
Journal of Computational Geometry jocg.org

TIME-SPACE TRADE-OFFS FOR COMPUTING EUCLIDEAN MINIMUM
SPANNING TREES∗

Bahareh Banyassady,†Luis Barba,‡ and Wolfgang Mulzer§

Abstract. We present time-space trade-offs for computing the Euclidean minimum span-
ning tree of a set S of n point-sites in the plane. More precisely, we assume that S resides
in a random-access memory that can only be read. The edges of the Euclidean minimum
spanning tree EMST(S) have to be reported sequentially, and they cannot be accessed or
modified afterwards. There is a parameter s ∈ {1, . . . , n} so that the algorithm may use
O(s) cells of read-write memory (called the workspace) for its computations. Our goal is to
find an algorithm that has the best possible running time for any given s between 1 and n.

We show how to compute EMST(S) in O
(
(n3/s2) log s

)
time with O(s) cells of

workspace, giving a smooth trade-off between the two best known bounds O(n3) for s = 1
and O(n log n) for s = n. For this, we run Kruskal’s algorithm on the relative neighborhood
graph (RNG) of S. It is a classic fact that the minimum spanning tree of RNG(S) is exactly
EMST(S). To implement Kruskal’s algorithm with O(s) cells of workspace, we define s-nets,
a compact representation of planar graphs. This allows us to efficiently maintain and update
the components of the current minimum spanning forest as the edges are being inserted.

1 Introduction

Given a set S of n point-sites in the plane, the Euclidean minimum spanning tree of S,
EMST(S), is the minimum spanning tree of the complete graph with vertex set S, where
the weight of an edge between two point-sites is the Euclidean distance between them. The
problem of computing EMST(S) efficiently constitutes a core question of computational
geometry, and it is discussed in virtually every introductory course on the subject. There are
several algorithms that find EMST(S) in O(n log n) time and with O(n) cells of space [12,25].

Here, our goal is to design algorithms to compute EMST(S) in the limited-workspace
model, where only a limited number of memory cells are available for reading and writing
during the execution of the algorithm [8]. This model is of interest theoretically because
it provides a trade-off between the running time and the space usage of an algorithm. It
is also useful from a practical point of view, in developing software for portable devices

∗A preliminary version appeared as B. Banyassady, L. Barba, and W. Mulzer. Time-Space Trade-Offs
for Computing Euclidean Minimum Spanning Trees. Proc 13th LATIN, pp. 108–119, 2018. B.B. and W.M.
were supported in part by DFG project MU/3501/2 and ERC StG 757609. L.B. was supported by the ETH
Postdoctoral Fellowship.

†Zuse Institut Berlin, Germany, bahareh.banyassady@fu-berlin.de
‡ETH Zurich, Zurich, Switzerland, luis.barba@inf.ethz.ch
§Institut für Informatik, Freie Universität Berrlin, Germany, mulzer@inf.fu-berlin.de

http://jocg.org/

Journal of Computational Geometry jocg.org

and sensors where memory is the limiting factor. A significant amount of research has
focused on the design of algorithms under memory constraints. Much of this work dates
from the 1970s, when memory was an expensive commodity. Even today, while this cost
has dropped substantially, at the same time the amount of data has increased, and the size
of some devices has been reduced dramatically. In particular, sensors and small devices,
where larger memories are neither possible nor desirable, have proliferated in recent years.
Moreover, even if a device is equipped with a large memory, it may still be preferable to
limit the number of write operations. For example, writing to flash memory is slow, and it
may reduce the lifetime of the memory. Additionally, if the input is stored on removable
devices, write-access may not be allowed due to technical or security concerns.

There are many variants of the limited-workspace model [8], but the general outline is
usually the same: the input resides in a read-only memory and cannot be modified directly
by the algorithm. Instead, the algorithm may use a controlled amount of storage cells
(usually called workspace) that reside in a local memory and can be modified as needed to
solve the problem. Since the result of the computation may not fit in the local memory,
the model provides a write-only memory where the output is reported sequentially. One
noteworthy instance of the model is encountered in computational complexity theory, where
the complexity class LOGSPACE consists of all decision problems that can be solved with
a deterministic Turing machine that has access to two tapes [3]. The first tape is read-
only and contains the input, while the second tape represents the workspace and contains a
logarithmic (in the input size) number of read-write bits. In other words, the second tape
stores only a constant number of words with a logarithmic number of bits that can be used
as counters or as pointers to the input. Thus, the computational model represented by
LOGSPACE is sometimes referred to as the constant-workspace model [5, 6].

More generally, we may allow the algorithm to use a workspace of O(s) cells, for
some parameter s, where a cell stores either an input item (such as a point coordinate), a
pointer into the input structure (of logarithmic size in the input length), or a counter (with a
logarithmic number of bits). The goal is to design algorithms whose running time decreases
as s increases, and to obtain a smooth trade-off between workspace size and running time.

Our results. For computing the Euclidean minimum spanning tree of n given point-sites
in the plane in the constant-workspace model, Asano et al. [5] presented an algorithm that
runs in O(n3) time. We use their method as a starting point for a time-space trade-off. As a
result, we obtain an algorithm that, for any given number s ∈ {1, . . . , n} of workspace cells,
computes the EMST in O

(
(n3/s2) log s

)
time. This yields a smooth transition between the

O(n3) time algorithm for s = 1 by Asano et al. [5] and the classic O(n log n) algorithm for
s = n [12, 25].

As a main tool, we define a compact representation of a plane graph G, called the s-
net. The s-net consists of a “dense” set of s edges in G for which we remember the edge-face
incidences. That is, for each edge e in the s-net, we store the (at most two) faces ofG to which
e is incident. Furthermore, for each face in G that has at least one incident edge in the s-net,
we store the order in which the incident edges of the s-net appear. The density property
guarantees that we cannot walk for more than O(s) steps along a connected component of

http://jocg.org/

Journal of Computational Geometry jocg.org

the boundary of a face in G without reaching an edge of the s-net. This turns out to be
useful for an efficient limited-workspace implementation of Kruskal’s MST-algorithm on a
plane graph G. Recall that in this algorithm, the edges of G are inserted into an auxiliary
graph by increasing order of weight. To insert a new edge e, we need to determine whether
the endpoints of e are in the same component of the current auxiliary graph. If G is plane,
this amounts to testing whether the endpoints of e are incident to the same face of the
current auxiliary graph—precisely the task for which s-nets were created. While the s-net is
designed to speed up Kruskal’s algorithm, this structure may be of independent interest, as
it provides a compact way to represent plane graphs that may be useful in other problems.

Related work. The study of constant-workspace algorithms in theoretical computer sci-
ence started with the complexity class LOGSPACE [3]. Since then, many classic problems
were considered in this setting. For example, there are a lot of relevant results on selection
and sorting [14,22–24]. A long-standing algorithmic problem in graph theory was eventually
solved by Reingold [26], who showed that the reachability between two vertices in an undi-
rected graph can be decided in LOGSPACE. The model was made popular in computational
geometry by Asano et al. [5], who presented several algorithms to compute classic geometric
structures in the constant-workspace model (see the recent survey [8]). Time-space trade-
offs for many of these structures were presented in subsequent years [1,2,4,7,9–11,16–18,20],
with the notable exception of the EMST. This is finally addressed here.

