
Faster Algorithms for Growing Prioritized Disks
and Rectangles∗

Hee-Kap Ahn1, Sang Won Bae2, Jongmin Choi1, Matias Korman3,
Wolfgang Mulzer4, Eunjin Oh1, Ji-won Park5,
André van Renssen6,7, and Antoine Vigneron8

1 Dept. Computer Science and Engineering, POSTECH, Pohang, Republic of
Korea
{heekap,icothos,jin9082}@postech.ac.kr

2 Dept. Computer Science, Kyonggi University, Kionggi, Republic of Korea
swbae@kgu.ac.kr

3 Tohoku University, Sendai, Japan
mati@dais.is.tohoku.ac.jp

4 Institut für Informatik, Freie Universität Berlin, Berlin, Germany
mulzer@inf.fu-berlin.de

5 School of Computing, KAIST, Daejeon, Republic of Korea
wldnjs1727@kaist.ac.kr

6 National Institute of Informatics (NII), Tokyo, Japan
andre@nii.ac.jp

7 JST, ERATO, Kawarabayashi Large Graph Project
8 School of Electrical and Computer Engineering, UNIST, Ulsan, Republic of

Korea
antoine@unist.ac.kr

Abstract
Motivated by map labeling, we study the problem in which we are given a collection of n disks
in the plane that grow at possibly different speeds. Whenever two disks meet, the one with the
higher index disappears. This problem was introduced by Funke, Krumpe, and Storandt [IWOCA
2016]. We provide the first general subquadratic algorithm for computing the times and the order
of disappearance. Our algorithm also works for other shapes (such as rectangles) and in any fixed
dimension.

Using quadtrees, we provide an alternative algorithm that runs in near linear time, although
this second algorithm has a logarithmic dependence on either the ratio of the fastest speed to
the slowest speed of disks or the spread of the disk centers (the ratio of the maximum to the
minimum distance between them). Our result improves the running times of previous algorithms
by Funke, Krumpe, and Storandt [IWOCA 2016], Bahrdt et al. [ALENEX 2017], and Funke and
Storandt [EWCG 2017]. Finally, we give an Ω(n logn) lower bound on the problem, showing
that our quadtree algorithms are almost tight.

∗ The work by H.-K. Ahn, J. Choi, E. Oh was supported by the MSIT(Ministry of Science and ICT),
Korea, under the SW Starlab support program(IITP–2017–0–00905) supervised by the IITP(Institute
for Information & communications Technology Promotion.). S.W. Bae was supported by Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry
of Education (2015R1D1A1A01057220). M. K. was supported in part by KAKENHI Nos. 15H02665
and 17K12635, Japan. W. M. was supported in part by DFG Grants MU 3501/1 and MU 3501/2. J.-W.
Park was supported by the NRF Grant 2011-0030044 (SRC-GAIA) funded by the Korea government
(MSIP). A. v. R. was supported by JST ERATO Grant Number JPMJER1201, Japan. A. Vigneron
was supported by the 2016 Research Fund (1.160054.01) of UNIST (Ulsan National Institute of Science
and Technology).

© Hee-Kap Ahn, Sang Won Bae, Jongmin Choi, Matias Korman, Wolfgang Mulzer, Eunjin Oh,
Ji-won Park, André van Renssen, Antoine Vigneron;
licensed under Creative Commons License CC-BY

28th International Symposium on Algorithms and Computation (ISAAC 2017).
Editors: Yoshio Okamoto and Takeshi Tokuyama; Article No. 3; pp. 3:1–3:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Faster Algorithms for Growing Prioritized Disks and Rectangles

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems–Geometrical
problems and computations

Keywords and phrases map labeling, growing disks, elimination order

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.3

1 Introduction

Suppose we are given a sequence D1, . . . , Dn of n growing disks. At time t = 0, each disk Di

starts out as a point pi ∈ R2, and as time passes, it grows linearly with growth rate vi > 0.
Thus, at any time t ≥ 0, the disk Di is centered at pi and has radius tvi. The position of a
disk in the sequence corresponds to its priority (the smaller the index, the higher its priority).
Whenever two disks meet, we eliminate the one with lower priority from the arrangement.
More precisely, for any 1 ≤ i < j ≤ n, let t(i, j) > 0 be the time when Di and Dj touch,
i.e., t(i, j) = |pipj |/(vi + vj). Then, if neither of the two disks Di and Dj has been removed
before time t(i, j), we eliminate Dj at this time, while Di keeps growing. Our goal is to
determine the elimination order, that is, the instants of time and the order in which the
disks are removed from the arrangement.

Motivated by map labeling, this problem was first considered by Funke, Krumpe, and
Storandt [7]. As one zooms out from a labeled map, labels grow in size. Clearly, we do not
want the labels to overlap, so whenever this happens, one of the two is removed. This creates
the need to determine when and in which order the labels need to be discarded. Funke,
Krumpe, and Storandt [7] observed that a straightforward simulation of the growth process
with a priority queue solves the problem in time O(n2 logn). They also gave an algorithm
that runs in expected time O(n(log6 n+∆2 log2 n+∆4 logn)), where ∆ = maxi vi/minj vj is
the maximum ratio between two growth rates. Subsequently, Bahrdt et al. [2] improved this
to an algorithm that runs in worst-case time O(∆2n(logn+∆2)). This generalizes to growing
balls in arbitrary fixed dimension d, with running time O(∆dn(logn+ ∆d)). Recently, Funke
and Storandt [8] presented two further parameterized algorithms for the problem. The first
algorithm runs in time O(n log ∆(logn+ ∆d−1)), for arbitrary dimension d, while the second
algorithm is specialized for the plane and runs in time O(Cn logO(1) n), where C denotes the
number of distinct growth rates. If we are interested only in the first pair of touching disks,
our problem is equivalent to the weighted closest pair of the disk centers. Formann showed
how to compute it in optimal O(n logn) time [6].

