approach by AIKN. The data structure consists of two main
structures: the projection structure and the clusters. The
projection structure works by projecting the point set to a
space of constant dimension and by answering the nearest
neighbor query in that space. As we will see, this suffices to
obtain a rough estimate for the distance, and it can be used
to obtain an exact answer if the point set is “spread out”.

Unfortunately, this does not need to be the case. There-
fore, we partition the point set into a sequence of clusters.
A cluster consists of m points and a k-flat K such that all
points in the cluster are “close” to K, where m is a param-
eter to be optimized. Using a rough estimate from the pro-
jection structure, we can classify the clusters as small and
large (depending on their radius). The points in the large
clusters are spread out and can be handled through projec-
tion. The points in the small clusters are well behaved and
can be handled directly in high dimensions using grids and
discretization.

Organization. In order to provide the curious reader
with quick gratification, we will give the main data structure
together with the properties of the cluster and the projection
structure in Section 2. Considering these structures as black
boxes, this already proves Theorem 1.1.

In the remainder of the paper, we describe the details of
the helper structures. The necessary tools are introduced in
Section 3. Section 4 gives the approximate nearest neigh-
bor algorithm for small clusters. In Section 5, we consider
approximate near neighbor reporting for k-flats in constant
dimension. This data structure is then used for the projec-
tion structures in Section 6.

2. MAIN DATA STRUCTURE AND ALGO-
RITHM OVERVIEW

We describe our main data structure for approximate k-
flat nearest neighbor search. It relies on various substruc-
tures that will be described in the following sections. We

let P denote a d-dimensional n-point set, and c > 1 is the
desired approximation factor.

Let K be a k-flat in d dimensions. The flat-cluster C (or
cluster for short) of K with radius α is the set of all points
with distance at most α to K, i.e., C = {p ∈ Rd | d(p,K) ≤
α}. A cluster is full if it contains at least m points from
P , where m is a parameter to be determined. We call P
α-cluster-free if there is no full cluster with radius α. Let
t > 0 be an arbitrarily small parameter. Our data structure
requires the following three subqueries.

Q1: Given a query flat F , find a point p ∈ P with d(p, F) ≤
ntd(P, F).

Q2: Assume P is contained in a flat-cluster with radius α.
Given a query flat F with d(P, F) ≥ α/n2t, return a
point p ∈ P with d(p, F) ≤ cd(P, F).

Q3: Assume P is αn2t/(2k+ 1)-cluster free. Given a query
flat F with d(P, F) ≤ α, find the nearest neighbor p∗ ∈
P to F .

Briefly, our strategy is as follows: during the preprocessing
phase, we partition the point set into a set of full clusters
of increasing radii. To answer a query F , we first perform
a query of type Q1 to obtain an nt-approximate estimate
r̃ for d(P, F). Using r̃, we identify the “small” clusters (by
radius). These clusters can be processed using a query of
type Q2. The remaining point set contains no “small” full
cluster, so we can process it with a query of type Q3.

We will now describe the properties of the subqueries and
the organization of the data structure in more detail. The
data structure for Q2-queries is called the cluster structure.
It is described in Section 4, and it has following properties.

Theorem 2.1. Let Q be a d-dimensional m-point set that
is contained in a flat-cluster of radius α. Let c > 1 be an
approximation factor. Using space Oc(m

1+σ + d log2 m), we
can construct a data structure with the following property.
Given a query k-flat F with d(P, F) ≥ α/n2t and an esti-
mate r̃ with d(P, F) ∈ [r̃/nt, r̃], we can find a c-approximate

nearest neighbor for F in Q in Oc((n
2tk2)k+1(m1−1/k+ρ/k+

(d/k) logm)) total time.

The data structures for Q1 and Q3 are very similar, and we
cover them in Section 6. They are called projection struc-
tures, since they are based on projecting P into a low di-
mensional subspace. In the projected space, we use a data
structure for approximate k-flat near neighbor search to be
described in Section 5. The projection structures have the
following properties.

Theorem 2.2. Let P be a d-dimensional n-point set, and
let t > 0 be a small enough constant. Using space and time
O(n logO(1/t) n), we can obtain a data structure for the fol-
lowing query: given a k-flat F , find a point p ∈ P with
d(p, F) ≤ ntd(P, F). A query needs O(nk/(k+1) logO(1/t) n)
time, and the answer is correct with high probability.

Theorem 2.3. Let P ⊂ Rd be an n-point set, and let
t > 0 be a small enough constant. Using space and time
O(n logO(1/t) n), we can obtain a data structure for the fol-
lowing query: given a k-flat F and α > 0 such that d(F, P) ≤
α and such that P is αnt/(2k + 1)-cluster-free, find an ex-
act nearest neighbor for F in P . A query requires time
O(nk/(k+1) logO(1/t) n + m), and the answer is correct with
high probability. Here, m denotes the size of a full cluster.

2.1 Constructing the Data Structure
First, we build a projection structure for Q1 queries on P .

This needs O(n logO(1/t) n) space, by Theorem 2.2. Then,
we repeatedly find the full flat-cluster C with smallest ra-
dius. The m points in C are removed from P , and we build
a cluster structure for Q2 queries on this set. By Theo-
rem 2.1, this needs Oc(m

1+σ + d log2 m) space. To find C,
we check all flats K spanned by k + 1 distinct points of P .
In Lemma 3.2 below, we prove that this provides a good
enough approximation. In the end, we have n/m point sets
Q1, . . . , Qn/m ordered by decreasing radius, i.e., the cluster
for Q1 has the largest radius. The total space occupied by
the cluster structures is O(nmσ + (n/m)d log2 n).

Finally, we build a perfect binary tree T with n/m leaves
labeled Q1, . . . , Qn/m, from left to right. For a node v ∈ T
let Qv be the union of all Qi assigned to leaves below v.
For each v ∈ T we build a data structure for Qv to answer
Q3 queries. Since each point is contained in O(logn) data

structures, the total size is O(n logO(1/t) n), by Theorem 2.3.
For pseudocode, see Algorithm 1.

Algorithm 1: Preprocessing algorithm. Compared with
AIKN [2], we organize the projection structure in a tree
to save space.

Input: point set P ⊂ Rd, approximation factor c,
parameter t > 0

1 Q← P
2 for i← n/m downto 1 do

3 For each V ∈
(
Q
k+1

)
, consider the k-flat KV defined

by V . Let αV be the radius of the smallest
flat-cluster of KV with exactly m points of Q.

4 Choose the flat K = KV that minimizes αV and set
αi = αV .

5 Remove from Q the set Qi of m points in Q within
distance αi from K.

6 Construct cluster structure Ci for cluster (K,Qi).

7 Build a perfect binary tree T with n/m leaves, labeled
Q1, . . . , Qn/m from left to right.

8 foreach node v ∈ T do
9 Build data structure for Q3 queries as in Thm. 2.3

for the set Qv corresponding to the leaves below v.