2 Preliminaries and Notation

We recall the basic definition and some properties of the Euclidean minimum spanning tree,
and we briefly review some known algorithms for computing it, both in the classic setting
and in the constant-workspace model. Furthermore, we recall the definition of the relative
neighborhood graph (RNG), a basic proximity structure defined on planar point sets, and we
discuss the relationship between RNGs and Euclidean minimum spanning trees.

2.1 Euclidean Minimum Spanning Trees

Let S = {p1, . . . , pn} ⊂ R2 be a set of n point-sites in the plane, from now on referred to
as sites. We assume that S is in general position, i.e., no three sites lie on a common line,
no four sites lie on a common circle, and the pairwise distances between the sites are all
distinct. Let GS be the complete weighted graph with vertex set S, where the edges are
weighted with the Euclidean distance between their endpoints. A minimum spanning tree
of GS is called a Euclidean minimum spanning tree of S, and it is denoted by EMST(S),
see Figure 1.

Under our general position assumption, it is known that EMST(S) is unique (see,
e.g., [15]). Given S, we would like to report the edges of EMST(S) in any order, so that
each edge is listed exactly once.

http://jocg.org/

Journal of Computational Geometry jocg.org

(a) (b)

Figure 1: A set S of sites in the plane, and (a) a spanning tree of the complete graph with
vertex set S and (b) the Euclidean minimum spanning tree of S.

A Classic Algorithm. We recall the classic algorithm by Kruskal [15]: we start with an
empty forest F , and we consider the edges of GS one by one, by increasing weight. In each
step, we insert the current edge e into F if and only if there is no path in F between the
endpoints of e; see Figure 2. After all edges of GS have been considered, the final graph F
is exactly EMST(S). Using a disjoint set-union structure, we keep track of the components
of F so that we can determine if there is a path in F between the two endpoints of the
next edge e [15]. With an efficient implementation of the disjoint set-union structure, the
time for inserting the edges into F is dominated by the time for sorting the edges with their
weight. This gives a running time of O(n2 log n) with O(n) cells of workspace.

e1

q

p

(a)

q

r

e2

(b)

Figure 2: Two steps in Kruskal’s algorithm for computing the EMST for a set of sites in the
plane. (a) In this step, the algorithm adds e1 to F , since there is no path between p and q
in F . (b) In the next step, e2 is discarded, since q and r lie in the same component of F .

The running time can be improved as follows: the Delaunay triangulation of S,
DT(S), is the triangulation of S in which three sites p, q, r form a triangle if and only if the
disk with p, q, and r on the boundary contains no other sites from S in its interior [12].
Under our general position assumption, this defines a unique plane triangulation of S which
is a supergraph of EMST(S); see Figure 3 [12]. Thus, EMST(S) is the minimum spanning
tree of DT(S), and it suffices to consider the O(n) edges of DT(S) instead of the O(n2) edges
of GS . Then, Kruskal’s algorithm runs in O(n log n) time, when O(n) cells of workspace are
available [12].

http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 3: The Delaunay triangulation DT(S) and the Euclidean minimum spanning tree
EMST(S) for a planar point set S. The dashed edges belong to EMST(S).

The Constant-Workspace Algorithm. Asano et al. [5] presented an algorithm that reports
the edges of EMST(S) in O(n3) time with O(1) cells of workspace. Like the classic method,
their algorithm uses the fact that EMST(S) is a subgraph of DT(S). First, Asano et al. show
that there exists a constant-workspace algorithm that solves the following task in O(n) time:
given an edge pq of DT(S), find the next edge pr of DT(S) that is incident to p after pq in
clockwise direction. Using the fact that for each p ∈ S, the edge between p and its nearest
neighbor in S \ {p} belongs to DT(S), this gives an algorithm that reports the edges of
DT(S), one by one, in an arbitrary order, in O(n) time per edge. We will not describe
the details here, but we present an analogous result for relative neighborhood graphs in
Section 3.

Then, the algorithm of Asano et al. to list the edges of EMST(S) proceeds as follows:
we run the constant-workspace algorithm that enumerates the edges of DT(S). Every time
a new edge e of DT(S) is reported, we test if e is in EMST(S). If so, we output e; otherwise,
we discard it. To perform this test, we consider the subgraph DT<e of DT(S) that contains
all the edges of length less than |e|, where |e| denotes the (Euclidean) length of e. By the
cut-property of minimum spanning trees, it follows that e is not in EMST(S) if and only
if the endpoints p and q of e lie in the same connected component of DT<e. Since DT(S)
is plane, this means that e is not in EMST(S) if and only if p and q lie on a common
connected component of the boundary of the face of DT<e that contains e. In other words,
e /∈ EMST(S) if and only if we encounter q by walking from p along the connected component
of the boundary of the face of DT<e that contains e; see Figure 4.

e

p

q

Figure 4: The subgraph DT<e for a planar point set S and an edge e = pq of DT(S). To
decide if e belongs to EMST(S), we check if p to q are in the same connected component of
DT<e. For this, we walk along the boundary of the face of DT<e that contains e, starting
from p.

http://jocg.org/

Journal of Computational Geometry jocg.org

To perform one step of this walk, we use the above-mentioned subroutine due to
Asano et al. that receives an edge of DT(S) and finds the next clockwise edge of DT(S)
using O(n) time and O(1) cells of workspace. We start with the edge e = pq and we
repeatedly call the subroutine until we find the first Delaunay edge pr of length less than
|e| (if no such edge exists, then e belongs to EMST(S)). Then, we repeatedly call the
subroutine, starting with the reverse edge rp, until we encounter an edge rs with length less
than |e|. We continue until either (i) we encounter q, in which case e does not belong to
EMST(S); or (ii) the subroutine produces the edge e, which means that we have traversed
the complete connected component of the face boundary without seeing q, in which case e
belongs to EMST(S).1 During this walk, each edge of DT(S) is generated at most twice, at
most once for each endpoint. Thus, we need O(n2) time to decide if an edge e of DT(S) is
in EMST(S), with O(1) cells of workspace.

Since DT(S) has O(n) edges, and since it takes O(n2) time to decide membership
in EMST(S), the total time to find all the edges of EMST(S) is O(n3). The overhead for
computing the edges of DT(S) in the outer loop is O(n2), which is negligible compared to
the remainder of the algorithm. The workspace is constant. We can also report the edges
of EMST(S) by increasing length: we repeatedly list all edges of DT(S), and each time we
find the shortest edge e ∈ DT(S) whose membership in EMST(S) has not yet been checked,
we apply our test to e. Now, the overhead for the outer loop is O(n3) instead of O(n2),
without any effect on the total asymptotic running time.