Our results. We first present a simple algorithm that runs in time O(dn2) in any fixed
dimension d (Section 2). In Section 3, we combine it with an advanced data structure for
querying lower envelopes of algebraic surfaces [1, 11] and with bucketing. In particular, the
algorithm runs in O(n5/3+ε) and O(n11/6+ε) expected time for disks and rectangles in two
dimensions, respectively. These are the first subquadratic-time algorithms for the problem.
More generally, we show that the elimination sequence of a set of n growing objects of any
semi-algebraic shape described with k ≥ 4 parameters can be computed in subquadratic time
for any fixed k. In Section 4, we consider the case of growing squares. These objects are
much simpler, hence we can use ray shooting techniques and similar properties to reduce the
running time to O(n logd+2 n).

In Section 5, we consider a completely different approach based on quadtrees. The running
time of these algorithms also depends on the spread Φ of the disk centers (that is, the ratio

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.3

H.-K. Ahn et al. 3:3

Table 1 Summary of our results. The O(dn2)-time algorithm in the first row works for growing
objects of any shape in Rd such that the touching time of any pair of them can be computed in O(d)
steps. SAk stands for any semialgebraic shape that is described with k parameters. Φ denotes the
spread of the disk centers and ∆ = maxi vi/ minj vj is the maximum ratio between two growth rates.

Shape Time Method Where

Balls, Boxes in Rd O(dn2) Priority sort Section 2
Disks in R2 expected O(n5/3+ε)

Rectangles in R2 expected O(n11/6+ε) Bucketing Section 3
SAk, k ≥ 4 expected O(n2−1/(2k−2)+ε)
Cubes in Rd O(n logd+2 n) Linearity of queries Section 4

Disks in R2 O(n log Φ min{log ∆, log Φ}) Quadtree Section 5.1
Disks in R2 O(n(log n + min{log ∆, log Φ})) Compressed quadtree Section 5.2

of the maximum to the minimum distance between disk centers) and the ratio ∆ between the
fastest and slowest speed of the disks. Table 1 provides a summary of our results. Finally, we
give an Ω(n logn) lower bound using a simple reduction from sorting. Our algorithm using
compressed quadtrees is thus nearly optimal as well as it is an improvement over Bahrdt et
al.’s algorithm [2] that runs in O(∆2n(logn+ ∆2)) time.

Note. Parallel to our work, Castermans et al. [4] considered a variant of the problem for
squares in the plane. Whenever two squares meet, they are replaced by a new one located at
their weighted center. Like us, they are interested in the elimination/replacement sequence.
Although our algorithms are slightly faster (by polylogarithmic factors) and more general
(their algorithm can only handle square shapes), we emphasize that they are not comparable,
since our techniques do not apply in their setting.

Notation. For any 1 ≤ i ≤ n, we denote by ti the time at which disk Di is eliminated.
Since D1 will never be eliminated, we set t1 =∞. We denote by t(i, j) = |pipj |/(vi + vj) the
time at which disks the Di and Dj would touch, supposing that no other disk has interfered.
We assume general position, meaning that all times t(i, j), for i 6= j, are pairwise distinct.

2 A simple quadratic algorithm

We provide a simple iterative way to determine the elimination times ti. This method will
be used for small groups of disks afterwards. As noted above, we have t1 =∞. For i ≥ 2,
the next lemma shows how to find ti, provided that t1, . . . , ti−1 are known.

I Lemma 2.1. Let i ∈ {2, . . . , n}, and let

j∗ = argminj=1,...,i−1{t(i, j) | t(i, j) ≤ tj}.

Then, ti = t(i, j∗), i.e., the disk Di is eliminated by the disk Dj∗ .

Proof. On the one hand, we have ti ≤ t(i, j∗), because at time t(i, j∗), the disk Di would
meet the disk Dj∗ that has higher priority and that has not been eliminated yet. On the
other hand, we have ti ≥ t(i, j∗), because every disk that Di could meet before time t(i, j∗)
either has lower priority or has been eliminated before the encounter. J

Lemma 2.1 leads to a straightforward iterative algorithm, see Algorithm 1.

ISAAC 2017

3:4 Faster Algorithms for Growing Prioritized Disks and Rectangles

Algorithm 1 A quadratic time algorithm
1: function EliminationOrder(p1, . . . , pn, v1, . . . , vn)
2: t1 ←∞
3: for i← 2, n do
4: ti ← t(i, 1)
5: for j ← 2, i− 1 do
6: if tj ≥ t(i, j) and ti ≥ t(i, j) then
7: ti ← t(i, j)
8: S ← (D1, . . . , Dn)
9: Sort S using key ti for each disk Di

10: return S

I Theorem 2.2. Algorithm 1 computes the elimination order of a set of prioritized disks in
O(n2) time. It generalizes to growing objects of any shape in Rd such that the touching time
of any pair of them can be computed in O(d) steps, with running time O(dn2).

Proof. The correctness follows directly from Lemma 2.1. The running time analysis is
straightforward. Lemma 2.1 is purely combinatorial and requires only that the times t(i, j)
are well defined. Thus, Algorithm 1 can be generalized to balls and rectangles in Rd by using
an appropriate subroutine for computing t(i, j). This subroutine takes O(d) steps. J

3 A subquadratic algorithm using bucketing

We now improve Algorithm 1 by using a bucketing approach and lifting the problem to higher
dimensions. For this purpose, we will use a data structure for querying lower envelopes in
R4, which allows us to compute ti in increasing order of i.