2.2 Performing a Query
Suppose we are given a k-flat F . To find an approximate

nearest neighbor for F we proceed similarly as AIKN [2].
We use Q2 queries on “small” clusters and Q3 queries on
the remaining points; for pseudocode, see Algorithm 2.

First, we perform a query of type Q1 to obtain a nt-
approximate nearest neighbor p1 for F . This needs time
O(nk/(k+1) logO(1/t) n). Let r̃ = d(p1, F). We use r̃ as an
estimate to distinguish between “small” and “large” clusters.
Let i∗ ∈ {1, . . . , n/m} be the largest integer such that the
cluster assigned with Qi∗ has radius αi∗ > r̃nt. For i =
i∗ + 1, . . . , n/m, we use r̃ as an estimate for a Q2 query on
Qi. Since |Qi| = m and by Theorem 2.1, this needs total

time O(n2t(k+1)+1m−1/k+ρ/k + (n/m)d log2 m).
It remains to deal with points in “large” clusters. The

goal is to perform a type Q3 query on
⋃

1≤i≤i∗ Qi. For
this, we start at the leaf of T labeled Qi∗ and walk up to
the root. Each time we encounter a new node v from its

Algorithm 2: Algorithm for finding approximate near-
est neighbor in high dimensions.

Input : query flat F
Output: a c-approximate nearest neighbor for F in P

1 Query the root of T for a nt-approximate nearest
neighbor p1 to F . /* type Q1 */

2 r̃ ← d(p1, F)

3 i∗ ← maximum i ∈ {1, . . . , n/m} with αi > r̃nt, or 0 if
no such i exists

4 for i← i∗ + 1 to n/m do
/* type Q2; we have d(Qi, F) ≥ r̃/nt ≥ αi/n2t */

5 Query cluster structure Ci with estimate r̃.

/* type Q3 */

6 Query projection structure for a r̃-thresholded nearest

neighbor of F in Q =
⋃j∗
i=1 Ui. return closest point to

F among query results.

right child, we perform a Q3 query on Qu, where u de-
notes the left child of v. Let L be all the left children we
find in this way. Then clearly we have |L| = O(logn) and⋃
u∈LQu =

⋃
1≤i≤i∗ Qi. Moreover, by construction, there is

no full cluster with radius less than r̃nt defined by k+1 ver-
tices of Qu for any u ∈ L. We will see that this implies every
Qu to be r̃nt/(2k + 1)-cluster-free, so Theorem 2.3 guaran-

tees a total query time of O(nk/(k+1) logO(1/t) n+m) for this
step. Among all the points we obtained during the queries,
we return the one that is closest to F . A good trade-off point
is achieved for m = nm−1/k+ρ/k, i.e., for m = nk/(k+1−ρ).
This gives the bounds claimed in Theorem 1.1.
Correctness. Let p∗ be a point with d(p∗, F) = d(P, F).
First, suppose that p∗ ∈ Qi, for some i > i∗. Then, we
have d(p∗, F) ≥ r̃/nt ≥ αi/n

2t, where αi is the radius of
the cluster assigned to Qi. Since r̃ is a valid nt-approximate
estimate for d(F,Qi), a query of type Q2 on Qi gives a c-
approximate nearest neighbor, by Theorem 2.1. Now, sup-
pose that p∗ ∈ Qi for 1 ≤ i ≤ i∗. Let u be the node of L
with p∗ ∈ Qu. Then Theorem 2.3 guarantees that we will
find p∗ when doing a Q3 query on Qu.

3. PRELIMINARIES
Partition Trees. Fix an integer constant r > 0, and let
P ⊂ Rd be a d-dimensional n-point set. A simplicial r-
partition Ξ for P is a sequence Ξ = (P1,∆1), . . . , (Pm,∆m)
of pairs such that (i) the sets P1, . . . , Pm form a partition of
P with n/r ≤ |Pi| ≤ d2n/re, for i = 1, . . . ,m; (ii) each ∆i is
a relatively open simplex with Pi ⊂ ∆i, for i = 1, . . . ,m; and
(iii) every hyperplane h in Rd crosses O(r1−1/d) simplices ∆i

in Ξ. Here, a hyperplane h crosses a simplex ∆ if h intersects
∆, but does not contain it. In a classic result, Matoušek
showed that such a simplicial partition always exists and
that it can be computed efficiently [6, 16].

By repeatedly computing a simplicial partition, one can
construct a partition tree for P . A partition tree T is a
rooted tree in which each node is associated with a pair
(Q,∆), such that Q is a subset of P and ∆ is a relatively
open simplex that contains Q. If |Q| ≥ 2r, the children of
(Q,∆) constitute a simplicial r-partition of Q. Otherwise,
the node (Q,∆) has |Q| children where each child corre-
sponds to a point in Q. A partition tree has constant degree,
linear size, and logarithmic depth.

Given a hyperplane h, there is a straightforward query
algorithm to find the highest nodes in T whose associated
simplex does not cross h: start at the root and recurse on
all children whose associated simplex crosses h; repeat until
there are no more crossings or until a leaf is reached. The
children of the traversed nodes whose simplices do not cross
h constitute the desired answer. In 2012, Chan [5] gave an
optimal construction for partition trees.

Theorem 3.1 (Opt. Partition Trees [5]). Let P ⊂
Rd be an n-point set. For any large enough constant r, there
is a partition tree T with the following properties: (i) the
tree T has degree O(r) and depth logr n; (ii) each node is of
the form (Q,∆), where Q is a subset of P and ∆ a relatively
open simplex that contains Q; (iii) for each node (Q,∆), the
simplices of the children of Q are contained in ∆ and are
pairwise disjoint; (iv) the point set associated with a node
of depth ` has size at most n/r`; (v) for any hyperplane h
in Rd, the number m` of simplices in T that h intersects at
level ` obeys the recurrence

m` = O(r`(d−1)/d + r(d−2)/(d−1)m`−1 + r` log r logn).

Thus, h intersects O(n1−1/d) simplices in total. The tree T
can be built in expected time O(n logn).

k-flat Discretization. For our cluster structure we must
find k-flats that are close to many points. The following
lemma shows that it suffices to check “few” k-flats for this.
The proof generalizes the proof of Lemma 2.3 by AIKN [2]
and it can be found in the full version.

Lemma 3.2. Let P ⊂ Rd be a finite point set with |P | ≥
k + 1, and let F ⊂ Rd be a k-flat. There is a k-flat F ′

such that F ′ is the affine hull of k + 1 points in P and
δF ′(P) ≤ (2k + 1)δF (P), where δF ′(P) = maxp∈P d(p, F ′)
and δF (P) = maxp∈P d(p, F).

