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Abstract. Let P = (p1, p2, . . . , pn) be a polygonal chain in Rd. The stretch factor of P is3
the ratio between the total length of P and the distance of its endpoints,

∑n−1
i=1 |pipi+1|/|p1pn|.4

For a parameter c ≥ 1, we call P a c-chain if |pipj | + |pjpk| ≤ c|pipk|, for every triple (i, j, k),5
1 ≤ i < j < k ≤ n. The stretch factor is a global property: it measures how close P is to a straight6
line, and it involves all the vertices of P ; being a c-chain, on the other hand, is a fingerprint-property:7
it only depends on subsets of O(1) vertices of the chain.8

We investigate how the c-chain property influences the stretch factor in the plane: (i) we show9
that for every ε > 0, there is a noncrossing c-chain that has stretch factor Ω(n1/2−ε), for sufficiently10
large constant c = c(ε); (ii) on the other hand, the stretch factor of a c-chain P is O

(
n1/2

)
, for every11

constant c ≥ 1, regardless of whether P is crossing or noncrossing; and (iii) we give a randomized12
algorithm that can determine, for a polygonal chain P in R2 with n vertices, the minimum c ≥ 113
for which P is a c-chain in O

(
n2.5 polylog n

)
expected time and O(n logn) space. These results14

generalize to Rd. For every dimension d ≥ 2 and every ε > 0, we construct a noncrossing c-chain15
that has stretch factor Ω

(
n(1−ε)(d−1)/d

)
; on the other hand, the stretch factor of any c-chain is16

O
(
(n− 1)(d−1)/d

)
; for every c > 1, we can test whether an n-vertex chain in Rd is a c-chain in17

O
(
n3−1/d polylog n

)
expected time and O(n logn) space.18
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1. Introduction. Given a set S of n point sites in a Euclidean space Rd, what21

is the best way to connect S into a geometric network (graph)? This question has22

motivated researchers for a long time, going back as far as the 1940s, and beyond [20,23

36]. Numerous possible criteria for a good geometric network have been proposed,24

perhaps the most basic being the length. In 1955, Few [21] showed that for any set of25

n points in a unit square, there is a traveling salesman tour of length at most
√

2n+26

7/4. This was improved to at most 0.984
√

2n + 11 by Karloff [24]. Similar bounds27

hold for the shortest spanning tree and the shortest rectilinear spanning tree [14, 17,28

22]. Besides length, two further key factors in the quality of a geometric network29

are the vertex dilation and the geometric dilation [32], both of which measure how30

closely shortest paths in a network approximate the Euclidean distances between their31

endpoints.32

The dilation (also called stretch factor [30] or detour [2]) between two points p33

and q in a geometric graph G is defined as the ratio between the length of a shortest34

path from p to q and the Euclidean distance |pq|. The dilation of the graph G is35

the maximum dilation over all pairs of vertices in G. A graph in which the dilation36

is bounded above by t ≥ 1 is also called a t-spanner (or simply a spanner if t is a37

constant). A complete graph in Euclidean space is clearly a 1-spanner. Therefore,38

researchers focused on the dilation of graphs with certain additional constraints, for39
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example, noncrossing (i.e., plane) graphs. In 1989, Das and Joseph [16] identified a40

large class of plane spanners (characterized by two simple local properties). Bose et al.41

[7] gave an algorithm that constructs for any set of planar sites a plane 11-spanner with42

bounded degree. On the other hand, Eppstein [19] analyzed a fractal construction43

showing that β-skeletons, a natural class of geometric networks, can have arbitrarily44

large dilation.45

The study of dilation also raises algorithmic questions. Agarwal et al. [2] de-46

scribed randomized algorithms for computing the dilation of a given path (on n ver-47

tices) in R2 in O(n log n) expected time. They also presented randomized algorithms48

for computing the dilation of a given tree, or cycle, in R2 in O(n log2 n) expected49

time. Previously, Narasimhan and Smid [31] showed that an (1 + ε)-approximation50

of the stretch factor of any path, cycle, or tree can be computed in O(n log n) time.51