2.2 Relative Neighborhood Graphs

The relative neighborhood graph is a geometric structure that “lies between” the Euclidean
minimum spanning tree and the Delaunay triangulation. For two sites p, q ∈ S, we define
the lens of p and q as the intersection of the disk centered at p with radius |pq| and the disk
centered at q with radius |pq|, where | · | denotes the Euclidean distance. The lens of p and
q is called empty if it contains no sites of S \ {p, q} in its interior. In other words, the two
sites p and q have the empty lens property if there is no site r ∈ S \ {p, q} such that both
|pr| and |qr| are shorter than |pq|; see Figure 5.

Dp
Dq

qp

Figure 5: A set S of sites and two sites p, q ∈ S. The disks Dp and Dq have radius |pq| and
are centered at p and q, respectively. The two sites p and q satisfy the empty lens property
since Dp ∩Dq is empty of other sites of S.

1Note that it does not suffice to stop the walk once we come back to p, because several edges that are
incident to p might appear on the boundary of the relevant face.

http://jocg.org/

Journal of Computational Geometry jocg.org

p q

Figure 6: An edge pq in RNG(S). The lens of p and q is empty.

The relative neighborhood graph RNG(S) of S is the undirected graph with vertex
set S obtained by connecting two sites p, q ∈ S with an edge if and only if the lens of p and
q is empty [27]. One can show that a plane embedding of RNG(S) is obtained by drawing
the edges as straight line segments between the corresponding sites in S; see Figure 6.

By definition, RNG(S) is a subgraph of DT(S).2 Furthermore, it is well-known
that EMST(S) is a subgraph of RNG(S) [12]. In particular, this implies that RNG(S) is
connected; see Figure 7. Each vertex in RNG(S) has at most six neighbors, so RNG(S) has
bounded degree and O(n) edges. We will denote the number of those edges by m. Given S,
we can list the edges of RNG(S) in O(n log n) time using O(n) cells of workspace [19,21,27].

Figure 7: An illustration of the fact EMST(S) ⊆ RNG(S) ⊆ DT(S). The dashed black
edges belong to EMST(S) and are a subset of the green edges which represent RNG(S). All
these edges form a subset of the edges of the underlying graph DT(S).

Thus, we can compute EMST(S) with the algorithm of Kruskal using the edges of
RNG(S) instead of DT(S). Since both RNG(S) and DT(S) have O(n) edges, this does not
improve the running time of Kruskal’s algorithm in the classic setting where O(n) cells of
workspace are available. However, since RNG(S) (unlike DT(S)) has bounded degree, it
turns out to be the superior choice for the limited-workspace model.

We define ER = e1, . . . , em to be the sorted sequence of edges in RNG(S), in increas-
ing order of length. For i ∈ {1, . . . ,m}, we define RNGi to be the subgraph of RNG(S) with
vertex set S and edge set {e1, . . . , ei−1}. To check if ei belongs to EMST(S), the algorithm
by Kruskal checks if the endpoints of ei lie on the same component of RNGi; see Figure 8.

2If an edge e = pq is in RNG(S), then the lens of p and q is empty, which also means that the smallest
disk with both p and q on the boundary is empty of other sites of S. Thus, e belongs to DT(S).

http://jocg.org/

Journal of Computational Geometry jocg.org

1

2

3

4

5
6

8

9

10

7

12
11

13

14

15

16

17

18

19

20

21
22

24

23
25

26

27

28 2930

Figure 8: The RNG for a set S of sites. The labels represent the indices of the edges in the
sorted sequence ER. The subgraph RNG19 is shown in green. The edge e19 does not belong
to EMST(S) since its endpoints lie in the same component of RNG19.

In our algorithms, we represent each edge ei ∈ ER by two directed half-edges. The
two half-edges are oriented in opposite directions such that the face incident to a half-edge
lies on its left. We call the endpoints of a half-edge the head and the tail such that the
half-edge is directed from the tail endpoint to the head endpoint. Furthermore, directed
half-edges will be denoted as −→e and undirected edges as e; see Figure 9.

F

ei

−→ej
p

q

F ′

Figure 9: A schematic drawing of the faces F, F ′ of RNG(S). The two half-edges that
correspond to the edge ei are oriented such that the face incident to each lies on its respective
left. The sites p and q are the head and the tail endpoints of the half-edge −→ej = −→pq,
respectively.

Using the concept of half-edges, we define the face-cycle in a planar graph. For
i ∈ {1, . . . ,m}, a face-cycle in RNGi is the circular sequence of consecutive half-edges such
that (i) they bound either a face in RNGi or the outer face in a connected component of
RNGi

3; and (ii) every two consecutive half-edges e and e′ in a face-cycle share an endpoint
which is the head vertex of e and the tail of e′.

The definition implies that all the half-edges in a face-cycle are oriented in the same
direction and the face (or the outer face) incident to the half-edges lies on their left. Note
that every half-edge lies on only one face-cycle; however, a site of S might be on several
face-cycles; see Figure 10. The partial relative neighborhood graph RNGi can be represented
as a collection of face-cycles.

3Since RNGi has several connected components, to define face-cycles of the outer face, we have to consider
the outer face of each connected component individually.

http://jocg.org/

Journal of Computational Geometry jocg.org

p

Figure 10: A schematic drawing of RNGi for a planar set S of sites. The edges are shown in
black. The face-cycles of RNGi are in beige. The half-edges of each face-cycle are directed
according to the arrows on the corresponding cycle. The site p ∈ S is on three face-cycles
of RNGi. Each of the six half-edges incident to p is only on one face-cycle.

Let j ≥ i ≥ 1. For a half-edge −→ej with head q, we define the predecessor and the
successor of −→ej in RNGi as follows: the predecessor pre(−→ej) of −→ej is the half-edge in RNGi

which has q as its head and is the first half-edge encountered in a counterclockwise sweep
from −→ej around q. The successor suc(−→sj) of −→ej is the half-edge in RNGi which has q as
its tail and is the first half-edge encountered in a clockwise sweep from −→ej around q; see
Figure 11 for an illustration. Note that, if there is no edge incident to q in RNGi, we set
both the predecessor and the successor to Null.

Let i > j ≥ 1. For the half-edge −→ej in RNGi that lies on a face-cycle F , we define
the next edge of −→ej on F as the half-edge on F whose tail is the head of −→ej . Note that the
next edge of a half-edge −→ej is defined with respect to each diagram RNGi with i > j and
thus −→ej ∈ RNGi, whereas the predecessor and successor of −→ej are defined with respect to
each diagram RNGi with i ≤ j, meaning that −→ej 6∈ RNGi.