4. CLUSTER STRUCTURE
A k-flat cluster structure consists of a k-flat K and a

set Q of m points with d(q,K) ≤ α, for all q ∈ Q. Let
K : u 7→ A′u+a be a parametrization of K, with A′ ∈ Rd×k
and a ∈ Rd such that the columns of A′ constitute an or-
thonormal basis for K and such that a is orthogonal to
K. We are also given an approximation parameter c > 1.
The cluster structure uses a data structure for approximate
point nearest neighbor search as a black box. We assume
that we have such a structure available that can answer
c-approximate point nearest neighbor queries in d dimen-
sions with query time Oc(n

ρ + d logn) and space require-
ment Oc(n

1+σ + d logn) for some constants ρ, σ > 0. As
mentioned in the introduction, the literature offers several
data structures for us to choose from.

The cluster structure distinguishes two cases: if the query
flat F is close to K, we approximate F by few “patches”
parallel to K, s.t. a good nearest neighbor for the patches is
also good for K. Since the patches are parallel to K, they
can be handled through 0-ANN queries in the orthogonal
spaceK⊥ and low-dimensional queries insideK. If the query
flat is far fromK, we approximateQ by its projection ontoK
and handle the query with a low-dimensional data structure.

4.1 Preprocessing
Let K⊥ be the linear subspace of Rd orthogonal to K. Let

Qa be the projection of Q onto K, and let Qb be the projec-
tion of Q onto K⊥. We compute a k-dimensional partition

tree T for Qa. As stated in Theorem 3.1, the tree T has
O(m) nodes, and it can be computed in time O(m logm).

For each node (Sa,∆) of T , we do the following: we deter-
mine the set S ⊆ Q whose projection onto K gives Sa, and
we take the projection Sb of S onto K⊥. Then, we build a
d− k dimensional c′-ANN data structure for Sb, as given by
the assumption, where c′ = (1−1/ logn)c. See Algorithm 3.

Algorithm 3: CreateClusterStructure

Input: k-flat K ⊆ Rd, point set Q ⊂ Rd with
d(q,K) ≤ α for all q ∈ Q, approximation
parameter c > 1

1 Qa ← projection of Q onto K

2 Qb ← projection of Q onto K⊥

3 Build a k-dimensional partition tree T for Qa as in
Theorem 3.1.

4 c′ ← (1− 1/ logn)c
5 foreach node (Sa,∆) ∈ T do
6 Sb ← projection of the points in Q corresponding to

Sa onto K⊥

7 Build a (d− k)-dimensional c′-ANN structure for Sb
as given by the assumption.

Lemma 4.1. The cluster structure can be constructed in
total time Oc(m

2+ρ+md log2 m), and it requires Oc(m
1+σ+

d log2 m) space.

Proof. By Theorem 3.1, the partition tree can be built
in O(m logm) time. Thus, the preprocessing time is domi-
nated by the time to construct the c′-ANN data structures
at the nodes of the partition tree T . Since the sets on each
level of T constitute a partition of Q, and since the sizes of
the sets decrease geometrically, the bounds on the prepro-
cessing time and space requirement follow directly from our
assumption. Note that by our choice of c′ = (1− 1/ logn)c,
the space requirement and query time for the ANN data
structure change only by a constant factor.

4.2 Processing a Query
We set ε = 1/100 logn. Let F be the query k-flat, given

as F : v 7→ B′v + b, with B′ ∈ Rd×k and b ∈ Rd such
that the columns of B′ are an orthonormal basis for F and
b is orthogonal to F . Our first task is to find bases for
the flats K and F that provide us with information about
the relative position of K and F . For this, we take the
matrix M = A′TB′ ∈ Rk×k, and we compute a singular
value decomposition M = UΣV T of M [9, Chapter 7.3].
Recall that U and V are orthogonal k × k matrices and
that Σ = diag(σ1, . . . , σk) is a k × k diagonal matrix with
σ1 ≥ · · · ≥ σk ≥ 0. We call σ1, . . . , σk the singular values of
M . The following lemma summarizes the properties of the
SVD that are relevant to us.

Lemma 4.2. Let M = A′TB′, and let M = UΣV T be a
singular value decomposition for M . Let u1, . . . , uk be the
columns of U and v1, . . . , vk be the columns of V . Then, (i)
u1, . . . , uk is an orthonormal basis for K (in the coordinate
system induced by A′); (ii) v1, . . . , vk is an orthonormal basis
for F (in the coordinate system induced by B′): and (iii)
for i = 1, . . . , k, the projection of vi onto K is σiui and the
projection of ui onto F is σivi (in the coordinate systems
induced by A′ and B′). In particular, we have σ1 ≤ 1.

We reparametrize K according to U and F according to
V . More precisely, we set A = A′U and B = B′V , and
we write K : u 7→ Au + a and F : v 7→ Bv + b. The
new coordinate system provides a simple representation for
the distances between F and K. We begin with a technical
lemma that is a simple corollary of Lemma 4.2.

Lemma 4.3. Let a1, . . . , ak be the columns of the matrix

A; let a
‖
1, . . . , a

‖
k be the columns of the matrix BBTA, and

a⊥1 , . . . , a
⊥
k the columns of the matrix A−BBTA. Then, (i)

for i = 1, . . . , k, the vector a
‖
i is the projection of ai onto

F and the vector a⊥i is the projection of ai onto F⊥; (ii)

for i = 1, . . . , k, we have ‖a‖i ‖ = σi and ‖a⊥i ‖ =
√

1− σi;
and (iii) the vectors a

‖
1, . . . , a

‖
k, a
⊥
1 , . . . , a

⊥
k are pairwise or-

thogonal. An analogous statement holds for the matrices B,
AATB, and B −AATB.

The next lemma shows how our choice of bases gives a con-
venient representation of the distances between F and K.
Its proof can be found in the full version.

Lemma 4.4. Take two points xF ∈ K and yK ∈ F such
that d(F,K) = d(yK , xF). Write xF = AuF + a and yK =
BvK + b. Then, for any point x ∈ K with x = Au + a, we
have

d(F, x)2 =

k∑
i=1

(
1− σ2

i

)
(u− uF)2

i + d(F,K)2,

and for any point y ∈ F with y = Bv + b, we have

d(y,K)2 =

k∑
i=1

(
1− σ2

i

)
(v − vK)2

i + d(F,K)2.

Algorithm 4: QueryClusterStructure

Input: query k-flat F ⊆ Rd; an estimate r̃ with
d(F,Q) ∈ [r̃/nt, r̃].

1 M ← A′TB′.

2 Compute an SVD M = UΣV T of M with singular
values 1 ≥ σ1 ≥ · · · ≥ σk ≥ 0.

3 if σk = 1 then
4 f ←projection of F onto K⊥ ; /* F and K are

parallel; f is a point */

5 return c′-ANN for f in Qb
6 Reparametrize K according to U and F according to V .
/* Near case */

7 G ← set of approximate patches obtained by combining
Lemma 4.6 and 4.7

8 R← ∅
9 foreach G← G do

10 R← R ∪ result of ANN query for G as in Lem. 4.8
/* Far case */

11 R← R ∪ result of ANN query for G as in Lem. 4.11
12 return point in R that minimizes the distance to F

We now give a overview of the query algorithm (see Al-
gorithm 4). First, we check if F and K are parallel, i.e., if
σ1 = · · · = σk = 1. In this case, we need to perform only
a single c′-ANN query in Qb to obtain the desired result. If
F and K are not parallel, we distinguish two cases: if F is
far from Q, we approximate Q by its projection Qa onto K.