Klein et al. [25] gave randomized algorithms for a path, tree, or cycle in R2 to count52

the number of vertex pairs whose dilation is below a given threshold in O(n3/2+ε)53

expected time. Cheong et al. [13] showed that it is NP-hard to determine the ex-54

istence of a spanning tree on a planar point set whose dilation is at most a given55

value. More results on plane spanners can be found in the monograph dedicated to56

this subject [32] or in several surveys [9, 18,30].57

We investigate a basic question about the dilation of polygonal chains. We ask58

how the dilation between the endpoints of a polygonal chain (which we will call the59

stretch factor, to distinguish it from the more general notion of dilation) is influenced60

by fingerprint properties of the chain, i.e., by properties that are defined on O(1)-61

size subsets of the vertex set. Such fingerprint properties play an important role in62

geometry; classic examples include the Carathéodory property1 [27, Theorem 1.2.3]63

or the Helly property2 [27, Theorem 1.3.2]. In general, determining the effect of a64

fingerprint property may prove elusive—given n points in the plane, consider the65

simple property that every 3 points determine 3 distinct distances. It is unknown [10,66

p. 203] whether this property implies that the total number of distinct distances grows67

superlinearly in n. Furthermore, fingerprint properties appear in the general study of68

local versus global properties of metric spaces, which is highly relevant to combinatorial69

approximation algorithms based on mathematical programming relaxations [6].70

In the study of dilation, interesting fingerprint properties have also been found.71

For example, a (continuous) curve C is said to have the increasing chord property [15,72

26] if for any points a, b, c, d that appear on C in this order, we have |ad| ≥ |bc|. The73

increasing chord property implies that C has (geometric) dilation at most 2π/3 [34].74

A weaker property is the self-approaching property : a (continuous) curve C is self-75

approaching if for any points a, b, c that appear on C in this order, we have |ac| ≥ |bc|.76

Self-approaching curves have dilation at most 5.332 [23] (see also [4]), and they have77

found interesting applications in the field of graph drawing [5, 8, 33].78

We introduce a new natural fingerprint property and see that it can constrain the79

stretch factor of a polygonal chain, but only in a weaker sense than one may expect;80

we also provide algorithmic results on this property. Before providing details, we give81

a few basic definitions.82

Definitions. A polygonal chain P in Rd is specified by a sequence of n points83

(p1, p2, . . . , pn), called vertices. The chain P consists of n − 1 line segments between84

1Given a finite set S of points in d dimensions, if every d+ 2 points in S are in convex position,
then S is in convex position.

2Given a finite collection of convex sets in d dimensions, if every d + 1 sets have nonempty
intersection, then all sets have nonempty intersection.
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consecutive vertices. We say P is simple if only consecutive line segments intersect85

and they only intersect at their endpoints. Given a polygonal chain P in Rd with n86

vertices and a parameter c ≥ 1, we call P a c-chain if for all 1 ≤ i < j < k ≤ n, we87

have88

(1) |pipj |+ |pjpk| ≤ c|pipk|.89

Observe that the c-chain condition is a fingerprint condition that is not really a local90

dilation condition—it is more a combination between the local chain substructure and91

the distribution of the points in the subchains.92

The stretch factor δP of P is defined as the dilation between the two end points93

p1 and pn of the chain:94

δP =

∑n−1
i=1 |pipi+1|
|p1pn|

.95

Note that this definition is different from the more general notion of dilation (also96

called stretch factor [30]) of a graph which is the maximum dilation over all pairs of97

vertices. Since there is no ambiguity in this paper, we will just call δP the stretch98

factor of P .99

For example, the polygonal chain P = ((0, 0), (1, 0), . . . , (n, 0)) in R2 is a 1-chain100

with stretch factor 1; and Q = ((0, 0), (0, 1), (1, 1), (1, 0)) is a (
√

2 + 1)-chain with101

stretch factor 3.102

Without affecting the results, the floor and ceiling functions are omitted in our103

calculations. For a positive integer t, let [t] = {1, 2, . . . , t}. For a point set S, let104

conv(S) denote the convex hull of S. All logarithms are in base 2, unless stated105

otherwise.106

Our results. In the Euclidean plane R2, we deduce three upper bounds on the107

stretch factor of a c-chain P with n vertices (Section 2). In particular, we have108

(i) δP ≤ c(n− 1)log c, (ii) δP ≤ c(n− 2) + 1, and (iii) δP = O
(
c2
√
n− 1

)
.109

From the other direction, we obtain the following lower bound in R2 (Section 3):110