−→ej

q

pre(−→ej)suc(−→ej)

−→ej′

suc(−→ej′)
pre(−→ej′)
q′

Figure 11: A schematic drawing of RNGi and the half-edges −→ej with head q and −→ej′ with
head q′, for j, j′ ≥ i ≥ 1. The predecessor and successor of −→ej are pre(−→ej) and suc(−→ej),
respectively. The predecessor and successor of −→ej′ are pre(−→ej′) and suc(−→ej′), respectively.

http://jocg.org/

Journal of Computational Geometry jocg.org

3 Computing the Relative Neighborhood Graph

For the given set S = {p1, . . . , pn} of sites, our first goal is to compute the edges of RNG(S) in
the limited-workspace model. We first present an algorithm for listing the edges of RNG(S)
in an arbitrary order, using O(s) cells of workspace. Then, we extend the algorithm so that
it outputs the edges in sorted order according to their lengths. Our method is inspired by
the time-space trade-off for Voronoi diagrams by Banyassady et al. [9].

3.1 All the Incident Edges to Some Sites

The idea is to subdivide S into batches of s sites, and to compute all the edges incident to
the sites in one batch simultaneously. In the following lemma, we explain how to process
one batch using O(s) cells of workspace. This lemma is the main reason why we prefer to
use RNG(S) instead of DT(S), the choice of Asano et al. [5]. More precisely, in DT(S),
there may be sites of high degree, so that we cannot guarantee that all edges incident to the
sites of a single batch can be found in the desired time.

Lemma 3.1. Let S be a planar set of n point-sites in general position, stored in a read-only
array. Given a set Q ⊆ S of s sites, we can compute for each p ∈ Q the neighbors of p
in RNG(S) (for each p, there are at most six neighbors) in total time O(n log s) and using
O(s) cells of workspace.

Proof. The algorithm has two phases. In the first phase, for each p ∈ Q, we find a set
containing the neighbors of p in RNG(S). This superset has size at most six. In the second
phase, we check for each p ∈ Q which of these candidate neighbors are the actual neighbors
of p in RNG(S).

The first phase proceeds in dn/se steps. In each step, we process a batch of s sites
of S = R1 ∪ · · · ∪ Rdn/se, and we produce at most six candidate neighbors for each p ∈ Q.
In the first step, we take the first batch R1 ⊆ S of s sites, and we compute RNG(Q ∪ R1).
Because |Q∪R1| ≤ 2s, we can do this in O(s log s) time using known algorithms [19,21,27].
For each p ∈ Q, we remember the neighbors of p in RNG(Q ∪ R1) (there are at most six
neighbors). Notice that if for a pair p ∈ Q, r ∈ R1, the edge pr is not in RNG(Q∪R1), then
the lens of p and r is non-empty. This also means that pr is not an edge of RNG(S). Let
N1 be the set containing all neighbors in RNG(Q∪R1) of all sites in Q. Storing N1, the set
of candidate neighbors, requires O(s) cells of workspace.

Then, in each step j = 2, . . . , O(n/s), we take the next batch Rj ⊆ S of s sites, and
we compute RNG(Q∪Rj ∪Nj−1) in O(s log s) time using O(s) cells of workspace. For each
p ∈ Q, we store the set of neighbors of p in this computed graph (this set has size at most
six). Additionally, we let Nj be the set containing all neighbors in RNG(Q ∪Rj ∪Nj−1) of
all sites in Q. Note that Nj , the set of candidate neighbors, consists of O(s) sites as each
site in Q has a degree of at most six in the computed graph. At this step, we do not need
to store Nj−1 anymore.

After dn/se steps we are left with at most six candidate neighbors for each site in
Q. As mentioned above, for a pair p ∈ Q, r ∈ S, if r is not among the candidate neighbors

http://jocg.org/

Journal of Computational Geometry jocg.org

p1

p2

p3

p5

p4

Figure 12: For S = {p1, . . . , p5}, the set of neighbors of p1 in RNG(S) is {p2, p3}. Suppose
that p3 and p4 are processed in some steps before p5. After processing p3 and p4, the site p4
is not a candidate neighbor of p1, because p3 lies in their lens. This results in p5 becoming
a candidate neighbor of p1 in one of the following steps. Since p4 is the only site in the lens
of p1 and p5, the site p5 will remain as a candidate neighbor of p1.

of p, then, at some point in the construction, there was an obstructing site inside the lens
of p and r. Therefore, only the candidate neighbors can define edges of RNG(S), but not
necessarily all of them. See Figure 12 for an example.

In the second phase, to obtain the edges of RNG(S) incident to the sites in Q, we
go again through the entire set S = R1 ∪ · · · ∪ Rdn/se in batches of size s: in the first step,
we start with all the sites in Q and their candidate neighbors in Ndn/se, and we construct
RNG(Q ∪ R1 ∪ Ndn/se). For each p ∈ Q and for each candidate neighbor r of p in Ndn/se,
we check if r is still a neighbor of p in this computed graph. If not, we remove r from the
candidate neighbors of p. We denote the pruned set of candidate neighbors of all the sites
in Q by N ′1. The candidate neighbors in Ndn/se for which there is an obstructing site in R1

will not appear in N ′1.

Then, in each step j = 2, . . . , O(n/s), we construct the graph RNG(Q∪R1 ∪N ′j−1).
Again, for each site p ∈ Q, we remove its candidate neighbors in N ′j−1 that are no longer
neighbors of p in the computed graph. We denote the pruned set of candidate neighbors of
all the sites in Q by N ′j . In this step, we do not need to store N ′j−1 anymore. After going
through all the batches, the candidates that have survived define the edges of RNG(S)
incident to the sites in Q; see Figure 13. Note that in all the steps, N ′j contains at most six
candidate neighbors for each site of Q, and thus, its size is O(s).

p1

p2 p3

p5

p4

Figure 13: A set of sites S and the neighbors in RNG(S) of all the sites in Q = {p1, . . . , p5}.

http://jocg.org/

Journal of Computational Geometry jocg.org

Since the algorithm takes O(s log s) time per step, and since the number of steps is
2 · dn/se, the total running time of the algorithm is O(n log s). The space requirement for
storing the candidate neighbors as well as the intermediate RNGs is O(s) cells of workspace.

3.2 Finding All the Edges of RNG

Through repeated application of Lemma 3.1, we can compute all the edges of RNG(S), in
some arbitrary order, using a workspace of O(s) cells.

Theorem 3.2. Suppose we are given a set of n point-sites S = {p1, . . . , pn} in the plane in
general position, stored in a read-only array. Let s be a parameter in {1, . . . , n}. We can
compute the edges of RNG(S) in total time O

(
(n2/s) log s

)
, using O(s) cells of workspace.

Proof. We take the set Q of the first s sites of S, and we apply Lemma 3.1 on Q to find
all the neighbors in RNG(S) of all the sites in Q. Whenever we find a neighbor pj of a site
pi in RNG(S), we report the edge pipj only if i < j. This guarantees that the edge pipj of
RNG(S) is reported only once. Then, we take the next batch of s sites of S and repeat the
same procedure. We continue until all the sites in S are processed, i.e., O(n/s) times; see
Figure 14.

Lemma 3.1 guarantees that all the reported edges belong to RNG(S) and all the edges
of RNG(S) are reported exactly once. Regarding the running time of the algorithm, O(n/s)
invocations of Lemma 3.1 take a total of O

(
(n2/s) log s

)
time. The space requirement is

immediate.