Suppose that for a set B ⊂ {1, . . . , n} of indices, we know the elimination time tj of any
Dj with j ∈ B. In an elimination query, we are given a query index q > maxB, and we
ask for the disk Dj∗ with j∗ ∈ B, that eliminates the query disk Dq. The argument from
Lemma 2.1 shows that we can find j∗ as follows

j∗ = argminj∈B{t(q, j) | t(q, j) ≤ tj}.

This leads to a natural interpretation of elimination queries: a query disk D corresponds
to a point (x, y, v) ∈ R3, where (x, y) is the center of D and v is the growth rate. For each
j ∈ B, consider the function fj : R3 → R defined by

fj(x, y, v) =
{
t(j,D(x, y, v)), if t(j,D(x, y, v)) < tj ,

∞, otherwise,

where t(j,D(x, y, v)) denotes the time when Dj and the growing disk given by (x, y, v) touch.
For q > maxB, let (xq, yq, vq) ∈ R3 be the point that represents Dq. Then, the elimination
query q corresponds to finding the point vertically above (xq, yq, vq) in the lower envelope of
the graphs of the functions fj for all j ∈ B. The following lemma is a direct consequence of
a result by Agarwal et al. [1].

I Lemma 3.1. Let B ⊂ {1, . . . , n} with |B| = m. Then, for any fixed ε > 0, elimination
queries for B can be answered in O(log2 m) time, after randomized expected preprocessing
time O(m3+ε).

H.-K. Ahn et al. 3:5

We describe our subquadratic algorithm. Set m = bn1/3c. We group the disks into dn/me
buckets B1, . . . , Bdn/me such that the kth bucket Bk contains the disks D(k−1)m+1, . . . , Dkm.
There are O(n2/3) buckets, each of which contains at most m disks. As before, we compute
the elimination times t1, . . . , tn in this order. As soon as the elimination times of all the disks
in a bucket Bk have been determined, we construct the elimination query data structure for
Bk. For each bucket, this takes O(n1+ε) expected time, for a total time of O(n5/3+ε).

Now, in order to determine the elimination time ti of a disk Di, note that we must check
the previous buckets (as well as the bucket containing Di). We first perform elimination
queries for the previous buckets, that is, buckets Bk with 1 ≤ k ≤ b(i− 1)/mc. There are
O(n2/3) such queries, so this takes O(n2/3 log2 n) time. Then, we handle the disks that are
in the same bucket as Di by brute force, which takes O(n1/3) time. Overall, the running
time is dominated by the time spent in preprocessing the buckets for elimination queries,
which takes O(n5/3+ε) expected time.

I Theorem 3.2. The elimination sequence of a set of n growing disks can be computed in
O(n5/3+ε) expected time for any fixed ε > 0.

As before, our algorithm generalizes to other types of shapes. Consider for example the
problem of growing rectangles in R2. Each rectangle is given by 4 parameters: the x- and
y-coordinates of two opposite corners after one unit of time (these values allow us to also
obtain the center and the speed of the rectangle). Thus, the data structure for elimination
queries is obtained by computing a lower envelope in R5. Given m growing rectangles, such
a data structure with query time O(logm) can be constructed in O(m6+ε) expected time
for any fixed ε > 0 [11]. We now apply the same approach as for growing disks, but using
buckets of size m = bn1/6c.

I Theorem 3.3. The elimination sequence of a set of n growing rectangles can be computed
in O(n11/6+ε) expected time for any ε > 0.

More generally, we can use regions defined by any semi-algebraic shape of constant
complexity. If the shape of the object is described with k ≥ 4 parameters, we need to
construct the lower envelope of n surfaces in Rk+1 to answer elimination queries. After
O(n2k−2+ε)-time preprocessing, we can answer queries in logarithmic time [11] (again, for
any fixed ε > 0). The optimal size of the buckets is n1/(2k−2), which gives an overall running
time of O

(
n

4k−5
2k−2 +ε

)
, which is subquadratic for any fixed k ≥ 4.

I Theorem 3.4. The elimination sequence of a set of n growing objects of any semi-algebraic
shape, each described with k ≥ 4 parameters can be computed in O

(
n2− 1

2k−2 +ε
)
expected

time for any ε > 0.

4 Growing cubes

Axis-aligned cubes in Rd are described with d+ 1 parameters. Thus, the approach from the
previous section applies. However, elimination queries become much easier, since they are
linear functions on the input. In this section, we combine the bucketing approach with ray
shooting techniques for lines to reduce the running time to an almost linear bound.

To simplify the presentation, we first assume that d = 2. Now, a sequence of n growing
squares is given by the centers p1, . . . , pn and the growth rates v1, . . . , vn. At time t ≥ 0,
each square Di has edge length 2vit. We consider the four quadrants around each center
pi = (xi, yi). The north, east, south, and west quadrants are, respectively, {(x, y) ∈ R2 |

ISAAC 2017

3:6 Faster Algorithms for Growing Prioritized Disks and Rectangles

t

y1

y2

y4

y3

yq t 7→ yq + vqt

t 7→ yj − vjt defined for t ∈ [0, tj] for j = 1, . . . , 4.

0

Figure 1 The lower envelope of four line segments. An elimination query for a square Dq with
center (xq, yq) and growth rate vq consists of shooting a ray t 7→ yq + vqt from below.

y − yi ≥ |x− xi|}, {(x, y) ∈ R2 | x− xi ≥ |y − yi|}, {(x, y) ∈ R2 | −(y − yi) ≥ |x− xi|}, and
{(x, y) ∈ R2 | −(x− xi) ≥ |y − yi|}.