For every c ≥ 4, there is a family Pc = {Pm}m∈N of simple c-chains, so that Pm111

has n = 4m + 1 vertices and stretch factor (n − 1)
1+log(c−2)−log c

2 , where the exponent112

converges to 1/2 as c tends to infinity. The lower bound construction does not extend113

to the case of 1 < c < 4, which remains open.114

Then we generalize the results to higher dimensional Euclidean spaces (Section 4):115

For all integers d ≥ 2, we show that any c-chain P with n vertices in Rd has stretch116

factor δP = O
(
c2(n− 1)(d−1)/d

)
. On the other hand, for any constant ε > 0 and117

sufficiently large c = Ω(d), we construct a c-chain in Rd with n vertices and stretch118

factor at least (n− 1)(1−ε)(d−1)/d.119

Finally, we present two algorithmic results (Section 5) for all fixed dimensions120

d ≥ 2: (i) A randomized algorithm that decides, given a polygonal chain P in Rd with121

n vertices and a threshold c > 1, whether P is a c-chain in O
(
n3−1/d polylog n

)
ex-122

pected time and O(n log n) space. (ii) As a corollary, there is a randomized algorithm123

that finds, for a polygonal chain P with n vertices, the minimum c ≥ 1 for which P124

is a c-chain in O
(
n3−1/d polylog n

)
expected time and O(n log n) space.125

2. Upper Bounds in the Plane. At first glance, one might expect the stretch126

factor of a c-chain, for c ≥ 1, to be bounded by some function of c. For example,127

the stretch factor of a 1-chain is necessarily 1. We derive three upper bounds on the128

stretch factor of a c-chain with n vertices in terms of c and n (cf. Theorems 1–3);129

see Fig. 1 for a visual comparison between the bounds. For large n, the bound in130
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Theorem 1 is the best for 1 ≤ c ≤ 21/2, while the bound in Theorem 3 is the best131

for c > 21/2. In particular, the bound in Theorem 1 is tight for c = 1. When n132

is comparable with c, more specifically, for c ≥ 2 and n ≤ 64c2 + 2, the bound in133

Theorem 2 is the best.134

0 500 1,000 1,500 2,000 2,500 3,000
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(i)

(ii)

(iii)

n

c

Fig. 1. The values of n and c for which (i) Theorem 1: δP ≤ c(n − 1)log c, (ii) Theorem 2:
δP ≤ c(n− 2) + 1, and (iii) Theorem 3: δP ≤ 8c2

√
n− 1 give the current best upper bound.

Our first upper bound is obtained by a recursive application of the c-chain prop-135

erty. It holds for any positive distance function that need not even satisfy the triangle136

inequality.137

Theorem 1. For a c-chain P with n vertices, we have δP ≤ c(n− 1)log c.138

Proof. We prove, by induction on n, that139

(2) δP ≤ cdlog(n−1)e,140

for every c-chain P with n ≥ 2 vertices. In the base case, n = 2, we have δP = 1 and141

cdlog(2−1)e = 1. Now let n ≥ 3, and assume that (2) holds for every c-chain with fewer142

than n vertices. Let P = (p1, . . . , pn) be a c-chain with n vertices. Then, applying143

(2) to the first and second half of P , followed by the c-chain property for the first,144

middle, and last vertex of P , we get145

n−1∑
i=1

|pipi+1| ≤
dn/2e−1∑

i=1

|pipi+1|+
n−1∑

i=dn/2e

|pipi+1|146

≤ cdlog(dn/2e−1)e
(
|p1pdn/2e|+ |pdn/2epn|

)
147

≤ cdlog(dn/2e−1)e · c|p1pn|148

≤ cdlog(n−1)e|p1pn|,149150

so (2) holds also for P . Consequently,151

δP ≤ cdlog(n−1)e ≤ clog(n−1)+1 = c · clog(n−1) = c (n− 1)log c,152

as required.153

Our second upper bound combines the c-chain property with the triangle inequal-154

ity, and it holds in any metric space.155
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Theorem 2. For a c-chain P with n vertices, we have δP ≤ c(n− 2) + 1.156