Figure 14: The RNG for the set of sites S is generated by processing sites of S in batches
of s sites.

3.3 Edges of RNG in Sorted Order of Length

In the following lemma, we use a technique that is taken from the work of Chan and Chen [13]
to produce the edges of RNG(S) in sorted order of length. Note that having edges of RNG(S)
in sorted order is necessary only in the algorithm in Section 5, where we introduce the s-net
structure. More precisely, in order to update the s-net efficiently, we must add the edges of

http://jocg.org/

Journal of Computational Geometry jocg.org

RNG(S) one by one in their sorted order. Nevertheless, this procedure is also exploited in
our simple algorithm in Section 4 with the aim of reporting edges of EMST(S) in the sorted
order of their length instead of in an arbitrary order.

Lemma 3.3. Let S be a planar set of n point-sites in general position stored in a read-only
array. Let s ∈ {1, . . . , n} be a parameter. Let ER = e1, e2, . . . , em be the sequence of edges in
RNG(S) sorted by increasing length. Let i ≥ 1. Given ei−1 (or ⊥, if i = 1), we can find the
next s edges ei, . . . , ei+s−1 in ER using O

(
(n2/s) log s

)
time and O(s) cells of workspace.4

Proof. The algorithm in Theorem 3.2 generates all edges of RNG(S) in O
(
(n2/s) log s

)
time.

As we have seen, each step of this algorithm produces a batch of O(s) edges of RNG(S),
using Lemma 3.1. Now after each step of this algorithm, instead of reporting the edges, we
select the edges ei, . . . , ei+s−1 among them, and we store these edges in the workspace. This
can be done with a trick by Chan and Chen [13]: when the algorithm produces O(s) new
edges of RNG(S), we store the edges that are longer than ei−1 in an array A of size O(s).
Whenever A contains more than 2s elements, we use a linear time selection procedure to
remove all the edges of rank larger than s [15]. This needs O(s) operations for each batch
in the algorithm of Theorem 3.2, giving a total of O(n) time for selecting the edges. In the
end, we have ei, . . . , ei+s−1 in A, albeit not in sorted order. Thus, we sort the final A in
O(s log s) time. The running time for selecting the edges and sorting them is dominated by
the time needed to compute all the edges of RNG(S). The space usage for generating the
edges and also for selecting and sorting them is bounded by O(s) cells of workspace. Thus,
the claim follows.

4 A Simple Time-Space Trade-Off for EMST

The algorithm in Theorem 3.2 for producing edges of RNG(S), together with the techniques
from the constant-workspace algorithm by Asano et al. [5] described in Section 2.1, leads to
a simple time-space trade-off for computing EMST(S) that we will explain now.

4.1 Structure of Face-Cycles

Recall from Section 2.2 that a partial relative neighborhood graph RNGi is represented as
a collection of face-cycles. As described in Section 2.1, Asano et al. [5] have observed that,
to run Kruskal’s algorithm on RNG(S), it suffices to know the structure of the face-cycles
of RNGi, for i ∈ {1, . . . ,m}. The following observation makes this precise.

Observation 4.1. Let i ∈ {1, . . . ,m}. The edge ei ∈ ER does not belong to EMST(S) if
and only if there is a face-cycle F in RNGi such that both endpoints of ei lie on F .

Proof. Let p and q be the endpoints of ei. If there is a face-cycle F in RNGi that contains
both p and q, then ei clearly does not belong to EMST(S); see Figure 15a. Conversely,
suppose that ei does not belong to EMST(S) and hence p and q lie in the same component

4Naturally, if i+ s− 1 > m, we report the edges ei, . . . , em.

http://jocg.org/

Journal of Computational Geometry jocg.org

p

q

(a)

p

q

(b)

Figure 15: A schematic drawing of RNGi. (a) The edge pq 6∈ EMST(S) since there is a
face-cycle that both p and q lie on. (b) If p and q were in the same connected component
of RNGi, but if there were no face-cycle that contains both of them, then ei would cross an
edge of RNGi, contradicting the planarity of RNG(S).

of RNGi. Since ei does not belong to RNGi, and since RNG(S) is plane, there is a face Γ
of RNGi such that ei ⊂ Γ. Thus, p and q lie on the boundary ∂Γ of Γ and in fact, since p
and q are in the same component of RNGi, they lie in the same component F of ∂Γ. Then,
F is a face-cycle that contains both p and q; see Figure 15b.

Observation 4.1 tells us that we can identify edges of EMST(S) if we can determine
for each ei the face-cycles in RNGi that contain the endpoints of ei, for i ∈ {1, . . . ,m}. To
accomplish this task, we use the next lemma to traverse the face-cycles.

Lemma 4.2. Let i, j ∈ {1, . . . ,m} and i > j. Suppose we are given the length |ei| of
ei ∈ ER, a half-edge −→ej of ej ∈ ER and the edges incident to the head of −→ej in RNG(S)
(there are at most six such edges). Let F be the face-cycle of RNGi that −→ej lies on. We can
find the next half-edge of −→ej on F in O(1) time using O(1) cells of workspace.

Proof. Let
−→
fj be the next half-edge of −→ej on F . Let q be the head of −→ej . By comparing the

length of the edges incident to q in RNG(S) with |ei|, we identify the ones that appear in
RNGi, in O(1) time. Then, among them we pick the half-edge

−→
fj which has the smallest

clockwise angle with −→ej around q and has q as its tail. This takes O(1) time using O(1) cells
of workspace; see Figure 16.

q

−→ej
F

−→
fj

Figure 16: For i > j, a schematic drawing of a face-cycle F of RNGi, and −→ej on F with the
head vertex q, as well as the other edges of RNGi incident to q. The edge

−→
fj which has the

smallest clockwise angle with −→ej is the next edge of −→ej on F .

Lemma 4.3. Let i, j ∈ {1, . . . ,m} and i ≤ j. Suppose we are given the length |ei| of
ei ∈ ER, a half-edge −→ej of ej ∈ ER and the edges incident to the head of −→ej in RNG(S)

http://jocg.org/

Journal of Computational Geometry jocg.org

(there are at most six such edges). We can find pre(−→ej) and suc(−→ej) in RNGi in O(1) time
using O(1) cells of workspace.

Proof. Let q be the head of −→ej . By comparing the length of the edges incident to q in
RNG(S) with |ei|, we identify the incident half-edges of q in RNGi in O(1) time. Then,
among them we pick the half-edge pre(−→ej) which has q as its head and makes the smallest
counterclockwise angle with −→ej around w. Similarly, we pick the half-edge suc(−→ej) which
has q as its tail and makes the smallest clockwise angle with −→ej . This takes O(1) time using
O(1) cells of workspace; see Figure 17.

q
−→ej

suc(−→ej)

pre(−→ej)

Figure 17: For i ≤ j, a schematic drawing of RNGi (in black) and a half-edge −→ej with head
q. The half-edge suc(−→ej) has the smallest clockwise angle with −→ej . The half-edge pre(−→ej)
has the smallest counterclockwise angle with −→ej .