Thus, we take the closest point xF in K to F , and we return
an approximate nearest neighbor for xF in Qa according to
an appropriate metric derived from Lemma 4.4. See Sec-
tion 4.2.2 for details. If F is close to Q, we use Lemma 4.4
to discretize the relevant part of F into patches, such that
each patch is parallel to K and such that the best near-
est neighbor in Q for the patches provides an ANN for F .
Each patch can then be handled essentially by an appropri-
ate nearest neighbor query in K⊥. Details follow in Sec-
tion 4.2.1. We say F and Q are close if d(F,Q) ≤ α/ε, and
far if d(F,Q) > α/ε. Recall that we chose ε = 1/100 logn.

4.2.1 Near: d(F,Q) ≤ α/ε
We use our reparametrization of F and K to split the

coordinates as follows: recall that 1 ≥ σ1 ≥ · · · ≥ σk ≥ 0 are
the singular values of M = A′TB′. Pick l ∈ {0, . . . , k} such
that 1 ≥ σi ≥

√
1− ε, for i = 1, . . . , l, and

√
1− ε > σi ≥ 0,

for i = l + 1, . . . , k. For a d × k matrix X, let X[i] denote
the d × i matrix with the first i columns of X, and X−[i]

the d × (k − i) matrix with the remaining k − i columns of
X. Similarly, for a vector v ∈ Rk, let v[i] be the vector in

Ri with the first i coordinates of v, and v−[i] the vector in

Rk−i with the remaining k − i coordinates of v.
The next lemma is a direct consequence of Lemma 4.4. It

says that we can partition the directions in F into those that
are almost parallel to K and those that are almost orthog-
onal to K. Along the orthogonal directions, we discretize F
into few lower-dimensional flats that are almost parallel to
K. After that, we approximate these flats by few patches
that are actually parallel to K. These patches are then used
to perform the query. The proof is in the full version.

Lemma 4.5. Let y ∈ F be a point and yK ∈ F with
d(F,K) = d(yK ,K). Write yK = BvK + b and y = Bv + b.
Then,

∥∥(v − vK)−[l]

∥∥ ≤ d(y,K)/
√
ε.

Using Lemma 4.5, we can discretize the query F into a
set of l-flats that are almost parallel to the cluster flat K,
as stated in the next lemma. Again, the proof can be found
in the full version.

Lemma 4.6. There is a set L of O((n2tk1/2ε−5/2)k−l) l-
flats such that the following holds: (i) for every L ∈ L,
we have L ⊆ F ; (ii) for every L ∈ L and for every unit
vector u ∈ L, the projection of u onto K has length at least√

1− ε; and (iii) if d(F,Q) ∈ [α/n2t, α/ε], then there is an
l-flat L ∈ L with d(L,Q) ≤ (1 + ε)d(F,Q).

From now on, we focus on an approximate query l-flat
L : w 7→ B1w + b1 with B1 = B[l]. Our next goal is to
approximate L by a set of patches such that each is parallel
to K.

Lemma 4.7. There is a set G of O((n2tk1/2ε−2)l) patches
such that the following holds: (i) every G ∈ G is an l-
dimensional polytope, given by O(l) inequalities; (ii) for ev-
ery G ∈ G, the affine hull of G is parallel to K; (iii) if
d(L,Q) ∈ [α/n2t, 2α/ε], then there exists a G ∈ G with
d(G,Q) ≤ (1 + ε)d(L,Q); (iv) for all G ∈ G and for all
q ∈ Q, we have d(G, q) ≥ (1− ε)d(L, q).

Proof. Let C = AATB1 be the d × l matrix whose
columns b

‖
1, . . . , b

‖
l constitute the projections of the columns

of B onto K. By Lemma 4.3, the vectors b
‖
i are orthogonal

with ‖b‖i ‖ = σi, for i = 1, . . . , l, and the columns b⊥1 , . . . , b
⊥
l

of the matrix B1−C also constitute an orthogonal set, with
‖b⊥i ‖2 = 1−σ2

i , for i = 1, . . . , l. Let zK be a point in L that
minimizes the distance to K, and write zK = B1wK + b1.
Furthermore, for i = 1, . . . , l let τi = αε

n2t
√
l(1−σ2

i)
, and

oτ =
⌈

2n2t
√
l

ε2

⌉
. We use the τi and oτ to define a set I

of index vectors as I =
∏l
i=1{−oττi, (−oτ + 1)τi, . . . , oττi}.

We have |I| = O(olτ) = O((n2tk1/2ε−2)l). For each index
vector i ∈ I, we define the patch Gi as

Gi : w 7→ Cw +B1(wK + i) + b1, subject to w ∈
l∏
i=1

[0, τi] .

Our desired set of approximate query patches is now G =
{Gi | i ∈ I}. The set G fulfills properties (i) and (ii) by
construction, so it remains to check (iii). Fix a point z ∈ L.
Since L ⊆ F , we can write z = B1w+b1 = Bv+b, where the
vector w represents the coordinates of z in L and the vector
v represents the coordinates of z in F . By Lemma 4.4,

d(z,K)2 =

k∑
i=1

(1− σ2
i)(v − vK)2

i + d(F,K)2,

where the vector vK represents the coordinates of a point
in F that is closest to K. By definition of L, the last k − l
coordinates v−[l] in F are the same for all points z ∈ L, so
we can conclude that the coordinates for a closest point to
K in L are given by wK = (vK)[l] and that

d(z,K)2 =

l∑
i=1

(1− σ2
i)(w − wK)2

i + d(L,K)2. (1)

Now take a point zQ in L with d(zQ, Q) = d(L,Q) and
write zQ = B1wQ + b1. Since we assumed d(L,Q) ≤ 2α/ε,
(1) implies that for i = 1, . . . , l, we have |(wQ − wK)i| ≤
2α/

(
ε
√

1 + σ2
i

)
. Thus, if for i = 1, . . . , l, we round (wQ −

wK)i down to the next multiple of τi, we obtain an index

vector iQ ∈ I with (wQ − wK) − iQ ∈
∏l
i=1 [0, τi]. We set

sQ = (wQ−wK)−iQ. Considering the point CsQ+B1(uK+
iQ) + b1 in GiQ , we see that

d(GiQ , zQ)2 ≤ ‖CsQ +B1(wK + iQ) + b1 −B1wQ − b1‖2

= ‖CsQ −B1((wQ − wK)− iQ)‖2

= ‖(C −B1)sQ‖2 =

l∑
i=1

(1− σ2
i)(sQ)2

i

≤
l∑
i=1

(1− σ2
i)τ2

i = ε2α2/n4t,

using the properties of the matrix B1 − C stated above. It
follows that

d(GiQ , Q) ≤ d(GiQ , zQ) + d(zQ, Q)

≤ εα/n2t + d(L,Q) ≤ (1 + ε)d(L,Q),

since we assumed d(L,Q) ≥ α/n2t. This proves (iii). Prop-
erty (iv) is obtained similarly. Let Gi ∈ G, q ∈ Q and let z
be a point in Gi. Write z = Cw+B1(wK+i)+b1, where w ∈∏t
i=1 [0, σi]. Considering the point zx = B1(w+wK + i)+b1

in L, we see that

d(Gi, rx)2 ≤ ‖z − zx‖2 = ‖(C −B1)w‖ ≤ ε2α2/n4t.