Proof. Without loss of generality, assume that |p1pn| = 1. For every 1 < i < n,157

the c-chain property implies |p1pi|+ |pipn| ≤ c|p1pn| = c, hence158

(3) |p1pi| ≤ c− |pipn|.159

The triangle inequality yields160

(4) |p1pi| ≤ |p1pn|+ |pnpi| = 1 + |pipn|.161

The combination of (3) and (4) gives |p1pi| ≤ c+1
2 . Analogous argument for pn (in162

place of p1) yields |pipn| ≤ c+1
2 .163

For every pair 1 < i < j < n, the triangle inequality implies164

2|pipj | ≤ (|pip1|+ |p1pj |) + (|pipn|+ |pnpj |) = (|p1pi|+ |pipn|) + (|p1pj |+ |pjpn|) ≤ 2c,165

hence |pipj | ≤ c. Overall, the stretch factor of P is bounded above by166

δP =

∑n−1
j=1 |pjpj+1|
|p1pn|

= |p1p2|+ |pn−1pn|+
n−2∑
j=2

|pjpj+1|167

≤ c+ 1

2
+
c+ 1

2
+ c(n− 3) = c(n− 2) + 1,168

169

as claimed.170

Our third upper bound uses properties of the Euclidean plane (specifically, a171

volume argument) to bound the number of long edges in P .172

Theorem 3. For a c-chain P with n vertices, we have δP = O
(
c2
√
n− 1

)
.173

Proof. Let P = (p1, . . . , pn) be a c-chain, for some constant c ≥ 1, and let L =174 ∑n−1
i=1 |pipi+1| be its length. We may assume that p1pn is a horizontal segment of unit175

length. By the c-chain property, every point pj , 1 < j < n, lies in an ellipse E with176

foci p1 and pn; see Fig. 2. The diameter of E is its major axis, whose length is c. Let177

U be a disk of radius c/2 concentric with E, and note that E ⊂ U

c−1
2

p1

1

pn

c−1
2

c
2

c
2

c
2

E

U

Fig. 2. The entire chain P lies in an ellipse E with foci p1 and pn. E lies in a cocentric disk
U of radius c/2.

178
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We set x = 4c2/
√
n− 1; and let L0 and L1 be the sum of lengths of all edges in P179

of length at most x and more than x, respectively. By definition, we have L = L0+L1180

and181

(5) L0 ≤ (n− 1)x = (n− 1) · 4c2/
√
n− 1 = 4c2

√
n− 1.182

We shall prove that L1 ≤ 4c2
√
n− 1, implying L ≤ 8c2

√
n− 1. For this, we further183

classify the edges in L1 according to their lengths: For ` = 0, 1, . . . ,∞, let184

(6) P` =
{
pi : 2`x < |pipi+1| ≤ 2`+1x

}
.185

Since all points lie in an ellipse of diameter c, we have |pipi+1| ≤ c, for all i =186

0, . . . , n− 1. Consequently, P` = ∅ when c ≤ 2`x, or equivalently log(c/x) ≤ `.187

We use a volume argument to derive an upper bound on the cardinality of P`,188

for ` = 0, 1, . . . , blog(c/x)c. Assume that pi, pk ∈ P`, and w.l.o.g., i < k. If k = i+ 1,189

then by (6), 2`x < |pipk|. Otherwise,190

2`x < |pipi+1| < |pipi+1|+ |pi+1pk| ≤ c|pipk|, or
2`x

c
< |pipk|.191

Consequently, the disks of radius192

(7) R =
2`x

2c
=

2 · 2`c√
n− 1

193

centered at the points in P` are interior-disjoint. The area of each disk is πR2. Since194

P` ⊂ U , these disks are contained in the R-neighborhood UR of the disk U , which is195

a disk of radius c
2 + R concentric with U . For ` ≤ log(c/x), we have 2`x ≤ c, hence196

R = 2`x
2c ≤

c
2c = 1

2 ≤
c
2 . Thus the radius of UR is at most c. Since UR contains |P`|197

interior-disjoint disks of radius R, we obtain198

(8) |P`| ≤
area(UR)

πR2
<

πc2

πR2
=

4c4

22`x2
.199

For every segment pi−1pi with length more than x, we have that pi ∈ P`, for some200