4.2 The Algorithm

From our observations so far, we can derive a simple time-space trade-off for computing
EMST(S). In Theorem 4.4, we simulate Kruskal’s algorithm on RNG(S). For this, we
take batches of s edges of RNG(S), and we report the edges of EMST(S) among them. To
determine whether an edge ei of RNG(S) is in EMST(S), we apply Observation 4.1, i.e.,
we determine whether the endpoints of ei are on a common face-cycle in the corresponding
RNGi.

Theorem 4.4. Let S be a planar set of n point-sites in general position stored in a read-
only array. Let s ∈ {1, . . . , n} be a parameter. We can output all the edges of EMST(S), in
sorted order of their length, in O

(
(n3/s) log s

)
time using O(s) cells of workspace.

Proof. Let ER = e1, . . . , em be the sequence of edges of RNG(S), sorted by length. In the
first iteration, we use Lemma 3.3 to find the batch e1, . . . , es of the first s edges in ER in
O
(
(n2/s) log s

)
time. For each edge ei, i ∈ {1, . . . , s}, we consider both its half-edges. Then,

we perform 2s parallel walks starting from the head vertex of each half-edge −→ei . In the first
step of the walks, using Lemma 3.1, we find the incident edges to the head of each half-edge
−→ei (there are at most six such edges). Then, using Lemma 4.3, we identify pre(−→ei) and
suc(−→ei) in RNGi (if they exist). By following the successor of each half-edge, we perform
one step of the walk for each half-edge of the batch in parallel. Note that the walk that
starts from the head of −→ei takes place in RNGi.

Next, in the second step of the parallel walks, we consider the head vertices of all
the suc(−→ei). First, we use Lemma 3.1 to find the incident edges to the head of each suc(−→ei)

http://jocg.org/

Journal of Computational Geometry jocg.org

(there are at most six such edges). Then, applying Lemma 4.2, we find the next half-edge
of suc(−→ei), and we advance each half-edge along its face-cycle in RNGi as one step of the
parallel walks. We proceed the parallel walks by finding the next edge on the face-cycles in
each step.

A walk that started from the head q of −→ei continues until it either encounters the
tail p of −→ei or until it arrives at pre(−→ei). In the former case, we have found a face-cycle
that both endpoints of ei lie on and thus, by Observation 4.1, ei is not in EMST(S); see
Figure 18a. In the latter case, there is no face-cycle in RNGi that contains both p and q.
This is because, by definition of pre(−→ei) and suc(−→ei), all the incident edges of q in RNGi lie
in the counterclockwise cone between pre(−→ei) and suc(−→ei) around q. Therefore, by planarity
of RNGi, all the other face-cycles that contain q are separated from p by the face-cycle that
starts with suc(−→ei) and ends at pre(−→ei). Hence, none of those face-cycles encounters p and,
by Observation 4.1, ei is an edge of EMST(S); see Figure 18b. In this case, we report ei,
and we also abort the walk that was started from the opposite half-edge of −→ei . This prevents
an edge of EMST(S) to be reported twice.

−→ei

suc(−→ei)

p

q pre(−→ei)

(a)

p

q

−→ei

suc(−→ei) pre(−→ei)

(b)

Figure 18: A schematic drawing of RNGi and the half-edge −→ei with head q and tail p. (a)
The vertices p and q are on the same face-cycle of RNGi since by traversing the face-cycle
starting from suc(−→ei) we encounter p. (b) The vertices p and q are on different face-cycles of
RNGi since by traversing the face-cycle starting from suc(−→ei) we encounter pre(−→ei), meaning
that we will not reach p.

In the next iteration of the algorithm, we again use Lemma 3.3 to find the next batch
of s edges in ER. Similarly, we perform 2s parallel walks for the half-edges in this batch, in
order to find the edges that belong to EMST(S).

Since there are O(n) half-edges in RNG(S), it takes O(n) steps in each iteration to
conclude all the walks, where each step of the walks takes O(n log s) time. It follows that we
can process a single batch of edges in O(n2 log s) time which dominates the time needed for
finding a batch of s edges of RNG(S). We have O(n/s) batches, so the total running time
of the algorithm is O

(
(n3/s) log s

)
. The algorithm uses O(s) cells of workspace for finding

and storing a batch of s edges as well as a constant number of cells per edge to perform each
walk.

http://jocg.org/

Journal of Computational Geometry jocg.org

Note that, in this algorithm, it is not essential to process edges of RNG(S) in sorted
order of length. Thus, we can simply apply Lemma 3.1 to produce edges of RNG(S).
However, by using Lemma 3.3 we are able to report edges of EMST(S) in sorted order of
length, although the total running time of the algorithm will not be affected.

5 Improvement via a Compact Representation of RNGs

Theorem 4.4 is clearly not optimal: for the case of linear space s = n, we get a running
time of O(n2 log n), although we know that it is possible to find EMST(S) in O(n log n)
time. Can we do better? The bottleneck in Theorem 4.4 is the time needed to perform the
walks in the partial relative neighborhood graphs RNGi. In particular, such a walk might
take Ω(n) steps, leading to a running time of Ω(n2 log s) for processing a single batch of s
edges. To avoid this, we will maintain a compressed representation of the partial relative
neighborhood graphs that allows us to reduce the number of steps in each walk to O(n/s).

5.1 The s-net Structure

Let i ∈ {1, . . . ,m}. An s-net N for RNGi is a collection of half-edges, called net-edges,
in RNGi that has the following two properties: (i) Each face-cycle in RNGi with at least
bn/sc+ 1 half-edges contains at least one net-edge. (ii) For any net-edge −→e ∈ N , let F be
the face-cycle of RNGi that contains −→e . Then on F , between the head of −→e and the tail of
the next net-edge, there are at least bn/sc and at most 2bn/sc other half-edges. Note that
the next net-edge on F after −→e could possibly be −→e itself. In particular, this implies that
face-cycles with less than bn/sc edges contain no net-edges; see Figure 19.

(a) (b) (c)

Figure 19: A schematic drawing of an s-net for RNGi. (a) A small face-cycle with no net-
edges. (b) a face-cycle with more than bn/sc and less than 2bn/sc half-edges which contains
one net-edge. (c) A big face-cycle with four net-edges.

We note two important observations about s-nets.

Observation 5.1. Let i ∈ {1, . . . ,m}, and let N be an s-net for RNGi. Then,

(N1) N has O(s) half-edges; and

(N2) let
−→
f be a half-edge of RNGi, and let F be the face-cycle that contains it. Then, it

takes at most 2bn/sc steps along F from the head of
−→
f until we encounter the tail of

either a net-edge or
−→
f itself.

http://jocg.org/

Journal of Computational Geometry jocg.org

Proof. Property (ii) of the definition of an s-net implies that only face-cycles of RNGi with
at least bn/sc + 1 half-edges contain net-edges. Furthermore, on these face-cycles, we can
uniquely charge Θ(n/s) half-edges to each net-edge, again by property (ii). Since the face-
cycles of RNGi have O(n) half-edges in total, we obtain the first observation which says
|N | = O(s).