Suppose that pj is in the north quadrant of pi. Then, the possible elimination time of
Di and Dj is t(i, j) = (yj − yi)/(vi + vj). Thus, suppose we have a set B ⊂ {1, . . . , n} of
m growing cubes, and let q > maxB such that all centers pj with j ∈ B lie in the north
quadrant of pq. Then, an elimination query for q in B is essentially a two-dimensional
problem: the x-coordinates do not matter any more. We can solve it using ray-shooting for
the lower envelope of a set of line segments in R2.

I Lemma 4.1. Let B ⊂ {1, . . . , n}, |B| = m. We can preprocess B in O(m logm) time,
so that elimination queries can be answered in O(logm) time, given that the centers of the
squares in B lie in the north quadrant of the query square Dq.

Proof. For each j ∈ B, consider the line segment t 7→ yj − vjt, defined for t ∈ [0, tj]. See
Figure 1. All these line segments intersect the line t = 0, so their lower envelope has at most
λ2(m) = 2m− 1 edges, where λ2(m) denotes the maximum length of a Davenport-Schinzel
sequence of order 2 with alphabet size m [12]. An elimination query for a square Dq with
center (xq, yq) and growth rate vq consists of shooting a ray t 7→ yq + vqt from below. Thus,
we first compute the lower envelope in O(m logm) time [10]. Then we build a ray-shooting
data structure for this lower envelope, which takes O(m) preprocessing time with O(logm)
query time [5]. J

We now give a slightly less efficient data structure that does not require B to be in the
north quadrant of Di.

I Lemma 4.2. Let B ⊂ {1, . . . , n}, |B| = m. We can preprocess B in time O(m log3 m) so
that elimination queries can be answered in O(log3 m) time.

Proof. Our aim is to build a data structure for each quadrant that answers which square (if
any) of B in the quadrant will be the first to eliminate the query square. To answer a query
Dq, we query the data structure for each quadrant, and we return the minimum value.

For each quadrant, the data structure is a two-dimensional range tree [3], where the
coordinate axes have been rotated by an angle of π/4, so that the new coordinate axes are
the bisectors of the original ones. For each canonical subset of each range tree, we construct
the data structure of Lemma 4.1.

Now, given the query disk Dq and a quadrant, the centers of the disks of B in this quadrant
are in the union of O(log2 m) canonical subsets. So we query the O(log2 m) corresponding
data structures in O(logm) time each, and we return the result with the smallest timestamp.
All these data structures can be built in O(m log3 m) time. J

H.-K. Ahn et al. 3:7

Once we have the data structure for elimination queries, we can apply the bucketing
technique from Section 3. This time, we will use varying bucket sizes as points are processed.
More precisely, we construct a balanced binary tree T whose leaves represent the squares
D1, . . . , Dn, from left to right. As usual, a node ν ∈ T represents the subset that consists of
the leaves in the subtree that is rooted in ν.

As soon as the elimination times of all the disks associated with a node of T have been
determined, we compute the elimination query structure from Lemma 4.2. Thus, after we
have determined tj for all j < i, we can find ti in O(log4 n) time by querying the data
structures recorded at O(logn) nodes of T (at most one node per level in the tree will be
queried). The running time is bounded by the time needed to preprocess the points for
elimination queries (O(n log3 n) per level). So overall, this algorithm runs in O(n log4 n)
time. In higher dimensions, this bound increases by a factor O(logn) per dimension, as we
need one more level in the range tree.

I Theorem 4.3. The elimination sequence of a set of n axis-aligned cubes in fixed dimension
d = O(1) can be computed in O(n logd+2 n) time.

5 Quadtree-based approach

Let Φ denote the spread of the disk centers and ∆ denote the ratio of the growth rates, i.e.,
Φ = max1≤i<j≤n |pipj |/min1≤i<j≤n |pipj | and ∆ = maxi∈{1,...,n} vi/minj∈{1,...,n} vj . We
first present an algorithm that runs in O(n log Φ min{log Φ, log ∆}) time using a quadtree.
Then, we present an improved algorithm that runs in O(n(logn+ min{log Φ, log ∆})) time
using a compressed quadtree. To simplify the notation, we set α = min{log Φ, log ∆}.

5.1 Using an (uncompressed) quadtree
Without loss of generality, all disk centers lie in the unit square [0, 1]2, and their diameter is
1. We construct a quadtree Q for the disk centers. It is a rooted tree in which every internal
node has four children. Each node ν of Q has an associated square cell b(ν). To obtain Q,
we recursively split the unit square. In each step, the current node is partitioned into four
congruent quadrants (cells) if its corresponding cell contains one or more disk centers. We
stop when each cell at the bottom level contains at most one disk center and the diameter of
the cell becomes smaller than a quarter of the smallest distance between disk centers. This
takes O(n log Φ) time as the depth of the quadtree is O(log Φ). See Figure 2 (left) for an
illustration.

For a node ν ∈ Q, we let p(ν) be the parent node of ν. We denote by |ν| the diameter of
the cell b(ν). For two nodes ν, ν′ ∈ Q, we write d(ν, ν′) for the smallest distance between a
point in b(ν) and a point in b(ν′). For a point q and a node ν ∈ Q, we write d(q, ν) for the
smallest distance between q and a point in b(ν). For t ≥ 0, we let Dt

i be the disk Di at time
t. We say that Dt

i occupies a node ν if (i) pi ∈ b(ν); (ii) ν is a leaf or b(ν) ⊆ Dt
i ; and (iii) Dt

i

has not been eliminated before time t. At each moment, each node ν is occupied by at most
one disk, and we denote by D(ν) the index of the disk that occupies ν. If there is no such
disk, we set D(ν) =⊥. We denote by ν(i, t) the node of the largest cell of Q that is occupied
by Dt

i .