` ∈ {0, 1, . . . , blog(c/x)c}. The total length of these segments is201

L1 ≤
blog(c/x)c∑

`=0

|P`| · 2`+1x <

blog(c/x)c∑
`=0

4c4

22`x2
· 2`+1x =

blog(c/x)c∑
`=0

8c4

2`x
202

<
8c4

x

∞∑
`=0

1

2`
=

16c4

x
= 4c2 ·

√
n− 1,203

204

as required. Together with (5), this yields L ≤ 8c2 ·
√
n− 1.205

3. Lower Bounds in the Plane. We now present our lower bound construc-206

tion, showing that the dependence on n for the stretch factor of a c-chain cannot be207

avoided.208

Theorem 4. For every constant c ≥ 4, there is a set Pc = {Pm}m∈N of simple209

c-chains, so that Pm has n = 4m + 1 vertices and stretch factor (n− 1)
1+log(c−2)−log c

2 .210
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ON THE STRETCH FACTOR OF POLYGONAL CHAINS 7

By Theorem 3, the stretch factor of a c-chain in the plane is O
(
(n− 1)1/2

)
for211

every constant c ≥ 1. Since212

lim
c→∞

1 + log(c− 2)− log c

2
=

1

2
,213

our lower bound construction shows that the limit of the exponent cannot be improved.214

Indeed, for every ε > 0, we can set c = 22ε+1

22ε−1 , and then the chains above have stretch215

factor216

(n− 1)
1+log(c−2)−log c

2 = (n− 1)1/2−ε = Ω(n1/2−ε).217

We first construct a family Pc = {Pm}m∈N of polygonal chains. Then we show,218

in Lemmata 5 and 7, that every chain in Pc is simple and indeed a c-chain. The219

theorem follows since the claimed stretch factor is a consequence of the construction.220

Construction of Pc. The construction here is a generalization of the iterative221

construction of the Koch curve; when c = 6, the result is the original Cesàro fractal222

(which is a variant of the Koch curve) [11]. We start with a unit line segment P 0,223

and for m = 0, 1, . . . , we construct Pm+1 by replacing each segment in Pm by four224

segments such that the middle three points achieve a stretch factor of c∗ = c−2
2 (this225

choice will be justified in the proof of Lemma 7). Note that c∗ ≥ 1, since c ≥ 4.226

We continue with the details. Let P 0 be the unit line segment from (0, 0) to (1, 0);227

see Fig. 3 (left). Given the polygonal chain Pm (m = 0, 1, . . . ), we construct Pm+1228

by replacing each segment of Pm by four segments as follows. Consider a segment229

of Pm, and denote its length by `. Subdivide this segment into three segments of230

lengths ( 1
2 −

a
c∗

)`, 2a
c∗
`, and (1

2 −
a
c∗

)`, respectively, where 0 < a < c∗
2 is a parameter231

to be determined later. Replace the middle segment with the top part of an isosceles232

triangle of side length a`. The chains P 0, P 1, P 2, and P 4 are depicted in Figures 3233

and 4.234

(0, 0)

1

(1, 0) (0, 0)

1
2 −

a
c∗

a a

1
2 −

a
c∗

(1, 0)

2a
c∗

Fig. 3. The chains P 0 (left) and P 1 (right).

Note that each segment of length ` in Pm is replaced by four segments of total235

length (1 + 2a(c∗−1)
c∗

)`. After m iterations, the chain Pm consists of 4m line segments236

of total length
(

1 + 2a(c∗−1)
c∗

)m
.237

By construction, the chain Pm (for m ≥ 1) consists of four scaled copies of238

Pm−1. For i = 1, 2, 3, 4, let the ith subchain of Pm be the subchain of Pm consisting239

of 4m−1 segments starting from the ((i − 1)4m−1 + 1)th segment. By construction,240

the ith subchain of Pm is similar to the chain Pm−1, for i = 1, 2, 3, 4.3 The following241

functions allow us to refer to these subchains formally. For i = 1, 2, 3, 4, define a242

function fmi : Pm → Pm as the identity on the ith subchain of Pm that sends the243

3Two geometric shapes are similar if one can be obtained from the other by translation, rotation,
and scaling; and are congruent if one can be obtained from the other by translation and rotation.
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remaining part(s) of Pm to the closest endpoint(s) along this subchain. So fmi (Pm)244

is similar to Pm−1. Let gi : Pc \ {P 0} → Pc be a piecewise defined function such that245

gi(C) = σ−1 ◦ fmi ◦ σ(C) if C is similar to Pm, where σ : C → Pm is a similarity246

transformation. Applying the function gi on a chain Pm can be thought of as “cutting247

out” its ith subchain.248

Fig. 4. The chains P 2 (left) and P 4 (right).