For the second observation, we first note that if F contains less than 2bn/sc half-
edges, the claim holds trivially. Otherwise, by property (i), F contains at least one net-edge.
From property (ii) it follows that there are at most 2bn/sc half-edges between every two
consecutive net-edges on F . Thus, in a walk on F starting from

−→
f , we reach a net-edge in

at most 2bn/sc steps.

Due to statement (N1) of Observation 5.1, an s-net can be stored in O(s) cells of
workspace. This makes the concept of s-net useful in our algorithm with a workspace of
O(s) cells. Therefore, we can exploit the s-net in order to speed up the processing of a single
batch. The next lemma shows how this is done.

Lemma 5.2. Let i ∈ {1, . . . ,m}. Suppose we are given Ei,s = ei, . . . , ei+s−1, a batch of
s edges in ER. Furthermore, we have an s-net N for RNGi in our workspace. Then, we
can determine which edges from Ei,s belong to EMST(S) in O

(
(n2/s) log s

)
time using O(s)

cells of workspace.

Proof. Let H be a set of half-edges defined as follows: the set H is the union of all net-edges
from N , and, for each batch-edge ej ∈ Ei,s, the successors of the two half-edges of ej in
RNGi; see Figure 20.

Figure 20: A schematic drawing of RNGi with a batch of edges in ER (dashed red segments).
The directed segments represents the half-edges in H. The net-edges are in green and the
successors of the batch edges are in black.

By definition, we have |H| = O(s), and thus it takes O(n log s) time to compute
H. This is done by using Lemma 3.1 to find the incident edges of the head of each ej and
Lemma 4.3 to identify the successors of each ej .

Now starting from the half-edges in H, we perform parallel walks through the face-
cycles of RNGi, one walk per half-edge. Each such walk proceeds until it encounters the tail
of a half-edge in H (including the starting half-edge itself). In each step of these walks, we
use Lemma 3.1 and Lemma 4.2 to find the next half-edges on the face-cycles in O(n log s)

http://jocg.org/

Journal of Computational Geometry jocg.org

time, and then we check whether these new half-edges belong to H in O(s log s) time.
Because H contains the net-edges of N , by statement (N2) of Observation 5.1, each walk
finishes after O(n/s) steps, and thus, the total time for this procedure is O

(
(n2/s) log s

)
.

Next, we build an auxiliary undirected (multi-)graph G as follows: the vertices of
G are the endpoints of the half-edges in H and the endpoints of the half-edges of Ei,s.5

Furthermore, G contains undirected edges for all the half-edges in H and additional com-
pressed edges, that represent the outcomes of the walks: if a walk started from the head q of
a half-edge in H and ended at the tail p of a half-edge in H, we add an edge from q to p in
G, and we label it with the number of steps that were needed for the walk, i.e., the number
of half-edges between q and p on that face-cycle. Thus, G contains H-edges, and compressed
edges; see Figure 21. Clearly, after all the walks have been terminated, we can construct G
in O(s) time, using O(s) cells of workspace.

4

1
3

2

3

7

5

3

3

1

2
1

6

3

2

8 2

Figure 21: The auxiliary graph G is shown. The edge set of G contains the net-edges (in
green), the successors of batch-edges (in black), and the compressed edges (beige paths).

The auxiliary graph G is actually a representation of the face-cycles in RNGi. Thus,
by adding the batch-edges of Ei,s one by one into G, we can represent the next partial
relative neighborhood graphs, up to RNGi+s. Hence, we can use G to identify which of the
batch-edges of Ei,s belong to EMST(S). This is done by applying Kruskal’s algorithm on
G as follows: we determine the connected components of G in O(s) time using depth-first
search. Then, we insert the batch-edges into G, one after another, in sorted order. As we do
this, we keep track of how the connected components of G change, using a union-find data
structure [15]. Whenever a new batch-edge connects two distinct connected components of
G, we output it as an edge of EMST(S). Otherwise, we do nothing; see Figure 22. Note
that even though one component of RNGi might be represented by several components in
G,6, the algorithm is still correct because of Observation 4.1.

This execution of Kruskal’s algorithm and updating the structure of connected com-
ponents ofG takesO(s log s) time, which is dominated by the running time ofO

(
(n2/s) log s

)
5Not all the endpoints of half-edges in Ei,s are necessarily included as endpoints of half-edges in H: the

successor of a half-edge from Ei,s might be Null. In this case, we still want to include the endpoints of this
half-edge in G.

6Two (or several) face-cycles in one component of RNGi may share some vertices. However, these vertices
need not necessarily appear as vertices in G. Hence, representing those face-cycles with compressed edges,
one might not represents their common parts in G. Therefore, such face-cycles might belong to distinct
components in G.

http://jocg.org/

Journal of Computational Geometry jocg.org

4

1
3

2

3

7

5

3

3

1

2
1

6

3

2

8 2

Figure 22: The batch-edges of Ei,s (in red) have been added to the auxiliary graph G.

to perform the parallel walks. The space requirement for constructing and storing the set H
and the graph G as well as the updated versions of G is a total of O(s) cells of workspace.

5.2 Maintaining the s-net

Now that we have described how to use an s-net for RNGi in order to process the edges
ei, . . . , ei+s of ER, we need to explain how to maintain the s-net during the algorithm, i.e.,
how to construct an s-net for RNGi+s after processing the edges ei, . . . , ei+s. The algorithm
in the following lemma computes an s-net for RNGi+s, provided that we have an s-net
for RNGi as well as the graph G as it is constructed in the proof of Lemma 5.2, for each
i ∈ {1, . . . ,m}.

Lemma 5.3. Let i ∈ {1, . . . ,m}, and suppose we have the graph G derived from RNGi as
above, such that all batch-edges have been inserted into G. Then, we can compute an s-net
N for RNGi+s in time O

(
(n2/s) log s

)
, using O(s) cells of workspace.

Proof. By construction, all big face-cycles of RNGi+s, i.e., those face-cycles with at least
bn/sc+1 half-edges, appear as faces in G. Thus, by walking along all faces in G, and taking
into account the labels of the compressed edges, we can determine these big face-cycles in
O(s) time. The big face-cycles are represented through sequences of H-edges, compressed
edges, and batch-edges. For each such sequence, we determine the positions of the half-edges
for the new s-net N , by spreading the half-edges equally at minimum distance bn/sc and
maximum distance 2bn/sc along the sequence, again taking the labels of the compressed
edges into account. Since the compressed edges have length O(n/s), for each of them, we
create at most O(1) new net-edges. Now that we have determined the positions of the
new net-edges on the face-cycles of RNGi+s, we perform O(s) parallel walks in RNGi+s to
actually find them. Using Lemma 3.1 and Lemma 4.2, this takes O

(
(n2/s) log s

)
time; see

Figure 23.