I Lemma 5.1. Let i ∈ {2, . . . , n}, and let Dj(j ∈ {1, . . . , i− 1}) be the disk that eliminates
Di, i.e., ti = t(i, j). Then,

d (ν(i, ti), ν(j, ti)) ≤ 2 (|ν(i, ti)|+ |ν(j, ti)|) ,

ISAAC 2017

3:8 Faster Algorithms for Growing Prioritized Disks and Rectangles

Figure 2 Obtaining a quadtree and its compressed quadtree: (left) a quadtree for 6 disk centers,
where the subdivision process stops once a cell contains at most one disk center and the diameter of
the cell becomes smaller than a quarter of the smallest distance between disk centers.; (right) the
compressed quadtree obtained after eliminating the maximal singular paths.

and

1/(4∆) ≤ |ν(i, ti)| / |ν(j, ti)| ≤ 4∆.

Proof. We note three simple facts from the construction of Q and the definition of ν(·, ·):
(i) all non-empty leaf cells have the same diameter; (ii) for any k ∈ {1, . . . , n} and t > 0, if
ν(k, t) is not a leaf, then |ν(k, t)| ≤ 2vkt; and (iii) for any k ∈ {1, . . . , n} and t ≥ 0, we have
|ν(k, t)| ≥ vkt/2.

For the first claim, let q = ∂Dti
i ∩ ∂D

ti
j . By fact (iii), we have viti ≤ 2 |ν(i, ti)| and

vjti ≤ 2 |ν(j, ti)|. Hence, it follows that d (ν(i, ti), ν(j, ti)) ≤ d (q, ν(i, ti)) + d (q, ν(j, ti)) ≤
viti + vjti ≤ 2 |ν(i, ti)|+ 2 |ν(j, ti)|.

Now we prove the second claim. Suppose first that vi ≥ vj . If ν(j, ti) is a leaf,
|ν(i, ti)| / |ν(j, ti)| ≥ 1, by fact (i). If ν(j, ti) is not a leaf, it follows from facts (ii) and
(iii) that

|ν(i, ti)|
|ν(j, ti)|

≥ viti/2
2vjti

≥ 1
4 ≥

1
4∆ .

By construction, the leaf cell that contains pi has diameter smaller than a quarter of the
smallest distance between disk centers. Hence, the node ν(i, ti) is not a leaf. Thus, by facts
(ii) and (iii),

|ν(i, ti)|
|ν(j, ti)|

≤ 2viti
vjti/2

≤ 4 maxi vi
minj vj

≤ 4∆.

The argument for vj > vi is analogous: if ν(i, ti) is a leaf, then |ν(j, ti)| / |ν(i, ti)| ≥ 1, by
fact (i). If not, then

|ν(j, ti)|
|ν(i, ti)|

≥ vjti/2
2viti

>
1
4 ≥

1
4∆ ,

by facts (ii) and (iii). Now, the node ν(j, ti) cannot be a leaf, so by facts (ii) and (iii)

|ν(j, ti)|
|ν(i, ti)|

≤ 2vjti
viti/2

≤ 4 maxj vj
mini vi

≤ 4∆.

The lemma follows. J

H.-K. Ahn et al. 3:9

Lemma 5.1 implies that instead of checking all disk pairs for elimination events, we can
restrict ourselves to the nodes given by Q. We say that two unrelated1 nodes ν, ν′ ∈ Q form
a candidate pair if (i) |ν|/4∆ ≤ |ν′| ≤ 4∆|ν| and (ii) d(ν, ν′) ≤ 2(|ν| + |ν′|). In this case,
we say that ν forms the candidate pair (ν, ν′) with ν′. We denote by CNP(ν) the set of
candidate pairs formed by ν.

I Lemma 5.2. Let ν ∈ Q. Then, CNP(ν) has O(α) candidate pairs (ν, ν′) with |ν| ≤ |ν′|.
All the sets CNP(ν) over ν ∈ Q can be computed in O(nα log Φ) time.

Proof. Using a packing argument we can show that each level of Q contains at most O(1)
candidate pairs (ν, ν′) that satisfy |ν| ≤ |ν′|. Furthermore, by definition of Φ and of candidate
pair, |ν′| = O(min{Φ,∆})|ν|, which implies that the levels of ν and ν′ in Q differ by O(α).
This implies that globally CNP(ν) contains O(α) candidate pairs (ν, ν′) with |ν| ≤ |ν′|. Since
Q has O(n log Φ) nodes, and since (ν, ν′) ∈ CNP(ν) if and only if (ν′, ν) ∈ CNP(ν′), there
are O(nα log Φ) candidate pairs overall. While building Q, we can find all sets CNP(ν) in
O(nα log Φ) time by maintaining pointers between nodes whose cells are neighboring and by
traversing the cells, using these pointers when needed. J

Our algorithm for computing the elimination sequence of the input disks is given as
Algorithm 2. We use τ(ν, i) for the first time at which b(ν) is covered by disk Di.