Clearly, the stretch factor of the chain monotonically increases with the parameter249

a. However, if a is too large, the chain is no longer simple. The following lemma gives250

a sufficient condition for the constructed chains to avoid self-crossings.251

Lemma 5. For every constant c ≥ 4, if a ≤ c−2
2c , then every chain in Pc is simple.252

Proof. Let T = conv(P 1). Observe that T is an isosceles triangle; see Fig. 5 (left).253

We first show the following:254

Claim 6. If a ≤ c−2
2c , then conv(Pm) = T for all m ≥ 1.255

Proof. We prove the claim by induction on m. It holds for m = 1 by definition.256

For the induction step, assume that m ≥ 2 and that the claim holds for m − 1.257

Consider the chain Pm. Since it contains all the vertices of P 1, T ⊂ conv(Pm). So258

we only need to show that conv(Pm) ⊂ T .259

1
2 −

a
c∗

a a

1
2 −

a
c∗

2a
c∗

p

t

a
(

1
2
− a

c∗

)
(

1
2
− a

c∗

)2

Fig. 5. Left: Convex hull T of P 1 in light gray; Right: Convex hulls of gi(P
2), i = 1, 2, 3, 4, in

dark gray, are contained in T .

By construction, Pm ⊂
⋃4

i=1 conv(gi(P
m)); see Fig. 5 (right). By the inductive260

hypothesis, conv(gi(P
m)) is an isosceles triangle similar to T , for i = 1, 2, 3, 4. Since261

the bases of conv(g1(Pm)) and conv(g4(Pm)) are collinear with the base of T by262

construction, due to similarity, they are contained in T . The base of conv(g2(Pm))263

is contained in T . In order to show conv(g2(Pm)) ⊂ T , by convexity, it suffices to264

ensure that its apex p is also in T . Note that the coordinates of the top point is265
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t =
(

1/2, a
√
c2∗ − 1/c∗

)
, so the supporting line ` of the left side of T is266

y =
2a
√
c2∗ − 1

c∗
x, and267

p =

(
1

2
− a

2c∗
−
a2
(
c2∗ − 1

)
c2∗

,

(
a

2c∗
+
a2

c2∗

)√
c2∗ − 1

)
.268

269

By the condition of a ≤ c−2
2c = c∗

2(c∗+1) in the lemma, p lies on or below `. Un-270

der the same condition, we have conv(g3(Pm)) ⊂ T by symmetry. Then Pm ⊂271 ⋃4
i=1 conv(gi(P

m)) ⊂ T . Since T is convex, conv(Pm) ⊂ T . So conv(Pm) = T , as272

claimed.273

We can now finish the proof of Lemma 5 by induction. Clearly, P 0 and P 1 are274

simple. Assume that m ≥ 2, and Pm−1 is simple. Consider the chain Pm. For275

i = 1, 2, 3, 4, gi(P
m) is similar to Pm−1, hence simple by the inductive hypothesis.276

Since Pm =
⋃4

i=1 gi(P
m), it is sufficient to show that for all i, j ∈ {1, 2, 3, 4}, where277

i 6= j, a segment in gi(P
m) does not intersect any segments in gj(P

m), unless they are278

consecutive in Pm and they intersect at a common endpoint. This follows from the279

above claim together with the observation that for i 6= j, the intersection gi(P
m) ∩280

gj(P
m) is either empty or contains a single vertex which is the common endpoint of281

two consecutive segments in Pm.282

In the remainder of this section, we assume that283

(9) a =
c− 2

2c
=

c∗
2(c∗ + 1)

.284

Under this assumption, all segments in P 1 have the same length a. Therefore, by285

construction, all segments in Pm have the same length286

am =

(
c∗

2(c∗ + 1)

)m

.287

There are 4m segments in Pm, with 4m + 1 vertices, and its stretch factor is288

δPm = 4m
(

c∗
2(c∗ + 1)