Thus,

d(Gi, q) ≥ d(zx, q)− d(Gi, zx)

≥ d(L, q)− εα/n2t ≥ (1− ε)d(L, q).

Finally, we have a patch G : w 7→ Cw + b2, and we are
looking for an approximate nearest neighbor for G in Q. The
next lemma states how this can be done.

Lemma 4.8. Suppose that d(G,Q) ∈ [α/2n2t, 3α/ε]. We
can find a point q̃ ∈ Q with d(G, q̃) ≤ (1−1/2 logn)cd(G,Q)

in total time Oc((k
2n2t/ε2)(m1−1/k+ρ/k + (d/k) logm)).

Proof. Let Ga be the projection of G onto K, and let
g be the projection of G onto K⊥. Since G and K are
parallel, g is a point, and Ga is of the form Ga : w 7→
Cw + a2, with a2 ∈ K and w ∈

∏t
i=1[0, τi]. Let G+

a =

{x ∈ K | d∞(x,Ga) ≤ 3α
√
k/ε}, where d∞(·, ·) denotes the

`∞-distance with respect to the coordinate system induced
by A. We subdivide the set G+

a \ Ga, into a collection C of
axis-parallel cubes, each with diameter εα/2n2t. The cubes

in C have side length εα/2n2t
√
k, the total number of cubes

is O((kn2t/ε2)k), and the boundaries of the cubes lie on
O(k2n2t/ε2) hyperplanes.

We now search the partition tree T to find the highest
nodes (∆, Q) in T whose simplices ∆ are completely con-
tained in a single cube of C. This is done as follows: we
begin at the root of T , and we check for all children (∆, Q)
and for all boundary hyperplanes h of C whether the sim-
plex ∆ crosses the boundary h. If a child (∆, Q) crosses
no hyperplane, we label it with the corresponding cube in C
(or with Ga). Otherwise, we recurse on (∆, Q) with all the
boundary hyperplanes that it crosses.

In the end, we have obtained a set D of simplices such
that each simplex in D is completely contained in a cube
of C. The total number of simplices in the set D is s =
O((k2n2t/ε2)m1−1/k), by Theorem 3.1. For each simplex in
D, we query the corresponding c′-ANN structure. Let R ⊆
Qb be the set of the query results. For each point qb ∈ R,
we take the corresponding point q ∈ Q, and we compute
the distance d(q,G). We return a point q̃ that minimizes
d(q,G). The query time is dominated by the time for the
ANN queries. For each ∆ ∈ D, let m∆ be the number of
points in the corresponding ANN structure. By assumption,
an ANN-query takes time Oc(m

ρ
∆ + d logm∆), so the total

query time is proportional to
∑

∆∈Dm
ρ
∆ + d logm∆ which

is at most

s

(∑
∆∈D

m∆/s

)ρ
+ sd log

(∑
∆∈D

m∆/s

)
≤ Oc

(
(k2n2t/ε2)(m1−1/k+ρ/k + (d/k) logm)

)
,

using the fact that m 7→ mρ + d logm is concave and that∑
∆∈Dm∆ ≤ m.
It remains to prove that approximation bound. Take a

point q∗ in Q with d(q∗, Q) = d(Q,G). Since we assumed
that d(Q,G) ≤ 3α/ε, the projection q∗a of q∗ onto K lies in
G+
a . Let ∆∗ be the simplex in D with q∗a ∈ ∆∗. Suppose

that the ANN-query for ∆∗ returns a point q̂ ∈ Q. Thus, in
K⊥, we have d(q̂b, g) ≤ c′d(Qb∆∗ , g) ≤ c′d(q∗b , g), where q̂b
and q∗b are the projections of q̂ and q∗ onto K⊥ and Qb∆∗
is the point set stored in the ANN-structure of ∆∗. By
the definition of C, in K, we have d(q̂a, Ga) ≤ d(q∗a, Ga) +

εα/2n2t ≤ d(q∗a, Ga) + εd(q∗, G), where q̂a is the projection
of q̂ onto K. By Pythagoras,

d(q̂, G)2 = d(q̂b, g)2 + d(q̂a, Ga)2

≤ c′2d(q∗b , g)2 + (d(q∗a, Ga) + εd(q∗, G))2

≤ c′2d(q∗b , g)2 + d(q∗a, Ga)2 + (2ε+ ε2)d(q∗, G)2

≤ (c′2 + 3ε)(q∗, G)2

≤
(
(1− 1/ logn)2c2 + 3/100 logn

)
(q∗, G)2

≤ (1− 1/2 logn)2c2(q∗, G)2,

recalling that c′ = (1− 1/ logn)c and ε = 1/100 logn. Since
d(q̃, G) ≤ d(q̂, G), the result follows.

Of all the candidate points obtained through querying
patches, we return the one closest to F . The following
lemma summarizes the properties of the query algorithm.

Lemma 4.9. Suppose that d(F,Q) ∈ [α/n2t, α/ε]. Then
the query procedure returns a point q̃ ∈ Q with d(F, q̃) ≤
cd(F,Q) in Oc((k

2n2tε−5/2)k+1(m1−1/k+ρ/k + (d/k) logm))
total time.

Proof. By Lemmas 4.6 and 4.7, there exists a patch G
with d(G,Q) ≤ (1 + ε)2d(F,Q). For this patch, the al-
gorithm from Lemma 4.8 returns a point q̂ with d(q̂, G) ≤
(1+1/2 logn)cd(G,Q). Thus, using Lemma 4.7(iv), we have

(1− ε)d(q̂, L) ≤ d(q̂, G) ≤ (1− 1/2 logn)c(1 + ε)2d(F,Q)

and by our choice of ε = 1/100 logn, we get

(1−1/2 logn)(1+ε)2/(1−ε) ≤ (1−1/2 logn)(1+3ε)(1+2ε)

≤ (1− 1/2 logn)(1 + 6/100 logn) ≤ 1.

4.2.2 Far: d(F,Q) ≥ α/ε
If d(F,Q) ≥ α/ε, we can approximate Q by its projection

Qa onto K without losing too much. Thus, we can perform
the whole algorithm in K. This is done by a procedure
similar to Lemma 4.8.