Algorithm 2 Quadtree based algorithm
1: function EliminationOrder(p1, . . . , pn, v1, . . . , vn)
2: Q ← ConstuctQuadTree(p1, . . . , pn)
3: CandidatePairs(Q)
4: D(ν)←⊥ for every node ν of Q
5: D(root)← 1
6: for i← 1, n do
7: ν ← getLeaf(pi)
8: ti ←∞
9: while ν 6= root and ti ≥ τ(ν, i) do
10: D(ν)← i

11: for (ν, ν′) in CNP(ν) do
12: if D(ν′) 6=⊥ and tD(ν′), ti ≥ t(i,D(ν′)) then
13: ti ← t(i,D(ν′))
14: ν ← p(ν)
15: S ← (D1, . . . , Dn)
16: Sort S using key ti for each disk Di

17: return S

I Theorem 5.3. The elimination sequence of n growing disks can be computed in O(nα log Φ)
time, where α = min{log Φ, log ∆}.

Proof. We can compute in O(n log Φ) time the quadtree Q with O(n log Φ) nodes. By
Lemma 5.2, there are O(nα log Φ) candidate pairs, which can be found in O(nα log Φ) time.

The outer for-loop iterates over the input disks in decreasing order of priority. In the
while-loop, the algorithm traverses each node ν ∈ Q from the leaf-node containing pi to

1 That is, no node is an ancestor or descendant of the other node.

ISAAC 2017

3:10 Faster Algorithms for Growing Prioritized Disks and Rectangles

the root. It updates D(ν) if necessary until it encounters a node ν with ti < τ(ν, i). The
inner for-loop iterates over every candidate pair (ν, ν′) in CNP(ν). It checks if disk i = Dν

and D′ν have the possibility to touch by computing the time t(i,D(ν′)); if so, it updates the
elimination time for Di. Thus, the algorithm takes O(nα log Φ) time. Since Φ = Ω(

√
n), this

subsumes the time for the sorting step.2 J

5.2 Using a compressed quadtree
Now we show how to improve the running time by using a compressed quadtree. Let Q
be the (usual) quadtree for the n disk centers. The tree Q is obtained as in the previous
section. We describe how to obtain the compressed quadtree QC from Q. A node ν in Q is
empty if b(ν) does not contain a disk-center, and non-empty otherwise. A singular path σ in
Q is a path ν1, ν2, . . . , νk of nodes such that (i) νk is a non-empty leaf or has at least two
non-empty children; and (ii) for i = 1, . . . , k − 1, the node νi+1 is the only non-empty child
of νi. We call σ maximal if it cannot be extended by the parent of ν1 (either because ν1
is the root or because p(ν1) has two non-empty children). For each maximal singular path
σ = ν1, . . . , νk in Q, we remove from Q all proper descendants of ν1 that are not descendants
of νk, together with their incident edges. Then, we add a new compressed edge between
ν1 and νk. The resulting tree QC has O(n) nodes. Each internal node has 1 or 4 children.
There are algorithms that can compute QC in O(n logn) time [9]. A node ν from Q may
appear as a node in QC or not. We let π(ν) be the lowest ancestor node and σ(ν) the highest
descendant node (in both cases including ν) of ν in Q that appears also in QC . See Figure 2
(right) for an illustration. For a node ν in QC , we define the set of compressed candidate
pairs CNPC(ν) for ν as

CNPC(ν) = {(ν, π(ν′)) | (ν, ν′) ∈ CNP(ν), |ν| ≤ |π(ν′)|}.

For a pair (ν, ν′) ∈ CNPC(ν), we say ν forms the candidate pair with ν′ in QC . The following
lemmas will be handy for the rest of the section.

I Lemma 5.4. Let (ν, ν′) ∈ CNP(ν), such that p(ν) 6= p(ν′). Then, (i) we have (p(ν), p(ν′)) ∈
CNP(p(ν)). Moreover, (ii) if |ν| ≤ |ν′|, then (ν′′, ν′) ∈ CNP(ν′′) for any ancestor ν′′ of ν
with |ν′′| ≤ |ν′|.

Proof. For the first part (i), we have d(p(ν), p(ν′)) ≤ d(ν, ν′) ≤ 2(|ν|+|ν′|) ≤ 2(|p(ν)|+p(|ν′|))
and |p(ν′)|/|p(ν)| = |ν′|/|ν| lies between 1/4∆ and 4∆.

For the second part (ii), we have d(ν′′, ν′) ≤ d(ν, ν′) ≤ 2(|ν|+ |ν′|) ≤ 2(|ν′′|+ |ν′|) and
1 ≤ |ν′|/|ν′′| ≤ |ν′|/|ν| ≤ 4∆. J

I Lemma 5.5. Let ν be a node of Q. Then, for every (ν, ν′) ∈ CNP(ν), we have that
(π(ν), π(ν′)) ∈ CNPC(π(ν)) or (π(ν′), π(ν)) ∈ CNPC(π(ν′)).

Proof. First, we note that π(ν) and π(ν′) are distinct, since ν and ν′ are unrelated nodes in
Q, so their least common ancestor in Q must have two non-empty children. Since the lemma
is symmetric in ν and ν′, we may assume without loss of generality that |π(ν)| ≤ |π(ν′)|. We
apply Lemma 5.4(i) repeatedly until we meet π(ν) or π(ν′), whichever happens first. If we
meet π(ν), we have (π(ν), ν′′) ∈ CNP(π(ν)) for some ancestor ν′′ of ν′ in Q. Since π(ν) is

2 A packing argument shows that the spread of any d-dimensionsonal n-point set is Ω(n1/d): if any two
points have distance at least 1, the point set must cover at least Ω(n) units of volume and hence must
have diameter Ω(n1/d).