)m

=

(
2c∗
c∗ + 1

)m

.289

Consequently, m = log4(n− 1) = log(n−1)
2 , and290

δPm =

(
2c∗
c∗ + 1

) log(n−1)
2

=

(
2c− 4

c

) log(n−1)
2

= (n− 1)
1+log(c−2)−log c

2 ,291

as claimed. To finish the proof of Theorem 4, it remains to show the constructed292

polygonal chains are indeed c-chains.293

Lemma 7. For every constant c ≥ 4, Pc is a family of c-chains.294

We first prove a couple of facts that will be useful in the proof of Lemma 7. We295

defer an intuitive explanation until after the formal statement of the following lemma.296

Lemma 8. Let m ≥ 1 and let Pm = (p1, p2, . . . , pn), where n = 4m + 1. Then the297

following hold:298
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(i) There exists a sequence (q1, q2, . . . , q`) of ` = 2 · 4m−1 points in R2 such that299

the chain Rm = (p1, q1, p2, q2, . . . , p`, q`, p`+1) is similar to Pm.300

(ii) For m ≥ 2, define g5 : Pc \ {P 0, P 1} → Pc by301

g5(Pm) = (g3 ◦ g2(Pm)) ∪ (g4 ◦ g2(Pm)) ∪ (g1 ◦ g3(Pm)) ∪ (g2 ◦ g3(Pm)) .302

Then g5(Pm) is similar to Pm−1.303

Part (i) of Lemma 8 says that given Pm, we can construct a chain Rm similar304

to Pm by inserting one point between every two consecutive points of the left half of305

Pm, see Fig. 6 (left). Part (ii) says that the “top” subchain of Pm that consists of306

the right half of g2(Pm) and the left half of g3(Pm), see Fig. 6 (right), is similar to307

Pm−1.308

Fig. 6. Left: Chain Pm with the scaled copy of itself Rm (in red); Right: Chain Pm with its
subchain g5(Pm) marked by its convex hull.

Proof of Lemma 8. For part (i), we review the construction of Pm, and show that309

Rm and Pm can be constructed in a coupled manner. In Fig. 7 (left), consider P 1 =310

(p1, p2, p3, p4, p5). Recall that all segments in P 1 are of the same length a = c∗
2(c∗+1) .311

The isosceles triangles ∆p1p2p3 and ∆p1p3p5 are similar. Let σ : ∆p1p3p5 → ∆p1p2p3312

be the similarity transformation. Let q1 = σ(p2) and q2 = σ(p4). By construction,313

the chain R1 = (p1, q1, p2, q2, p3) is similar to P 1. In particular, all of its segments314

have the same length, and so the isosceles triangle ∆p1q1p2 is similar to ∆p1p3p5.315

Moreover, its base is the segment p1p2, so ∆p1q1p2 is precisely conv(g1(P 2)), see316

Fig. 7 (right).317

p1 p2

p3

p4 p5

q1

q2

v1 v2

v3

v4 v5

v6

v7 v8

v9

v10 v11

v17

Fig. 7. Left: the chains P 1 and R1 (red); Right: the chains P 2 and R1 (red).

Write P 2 = (v1, v2, . . . , v17), then v3 = q1 by the above argument and v7 = q2 by318

symmetry. Now ∆v1v2v3, ∆v3v4v5, ∆v5v6v7, and ∆v7v8v9 are four congruent isosceles319

triangles, all of which are similar to ∆v1v9v17, since the angles are the same. Repeat320

the above procedure on each of them to obtain R2 = (v1, u1, v2, u2, . . . , v8, u8, v9),321

which is similar to P 2. Continue this construction inductively to get the desired322

chain Rm for any m ≥ 1.323

This manuscript is for review purposes only.



ON THE STRETCH FACTOR OF POLYGONAL CHAINS 11

For part (ii), see Fig. 7 (right). By definition, g5(P 2) is the subchain (v7, v8, v9,324

v10, v11). Observe that the segments v7v8 and v10v11 are collinear by symmetry.325

Moreover, they are parallel to v1v17 since ∠v7v8v9 = ∠v1v5v9. So g5(P 2) is similar to326

P 1; see Fig. 7 (left). Then for m ≥ 2, g5(Pm) is the subchain of Pm starting at vertex327

v7, ending at vertex v11. By the construction of Pm, g5(Pm) is similar to Pm−1.328