We now have all the ingredients for our main result that provides a smooth trade-
off between the cubic-time algorithm in constant workspace and the classic O(n log n)-time
algorithm with O(n) cells of workspace. The following theorem presents this algorithm.

http://jocg.org/

Journal of Computational Geometry jocg.org

8

56

4

(a)

4

46

4 3

(b)

Figure 23: (a) A schematic drawing of a face-cycle in G and (b) distributing the new net-
edges (in green) on this face-cycle with almost equal distances.

Theorem 5.4. Let S be a planar set of n point-sites in general position stored in a read-only
array. Let s ∈ {1, . . . , n} be a parameter. We can report all the edges of EMST(S), in sorted
order of length, in O

(
(n3/s2) log s

)
time using O(s) cells of workspace.

Proof. This follows immediately from our lemmas: applying Lemma 3.3, we produce a batch
of s edges of RNG(S) in sorted order of length. Then, among them, we report the edges
of EMST(S), using Lemma 3.3. Finally, we maintain the s-net structure to be used for the
next batch of s edges of RNG(S), by Lemma 5.3. All these steps are done in O

(
(n2/s) log s

)
time using O(s) cells of workspace. Since RNG(S) has O(n) edges, we need to process
O(n/s) batches of edges of RNG(S), leading to an algorithm with total running time of
O
(
(n3/s2) log s

)
, and total workspace usage of O(s) cells.

6 Conclusion

For our algorithm, it suffices to update the s-net every time that a new batch is considered.
It is, however, possible to maintain the s-net and the auxiliary graph G through insertions
of single edges, with the same bound as in Lemma 5.3. This allows us to handle graphs con-
structed incrementally and to maintain their compact representation using O(s) workspace
cells. We believe this is of independent interest and can be used by other algorithms for
planar graphs in the limited-workspace model.

Also, it remains an intriguing question whether the EMST can be computed in o(n3)
time in the constant-workspace model. Intuitively, it seems hard to improve the O(n2)-time
algorithm for checking whether an individual edge belongs to the EMST, and maybe it will
be possible to obtain a formal lower bound for this subproblem. However, even such a lower
bound would not rule out other possible approaches towards a faster EMST-algorithm.

Acknowledgments. This work was initiated at the Fields Workshop on Discrete and Com-
putational Geometry, held 07.31.–08.04.2017, at Carleton university. The authors would
like to thank them and all the participants of the workshop for inspiring discussions and for
providing a great research atmosphere.

http://jocg.org/

Journal of Computational Geometry jocg.org

References

[1] H.-K. Ahn, N. Baraldo, E. Oh, and F. Silvestri. A time-space trade-off for triangu-
lations of points in the plane. In Proc. 23rd Internat. Comput. and Combinat. Conf.
(COCOON), pages 3–12, 2017.

[2] B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen. Time-space
trade-offs for triangulating a simple polygon. In Proc. 15th Scand. Symp. Work. Alg.
Theory (SWAT), pages 30:1–30:12, 2016.

[3] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge, UK, 2009.

[4] T. Asano and D. G. Kirkpatrick. Time-space tradeoffs for all-nearest-larger-neighbors
problems. In Proc. 13th Alg. and Data Struct. Symp. (WADS), pages 61–72, 2013.

[5] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for
geometric problems. J. of Computational Geometry, 2(1):46–68, 2011.

[6] T. Asano, W. Mulzer, and Y. Wang. Constant-work-space algorithms for shortest paths
in trees and simple polygons. J. Graph. Alg. Appl., 15(5):569–586, 2011.

[7] Y. Bahoo, B. Banyassady, P. Bose, S. Durocher, and W. Mulzer. A time-space trade-off
for computing the k-visibility region of a point in a polygon. Theoret. Comput. Sci.,
789:13–21, 2019.

[8] B. Banyassady, M. Korman, and W. Mulzer. Computational geometry column 67. ACM
SIGACT News, 49(2):77–94, 2018.

[9] B. Banyassady, M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth,
and Y. Stein. Improved time-space trade-offs for computing Voronoi diagrams. J. of
Computational Geometry, 7(2):19–45, 2018.

[10] L. Barba, M. Korman, S. Langerman, K. Sadakane, and R. I. Silveira. Space-time
trade-offs for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2015.

[11] L. Barba, M. Korman, S. Langerman, and R. I. Silveira. Computing a visibility polygon
using few variables. Comput. Geom. Theory Appl., 47(9):918–926, 2014.

[12] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, third edition, 2008.

[13] T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete Comput. Geom.,
37(1):79–102, 2007.

[14] T. M. Chan, J. I. Munro, and V. Raman. Selection and sorting in the “restore” model.
In Proc. 25th Annual ACM-SIAM Symp. Disc. Alg. (SODA), pages 995–1004, 2014.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, MA, USA, third edition, 2009.

http://jocg.org/

Journal of Computational Geometry jocg.org

[16] O. Darwish and A. Elmasry. Optimal time-space tradeoff for the 2D convex-hull prob-
lem. In Proc. 22nd Annual European Symp. Alg. (ESA), pages 284–295, 2014.

[17] A. Elmasry and F. Kammer. Space-efficient plane-sweep algorithms. In Proc. 27th
Annu. Internat. Sympos. Algorithms Comput. (ISAAC), pages 30:1–30:13, 2016.

[18] S. Har-Peled. Shortest path in a polygon using sublinear space. J. of Computational
Geometry, 7(2):19–45, 2016.

[19] J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their relatives.
Proceedings of the IEEE, 80:1502–1517, 1992.

[20] M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth, and Y. Stein. Time-
space trade-offs for triangulations and Voronoi diagrams. Comput. Geom. Theory Appl.,
73:35–45, 2018.

[21] J. S. B. Mitchell and W. Mulzer. Proximity algorithms. In J. E. Goodman, J. O’Rourke,
and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry, pages
849–874. CRC Press, third edition, 2017.

[22] J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theoret.
Comput. Sci., 12(3):315–323, 1980.

[23] J. I. Munro and V. Raman. Selection from read-only memory and sorting with minimum
data movement. Theoret. Comput. Sci., 165(2):311–323, 1996.

[24] J. Pagter and T. Rauhe. Optimal time-space trade-offs for sorting. In Proc. 39th IEEE
Annual Symp. Found. Comp. Sci. (FOCS), pages 264–268, 1998.

[25] F. P. Preparata and M. I. Shamos. Computational geometry. An introduction. Springer-
Verlag, New York, 1985.

[26] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.

[27] G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern
Recognition, 12(4):261–268, 1980.

http://jocg.org/

	Introduction
	Preliminaries and Notation
	Euclidean Minimum Spanning Trees
	Relative Neighborhood Graphs

	Computing the Relative Neighborhood Graph
	All the Incident Edges to Some Sites
	Finding All the Edges of RNG
	Edges of RNG in Sorted Order of Length

	A Simple Time-Space Trade-Off for EMST
	Structure of Face-Cycles
	The Algorithm

	Improvement via a Compact Representation of RNGs
	The s-net Structure
	Maintaining the s-net

	Conclusion