Lemma 4.10. Suppose we are given an estimate r̃ with
d(F,Qa) ∈ [r̃/2nt, 2r̃]. Then, we can find a point q̃ ∈ Qa
with d(F, q̃) ≤ (1+ε)d(F,Qa) in time O((k3/2nt/ε)m1−1/k).

Proof. Let xF be a point in K with d(F,K) = d(F, xF).
Write xF = AuF + a. Define

C =

k∏
i=1

(
(uF)i +

[
0, 2r̃/

√
1− σ2

i

])
If we take a point x ∈ K with d(x, F) ∈ [r̃/2nt, 2r̃] and write
x = Au+ a, then Lemma 4.4 gives

d(F, x)2 =

k∑
i=1

(1− σ2
i)(u− uF)2

i + d(F,K)2,

so u ∈ C. We subdivide C into copies of the hyperrectan-
gle

∏k
i=1[0, εr̃/2nt

√
k(1− σ2

i)]. Let C be the resulting set
of hyperrectangles. The boundaries of the hyperrectangles
in C lie on O(k3/2nt/ε) hyperplanes. We now search the
partition tree T in order to find the highest nodes (∆, Q)
in T whose simplices ∆ are completely contained in a single
hyperrectangle of C. This is done as in Lemma 4.8.

This gives a set D of simplices such that each simplex in
D is completely contained in a hyperrectangle of C. The
total number of simplices in D is O((k3/2nt/ε)m1−1/k), by
Theorem 3.1. For each simplex ∆ ∈ D, we pick an arbitrary
point q ∈ Qa that lies in ∆, and we compute d(F, q). We
return the point q̃ ∈ Qa that minimizes the distance to F .
The total query time is O((k3/2nt/ε)m1−1/k).

Now let q∗ be a point in Qa with d(F,Qa) = d(F, q∗), and
let ∆∗ be the simplex D that contains q∗. Furthermore, let
q̂ ∈ Qa be the point that the algorithm examines in ∆∗.
Write q∗ = Au∗ + a and q̂ = Aû + a. Since q∗ and q̂ lie in
the same hyperrectangle and by Lemma 4.4,

d(F, q̂)2 =

k∑
i=1

(1− σ2
i)(û− uF)2

i + d(F,K)2

≤
k∑
i=1

(1− σ2
i)(u∗ − uF)2

i + ε2r̃2/4n2t + d(F,K)2

≤ (1 + ε)2d(F, q∗)2.

Since d(F, q̃) ≤ d(F, q̂), the result follows.

Lemma 4.11. Suppose we are given an estimate r̃ with
d(F,Q) ∈ [r̃/nt, r̃]. Suppose further that d(F,Q) ≥ α/ε.
Then we can find a q̃ ∈ Q with d(F, q̃) ≤ cd(F,Q) in time

O((k3/2n2t/ε)m1−1/k).

Proof. For any point q ∈ Q, let qa ∈ Q be its pro-
jection onto K. Then, d(qa, q) ≤ α ≤ εd(F,Q). Thus,
d(F,Qa) ∈ [(1−ε)d(F,Q), (1+ε)d(F,Q)], and we can apply
Lemma 4.10. Let q̃a ∈ Qa be the result of this query, and
let q̃ be the corresponding point in Q. We have

d(F, q̃) ≤ d(q̃, q̃a) + d(F, q̃a) ≤ εd(F,Q) + (1 + ε)d(F,Qa)

≤ εd(F,Q)+(1+ε)2d(F,Q) ≤ (1+4ε)d(F,Q) ≤ cd(F,Q),

by our choice of ε.

Combining Lemmas 4.1, 4.9, and 4.11 yields Theorem 2.1.

5. APPROXIMATE K-FLAT RANGE
REPORTING IN LOW DIMENSIONS

In this section, we present a data structure for low di-
mensional k-flat approximate near neighbor reporting. In
Section 6, we will use it as a foundation for our projection
structures. The details of the structure are summarized in
Theorem 5.1. Throughout this section, we will think of d as
a constant, and we will suppress factors depending on d in
the O-notation.

Theorem 5.1. Let P ⊂ Rd be an n-point set. We can
preprocess P into an O(n logd−k−1 n) space data structure
for approximate k-flat near neighbor queries: given a k-flat
F and a α > 0, find a set R ⊆ P that contains all p ∈ P with
d(p, F) ≤ α and no p ∈ P with d(p, F) > ((4k+3)(d−k−1)+√
k + 1)α. The query time is O(nk/(k+1) logd−k−1 n+ |R|).

5.1 Preprocessing
Let E ⊂ Rd be the (k + 1)-dimensional subspace of Rd

spanned by the first k + 1 coordinates, and let Q be the
projection of P onto E.1 We build a (k + 1)-dimensional

1We assume general position: any two distinct points in P
have distinct projections in Q.

partition tree T for Q, as in Theorem 3.1. If d > k + 1, we
also build a slab structure for each node of T . Let v be such
a node, and let Ξ be the simplicial partition for the children
of v. Let w > 0. A w-slab S is a closed region in E that
is bounded by two parallel hyperplanes of distance w. The

median hyperplane ĥ of S is the hyperplane inside S that is
parallel to the two boundary hyperplanes and has distance
w/2 from both. A w-slab S is full if there are at least r2/3

simplices ∆ in Ξ with ∆ ⊂ S.

Algorithm 5: CreateSearchStructure

Input: point set P ⊂ Rd
1 if |P | = O(1) then
2 Store P in a list and return.
3 Q← projection of P onto the subspace E spanned by

the first k + 1 coordinates.
4 T ← (k + 1)-dimensional partition tree for Q as in

Theorem 3.1.
5 if d > k + 1 then
6 foreach node v ∈ T do
7 Ξ1 ← simplicial partition for the children of v

8 for j ← 1 to br1/3c do
9 Dj ← CreateSlabStructure(Ξj)

10 Ξj+1 ← Ξj without all simplices inside the
slab for Dj

Algorithm 6: CreateSlabStructure

Input: Ξj = (Q1,∆1), . . . , (Qr′ ,∆r′)
1 Vj ← vertices of the simplices in Ξj
2 For each (k + 1)-subset V ⊂ Vj , find the smallest
wV > 0 such that the wV -slab with median hyperplane
aff(V) is full.

3 Let wj be the smallest wV ; let Sj be the corresponding

full wj-slab and ĥj = aff(V) its median hyperplane.