H.-K. Ahn et al. 3:11

encountered first, we have π(ν′′) = π(ν′), so it follows that (π(ν), π(ν′)) ∈ CNPC(π(ν)). If we
meet π(ν′), we have (ν′′, π(ν′)) ∈ CNP(ν′′) for some ancestor ν′′ of ν. Since |π(ν)| ≤ |π(ν′)|
and again π(ν′′) = π(ν), it follows that (π(ν), π(ν′)) ∈ CNP(π(ν)) by Lemma 5.4(ii), and
thus (π(ν), π(ν′)) ∈ CNPC(π(ν)). J

As with Lemma 5.2, we argue that CNPC(ν) has O(α) candidate pairs. To that end,
we charge each pair (ν, π(ν′)) ∈ CNPC(ν) to a pair (ν, ν′′) ∈ CNP(ν) with |ν| ≤ |ν′′|, such
that each such pair in CNP(ν) is charged at most once. First, if |ν| ≤ |ν′|, we can charge
(ν, π(ν′)) ∈ CNPC(ν) directly to (ν, ν′) ∈ CNP(ν) (in this way, we may even charge several
such pairs in CNP(ν) for (ν, π(ν′))). Second, if |ν′| < |ν|, by Lemma 5.4(ii) there is an
ancestor ν′′ of ν′ with |ν| = |ν′′| and (ν, ν′′) ∈ CNP(ν). Furthermore, since by definition
of CNPC(ν) we have |ν| ≤ |π(ν′)|, it follows that π(ν′′) = π(ν′), so we can charge the
pair (ν, π(ν′)) ∈ CNPC(ν) to the pair (ν, ν′′) ∈ CNP(ν). It follows that there are O(nα)
compressed candidate pairs in total. The following lemma shows how to compute CNPC(ν)
for all nodes ν in QC .

I Lemma 5.6. We can compute all the sets CNPC(ν) over ν ∈ QC in O(nα) total time.

Proof. We traverse the nodes in QC from the root in BFS-fashion, ordered by decreasing
diameter. We compute CNPC(ν) for each node ν in order. For a node ν in QC , we put into
CNPC(ν) all pairs (ν, ν′) ∈ CNP(ν) with ν′ ∈ QC and |ν| = |ν′|. Furthermore, we check all
pairs (ν, ν′) with |ν| < |ν′| and (a) (p(ν), ν′) ∈ CNPC(p(ν)) or (b) (ν′, p(ν)) ∈ CNPC(ν′). We
add (ν, ν′) to CNPC(ν) if (ν, ν′) fulfills the requirements of a compressed candidate pair. This
can be checked in O(1) time. By our BFS-traversal, we already know the sets CNPC(p(ν))
and CNPC(ν′) for |ν| < |ν′|.

For |ν| = |ν′|, there are O(1) pairs to check, and they can be found at the same time
using appropriate pointers in QC . For |ν| < |ν′|, since |CNPC(p(ν))| = O(α), there are O(α)
pairs to check for case (a). There can be ω(α) pairs for case (b), but obviously there are
O(nα) such pairs in total for all ν ∈ QC .

Now we show that the algorithm correctly computes all the compressed candidate
pairs in CNPC(ν). Consider a pair (ν, π(ν′)) ∈ CNPC(ν), where (ν, ν′) ∈ CNP(ν) and
|ν| ≤ |π(ν′)|. If |ν| = |π(ν′)|, we have (ν, π(ν′)) ∈ CNP(ν) so the algorithm will find it. If
|ν| < |π(ν′)|, let η be the parent of ν in Q. If π(ν′) = ν′, we have (η, π(ν′)) ∈ CNP(η)
by Lemma 5.4(ii), since |η| ≤ |π(ν′)|. If |π(ν′)| > |ν′|, let η′ be the parent of ν′ in
Q. Lemma 5.4(i) implies (η, η′) ∈ CNP(η). Since π(η) = p(ν) (as a node in QC this
time) and π(η′) = π(ν′), we conclude with Lemma 5.5 that (p(ν), π(ν′)) ∈ CNPC(p(ν)) or
(π(ν′), p(ν)) ∈ CNPC(π(ν′)). J

Recall that, in the uncompressed quadtree approach each candidate pair (of nodes) leads
to a pair of disks that may touch at some time. We will call such a pair a candidate pair of
disks. Note that two distinct candidate pairs may be associated to the same candidate pair
of disks. Let D be the set of all candidate pairs of disks obtained using the uncompressed
quadtree approach.

We set DC(ν) to D(ν), if D(ν) 6=⊥. If D(ν) =⊥ and ν has a single child ν′ connected by a
compressed edge, we set DC(ν) = D(ν′). In all other cases, we set DC(ν) =⊥. A compressed
candidate pair (ν, ν′) for ν, ν′ ∈ QC defines a candidate pair of disks (DC(ν), DC(ν′)) if
both DC(ν), DC(ν′) 6=⊥. We let DC denote the set of all candidate pairs of disks defined by
compressed candidate pairs. We claim that D ⊆ DC . That is, even though the compressed
quadtree has fewer candidate pairs of nodes, we discard only candidates that are already in
DC . We first introduce a helpful lemma.

ISAAC 2017

3:12 Faster Algorithms for Growing Prioritized Disks and Rectangles

I Lemma 5.7. Let ν ∈ Q, and consider the nodes σ(ν) and π(ν) in QC . If π(ν)σ(ν) is
a compressed edge, then for any node ν′ ∈ Q on the singular path for π(ν)σ(ν), we have
D(ν′) ∈ {D(σ(ν)),⊥}.