4 Find the set Dj of r2/3 simplices in Sj ; let
Qj ←

⋃
∆i∈Dj

Qi and let Pj be the d-dimensional point

set corresponding to Qj .
5 hj ← the hyperplane orthogonal to E through ĥj
6 P ′ ← projection of Pj onto hj
7 CreateSearchStructure(P ′)

The slab structure for v is constructed in several itera-
tions. In iteration j, we have a current subset Ξj ⊆ Ξ
of pairs in the simplicial partition. For each (k + 1)-set
v0, . . . , vk of vertices of simplices in Ξj , we determine the
smallest width of a full slab whose median hyperplane is
spanned by v0, . . . , vk. Let Sj be the smallest among those

slabs, and let ĥj be its median hyperplane. Let Dj be the
r2/3 simplices that lie completely in Sj . We remove Dj and
the corresponding point set Qj =

⋃
∆i∈Dj

Qi from Ξj to

obtain Ξj+1. Let Pj ⊆ P be the d-dimensional point set
corresponding to Qj . We project Pj onto the d-dimensional
hyperplane hj that is orthogonal to E and goes through

ĥj . We recursively build a search structure for the (d − 1)-
dimensional projected point set. The jth slab structure Dj
at v consists of this search structure, the hyperplane hj , and
the width wj . This process is repeated until less than r2/3

simplices remain; see Algorithms 5 and 6 for details.

Denote by S(n, d) the space for a d-dimensional search
structure with n points. The partition tree T has O(n)
nodes, so the overhead for storing the slabs and partitions
is linear. Thus, S(n, d) = O(n) +

∑
D S(nD, d − 1), where

the sum is over all slab structures D and where nD is the
number of points in the slab structure D. Since every point
appears in O(logn) slab structures, and since the recursion
stops for d = k + 1, we get

Lemma 5.2. The search structure for n points in d di-
mensions needs space O(n logd−k−1 n).

5.2 Processing a Query
For a query, we are given a distance threshold α > 0 and

a k-flat F . For the recursion, we will need to query the
search structure with a k-dimensional polytope. We obtain
the initial query polytope by intersecting the flat F with the
bounding box of P extended by α in each direction. With
slight abuse of notation, we still call this polytope F .

A query for F and α is processed by using the slab struc-
tures for small enough slabs and by recursing in the partition
tree for the remaining points. Details follow.

Suppose we are at some node v of the partition tree, and
let j∗ be the largest integer with wj∗ ≤ (4k + 2)α. For
j = 1, . . . , j∗, we recursively query each slab structure Dj as

follows: let F̃ ⊆ F be the polytope containing the points in
F with distance at most α+wj/2 from hj , and let Fh be the

projection of F̃ onto hj . We query the search structure in
Dj with Fh and α. Next, we project F onto the subspace E
spanned by the first k+1 coordinates. Let D be the simplices
in Ξj∗+1 with distance at most α from the projection. For
each simplex in D, we recursively query the corresponding
child in the partition tree. Upon reaching the bottom of
the recursion (i.e., |P | = O(1)), we collect all points within
distance α from F in the set R.

Algorithm 7: Find a superset R of all points in P with
distance less than α from a query polytope F .

Input : polytope F , distance threshold α > 0
Output: point set R ⊆ P

1 R← ∅
2 if |P | = O(1) then
3 R← {p ∈ P | d(p, F) ≤ α}
4 else if d = k + 1 then
5 Compute polytope F� as described.
6 R← R ∪ all points of P inside F�
7 else
8 j∗ ← the largest integer with wj∗ ≤ (4k + 2)α
9 for j ← 1 to j∗ do

10 Fh ← projection of F̃ onto hj as described
11 R← R ∪Dj .query(Fh, α)

12 F̂ ← projection of F onto the subspace E spanned
by the first k + 1 coordinates

13 D ← simplices in Ξj∗+1

14 D′ ← {∆ ∈ D | d(∆, F̂) ≤ α}
15 foreach ∆ ∈ D′ do
16 R← R ∪ result of recursive query to partition

tree node for ∆.
17 return R

If d = k + 1, we approximate the region of interest by
the polytope F� = {x ∈ Rd | d1(x, F) ≤ α}, where d1(·, ·)

denotes the `1-metric in Rd. Then, we query the partition
tree T to find all points of P that lie inside F�. We prove in

Lemma 5.4 that F� is a polytope with O(dO(k2)) facets; see
Algorithm 7 for details. The following two lemmas analyze
the correctness and query time of the algorithm. We refer
to the full version for the proofs.

Lemma 5.3. The set R contains all p ∈ P with d(p, F) ≤
α and no p ∈ P with d(p, F) > κα, where κ = (4k + 3)(d−
k − 1) +

√
k + 1.

Lemma 5.4. The query time is O(nk/(k+1) logd−k−1 n +
|R|).

Theorem 5.1 follows from Lemmas 5.2, 5.3, and 5.4.

5.3 Approximate k-Flat NN Queries
Now, we extend our data structure from Section 5.1 for

approximate k-flat nearest neighbor queries with multiplica-
tive error (4k + 3)(d − k − 1) +

√
k + 1. That is, given an

n-point set P ⊂ Rd, we want to find for any given query flat
F ⊂ Rd a point p ∈ P with d(p, F) ≤ ((4k+ 3)(d− k− 1) +√
k + 1)d(P, F). We reduce this problem to a near neighbor

query by choosing an appropriate threshold α that ensures
|R| = O(

√
n), using random sampling. For preprocessing we

build the data structure D from Theorem 5.1 for P .
Let a query flat F be given. The F -rank of a point

p ∈ P is the number of points in P that are closer to F
than p. Let X ⊆ P be a random sample obtained by tak-
ing each point in P independently with probability 1/

√
n.

The expected size of X is
√
n, and if x ∈ X is the clos-

est point to F in X, then the expected F -rank of x is√
n. Set α = d(x, F)/((4k + 3)(d − k − 1) +

√
k + 1). We

query D with F and α to obtain a set R. If d(P, F) ≤ α,
then R contains the nearest neighbor. Otherwise, x is a
((4k+3)(d−k−1)+

√
k + 1)-approximate nearest neighbor

for F . Thus, it suffices to return the nearest neighbor in
R∪{x}. Since with high probability all points in R have F -
rank at most O(

√
n logn), we have |R| = O(

√
n logn), and

the query time is O(nk/(k+1) logd−k−1 n). This establishes
the following corollary of Theorem 5.1.

Corollary 5.5. Let P ⊂ Rd be an n-point set. We
can preprocess P into an O(n logd−k−1 n) space data struc-
ture for approximate k-flat nearest neighbor queries: given
a flat F , find a point p ∈ P with d(p, F) ≤ ((4k + 3)(d −
k − 1) +

√
k + 1)d(P, F). The query needs expected time

O(nk/(k+1) logd−k−1 n).

6. PROJECTION STRUCTURES
We now describe how to answer queries of type Q1 and Q3

efficiently. Our approach is to project the points into ran-
dom subspace of constant dimension and to solve the prob-
lem there using our data structures from Theorem 5.1 and
Corollary 5.5. For this, we need a Johnson-Lindenstrauss-
type lemma that bounds the distortion.

Let 0 < t ≤ 2/(2 + 40k) be a parameter and let P ⊂ Rd

be a high dimensional n-point set. Set d′ = 2/t+ 2 and let

M ∈ Rd
′×d be a random projection from Rd to Rd

′
, scaled

by
√
d/4d′. We obtain P̄ ⊂ Rd

′
by projecting P using M .