Proof. Recall that, for any node η ∈ Q, we have D(η) = i if and only if Di occupies η and
b(η) contains pi. Since each node ν′ on the singular path has only one non-empty child, the
only disk that can occupy ν′ is D(σ(ν)). J

I Lemma 5.8. D ⊆ DC .

Proof. Let (D(ν), D(ν′)) ∈ D. If ν ∈ QC , π(ν) = ν and DC(π(ν)) = D(ν). If ν 6∈ QC ,
then if D(π(ν)) 6=⊥, by Lemma 5.7, D(π(ν)) = D(σ(ν)) and hence DC(π(ν)) = D(σ(ν)). If
D(π(ν)) =⊥, then the child node of π(ν) in QC is σ(ν), and therefore DC(π(ν)) = D(σ(ν)).
Thus, in both cases, we have DC(π(ν)) = D(σ(ν)). Since D(ν) 6=⊥, we have D(ν) = D(σ(ν))
by Lemma 5.7, so DC(π(ν)) = D(ν). The same holds for ν′. Finally, (ν, ν′) ∈ CNP(ν) implies
tha (π(ν), π(ν′)) ∈ CNPC(π(ν)) or (π(ν′), π(ν)) ∈ CNPC(π(ν′)) by Lemma 5.5. We conclude
that (D(ν), D(ν′)) = (DC(π(ν)), DC(π(ν′)) ∈ DC . J

I Theorem 5.9. The elimination sequence of n disks can be computed in O(n logn+ nα)
time, where α = min{log Φ, log ∆}.

Proof. We compute the compressed quadtree for the disk centers, and we find the compressed
candidate pairs. As described above, this takes O(n logn+nα) time. After that, we make the
candidate pairs symmetric so that for all pairs ν, ν′, we have (ν, ν′) ∈ CNPC(ν) if and only
if (ν′, ν) ∈ CNPC(ν′). This takes O(nα) time. Finally, we proceed as in Algorithm 2, but
using QC instead of Q and the compressed candidate pairs instead of the (regular) candidate
pairs. By Lemma 5.8, this algorithm still considers all the relevant candidate pairs of disks.
The running time for the last step is proportional to the number of nodes in QC and the
number of compressed candidates, i.e., O(nα). The total running time of the algorithm is
O(n logn+ nα). J

6 Lower bound

We show that the elimination order can be used to sort n numbers vn+1, . . . , v2n larger
than 1 and smaller than 2, which implies an Ω(n logn) lower bound. Place n growing disks
D1, . . . , Dn centered at points (2, 0), (4, 0), . . . (2n, 0), all with growth rate vi = 1. Also,
place n disks Dn+1, . . . , D2n centered at points (2, 1), (4, 1), . . . (2n, 1) with growth rates
vn+1, . . . , v2n. Observe that disk Dn+i will be eliminated by disk Di at tn+i = t(n+ i, i) =
1/(1 + vn+i) < 1/2 since ti = 1/2 for 1 ≤ i ≤ n. Then the elimination order of this set of
growing disks gives the input growth rates {vn+1, . . . , v2n} in reversed sorted order. The
same argument holds for squares.

I Theorem 6.1. It takes at least Ω(n logn) time to find the elimination order of a set of n
growing disks or squares in the plane under the algebraic decision tree model.

Acknowledgments. This work was initiated during the 20th Korean Workshop on Computational
Geometry. The authors would like to thank the other participants for motivating discussions.

References
1 Pankaj K. Agarwal, Boris Aronov, and Micha Sharir. Computing envelopes in four dimen-

sions with applications. SIAM J. Comput., 26(6):1714–1732, 1997.

H.-K. Ahn et al. 3:13

2 Daniel Bahrdt, Michael Becher, Stefan Funke, Filip Krumpe, André Nusser, Martin Sey-
bold, and Sabine Storandt. Growing balls in Rd. In Proc. 19th Workshop Algorithm Eng.
Exp. (ALENEX), pages 247–258, 2017.

3 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 2008.

4 Thom Castermans, Bettina Speckmann, Frank Staals, and Kevin Verbeek. Agglomerative
clustering of growing squares. CoRR, abs/1706.10195, 2017. URL: http://arxiv.org/
abs/1706.10195.

5 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas J. Guibas, John
Hershberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using geodesic
triangulations. Algorithmica, 12(1):54–68, 1994.

6 Michael Formann. Weighted closest pairs. In Proc. 10th Sympos. Theoret. Aspects Comput.
Sci. (STACS), pages 270–281, 1993.

7 Stefan Funke, Filip Krumpe, and Sabine Storandt. Crushing disks efficiently. In Proc. 27th
Int. Workshop Comb. Alg. (IWOCA), pages 43–54, 2016.

8 Stefan Funke and Sabine Storandt. Parametrized runtimes for ball tournaments. In Proc.
33rd European Workshop Comput. Geom. (EWCG), pages 221–224, 2017.

9 Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Society,
Boston, MA, USA, 2011.

10 John Hershberger. Finding the upper envelope of n line segments in O(n logn) time. Inform.
Process. Lett., 33(4):169–174, 1989.

11 Vladlen Koltun. Almost tight upper bounds for vertical decompositions in four dimensions.
J. ACM, 51(5):699–730, 2004.

12 Jiří Matoušek. Lectures on Discrete Geometry. Springer-Verlag, 2002.

ISAAC 2017

http://arxiv.org/abs/1706.10195
http://arxiv.org/abs/1706.10195

	Introduction
	A simple quadratic algorithm
	A subquadratic algorithm using bucketing
	Growing cubes
	Quadtree-based approach
	Using an (uncompressed) quadtree
	Using a compressed quadtree

	Lower bound