We build for P̄ the data structure D1 from Corollary 5.5
to answer Q1 queries and D2 from Theorem 5.1 to answer

Q3 queries. This needs O(n logO(d′) n) = O(n logO(1/t) n)

space. For each p ∈ P we write p̄ for the d′-dimensional
point Mp and F̄ for the projected flat MF .

Dimension Reduction. The following lemma is a gener-
alization of a variant of the Johnson-Lindenstrauss-Lemma
by Dasgupta and Gupta [8, Lemma 2.2] for k-flats. Its proof
is an extension of the proof of Lemma 4.1 by AIKN and can
be found in the full version.

Lemma 6.1. Let p ∈ Rd be a point and let F ⊂ Rd be a

k-flat. For d′ ∈ {40k, . . . , d− 1}, let M ∈ Rd
′×d be the pro-

jection matrix into a random d′-dimensional subspace, scaled
by
√
d/4d′. Let p̄ = Mp and F̄ = MF be the projections

of p and of F , respectively. Then, for any β ≥ 40k, (i)

Pr[d(p̄, F̄) ≤ d(p, F)] ≥ 1 − e−d
′/2; and (ii) Pr[d(p̄, F̄) ≥

d(p, F)/β] ≥ 1− β−d
′/2.

6.1 Queries of Type Q1
Let a query flat F be given. To answer Q1 queries, we

compute F̄ and query D1 with F̄ to obtain a ((4k+ 3)(d′ −
k− 1) +

√
k + 1)-nearest neighbor p̄. We return the original

point p. To obtain Theorem 2.2, we argue that if p̄ is a
((4k+ 3)(d− k− 1) +

√
k + 1)-nearest neighbor for F̄ , then

p is a nt-nearest neighbor for F with high probability.
Let p∗ ∈ P be a point with d(p∗, F) = d(P, F). Set δp∗ =

d(p∗, F) and δ̄p∗ = d(p̄∗, F̄). Denote by A1 the event that

δ̄p∗ ≤ δp∗ . By Lemma 6.1, Pr[A1] ≥ 1 − e−d
′/2 = 1 −

e−1/t−1. Let A2 be the event that for all points p ∈ P
with δp = d(p, F) > ntδp∗ we have δ̄p = d(p̄, F̄) > ((4k +
3)(d′ − k − 1) +

√
k + 1)δp∗ . For a fixed p ∈ P , by setting

β = nt/((4k + 3)(d′ − k − 1) +
√
k + 1) in Lemma 6.1, this

probability is

Pr[δ̄p > ((4k + 3)(d′ − k − 1) +
√
k + 1)δp∗]

≥ 1− (nt/((4k + 3)(d′ − k − 1) +
√
k + 1))−d

′/2

= 1− n−1−t((4k + 3)(2t+ 1− k)
√
k + 1)1/t+1

≥ 1− n−1−t/2,

for n large enough. By the union bound, we get Pr[A2] ≥ 1−
n−t/2, so the event A1∩A2 occurs with constant probability.
Then, p is a nt-approximate nearest neighbor for F .

6.2 Queries of Type Q3
To answer a query of type Q3, we compute the projection

F̄ and query D2 with parameter α. We obtain a set R̄ ⊂ P̄
in time O(nk/(k+1) logO(1/t) n + |R̄|). Let R ⊂ P be the
corresponding d-dimensional set. We return a point p ∈ R
that minimizes d(p, F). If δp∗ ≤ α, the event A1 from above
implies that p̄∗ ∈ R̄, and we correctly return p∗.

To bound the size of |R̄|, and thus the running time, we
use that P is αnt/(2k+ 1)-cluster-free. Let A3 be the event
that for all p ∈ P with d(p, F) > αnt/(2k + 1), we have
d(p̄, F̄) > ((4k + 3)(d′ − k − 1) +

√
k + 1)α. By the defini-

tion of cluster-freeness and the guarantee of Theorem 5.1,
we have |R̄| = m in the case of A3. Using β = nt/((2k +
1)((4k+ 3)(d− k− 1) +

√
k + 1)) in Lemma 6.1 and doing a

similar calculation as above yields again Pr[A3] ≥ 1−n−t/2.
Thus, we can answer queries of type Q3 successfully in
time O(nk/(k+1) logO(1/t) n + m) with constant probability,
as claimed in Theorem 2.3.

Acknowledgments
This work was initiated while WM, PS, and YS were visiting
the Courant Institute of Mathematical Sciences. We would
like to thank our host Esther Ezra for her hospitality and
many enlightening discussions.

7. REFERENCES
[1] A. Andoni. Nearest Neighbor Search: the Old, the

New, and the Impossible. PhD thesis, MIT, 2009.

[2] A. Andoni, P. Indyk, R. Krauthgamer, and H. L.
Nguyen. Approximate line nearest neighbor in high
dimensions. In Proc. 20th SODA, pages 293–301, 2009.

[3] A. Andoni, P. Indyk, H. L. Nguyen, and
I. Razenshteyn. Beyond locality-sensitive hashing. In
Proc. 24th SODA, pages 1018–1028, 2014.

[4] R. Basri, T. Hassner, and L. Zelnik-Manor.
Approximate nearest subspace search with
applications to pattern recognition. In Proc. CVPR,
pages 1–8, 2007.

[5] T. M. Chan. Optimal partition trees. Discrete
Comput. Geom., 47(4):661–690, 2012.

[6] B. Chazelle. The discrepancy method. Randomness
and complexity. Cambridge University Press, 2000.

[7] K. L. Clarkson. A randomized algorithm for
closest-point queries. SICOMP, 17(4):830–847, 1988.

[8] S. Dasgupta and A. Gupta. An elementary proof of a
theorem of Johnson and Lindenstrauss. Random
Structures Algorithms, 22(1):60–65, 2003.

[9] R. A. Horn and C. R. Johnson. Matrix analysis.
Cambridge University Press, second edition, 2013.

[10] P. Indyk. Nearest neighbors in high-dimensional
spaces. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry,
chapter 39. CRC Press, 2nd edition, 2004.

[11] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In Proc. 30th STOC, pages 604–613,
1998.

[12] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high
dimensional spaces. In Proc. 30th STOC, pages
614–623, 1998.

[13] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: Efficient indexing for
high-dimensional similarity search. In Proc. 33rd
VLDB, pages 950–961, 2007.

[14] A. Magen. Dimensionality reductions in `2 that
preserve volumes and distance to affine spaces.
Discrete Comput. Geom., 38(1):139–153, 2007.

[15] S. Mahabadi. Approximate nearest line search in high
dimensions. In Proc. 26th SODA, pages 337–354, 2015.

[16] J. Matoušek. Efficient partition trees. Discrete
Comput. Geom., 8(3):315–334, 1992.

[17] S. Meiser. Point location in arrangements of
hyperplanes. Inform. and Comput., 106(2):286–303,
1993.

[18] R. Panigrahy. Entropy based nearest neighbor search
in high dimensions. In Proc. 17th SODA, pages
1186–1195, 2006.