Proof of Lemma 7. We proceed by induction on m again. The claim is vacuously329

true for P 0. For P 1, among all ten choices of 1 ≤ i < j < k ≤ 5, |p2p3|+|p3p4|
|p2p4| = c∗ =330

c−2
2 < c is the largest, and so P 1 is also a c-chain. Assume that m ≥ 2 and Pm−1 is331

a c-chain. We need to show that Pm is also a c-chain. Consider a triplet of vertices332

{pi, pj , pk} ⊂ Pm, where 1 ≤ i < j < k ≤ n = 4m + 1.333

Recall that Pm consists of four copies of the subchain Pm−1, namely g1(Pm),334

g2(Pm), g3(Pm), and g4(Pm), see Fig. 8 (left). If {pi, pj , pk} ⊂ gl(P
m) for any335

l = 1, 2, 3, 4, then by the induction hypothesis,336

|pipj |+ |pjpk|
|pipk|

≤ c.337

So we may assume that pi and pk belong to two different gl(P
m)’s. There are four338

cases to consider up to symmetry:339

Case 1. pi ∈ g1(Pm) and pk ∈ g2(Pm);340

Case 2. pi ∈ g1(Pm) and pk ∈ g3(Pm);341

Case 3. pi ∈ g1(Pm) and pk ∈ g4(Pm);342

Case 4. pi ∈ g2(Pm) and pk ∈ g3(Pm).343

1
c∗+1

Fig. 8. Left: Chain Pm with its four subchains of type Pm−1 marked by their convex hulls;
Right: Chain Pm with the scaled copy of itself Rm (in red) constructed in Lemma 8 (i).

By Lemma 8 (i), the vertex set of g1(Pm)∪ g2(Pm) is contained in the chain Rm344

shown in Fig. 8 (right). If we are in Case 1, i.e., pi ∈ g1(Pm) and pk ∈ g2(Pm), then345

pi, pj , pk can be thought of as vertices of Rm. The similarity between Rm and Pm,346

maps points pi, pj , pk to suitable points p′i, p
′
j , p
′
k ∈ Pm such that347

|p′ip′j |+ |p′jp′k|
|p′ip′k|

=
|pipj |+ |pjpk|
|pipk|

.348

Since pi ∈ g1(Rm) ∪ g2(Rm) while pk ∈ g3(Rm) ∪ g4(Rm), the triplet (p′i, p
′
j , p
′
k) does349

not belong to Case 1. In other words, Case 1 can be represented by other cases.350

Recall that in Lemma 5, we showed that conv(Pm) is an isosceles triangle T of351

diameter 1. Observe that if |pipk| ≥ 1
c∗+1 , then352

|pipj |+ |pjpk|
|pipk|

≤ 1 + 1
1

c∗+1

= 2c∗ + 2 = c,353
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as required. So we may assume that |pipk| < 1
c∗+1 , therefore only Case 4 remains,354

i.e., pi ∈ g2(Pm) and pk ∈ g3(Pm).355

1
c∗+1

Fig. 9. Left: Chain Pm with its subchain g5(Pm) marked by its convex hull; Right: The last
case where pi is in the left shaded subchain and pk is in the right shaded subchain.

By Lemma 8 (ii), the “top” subchain g5(Pm) of Pm is also similar to Pm−1, see356

Fig. 9 (left). If pi and pk are both in g5(Pm), i.e., pi ∈ (g3 ◦ g2(Pm))∪ (g4 ◦ g2(Pm))357

and pk ∈ (g1 ◦ g3(Pm)) ∪ (g2 ◦ g3(Pm)), then so is pj .358

By the induction hypothesis, we have359

|pipj |+ |pjpk|
|pipk|

≤ c.360

So we may assume that at least one of pi and pk is not in g5(Pm). Without loss of361

generality, let pi ∈ g2(Pm) \ g5(Pm). The similarity that maps Pm−1 to g2(Pm) and362

g5(Pm), respectively, have the same scaling factor of a = c∗
2(c∗+1) , and they carry the363

bottom dashed segment in Fig. 9 (right), to the two red segments.364

Claim 9. If pi ∈ g2(Pm) \ g5(Pm) and pk ∈ g3(Pm), then |pipk| > c∗
2(c∗+1)2 .365

Proof. As noted above, we assume that pi is in conv(g2(Pm)\g5(Pm)) = ∆q1q2q3366

in Fig. 10. If pk ∈ g5(Pm) ∩ g3(Pm) = ∆q7q6q5, then the configuration is illustrated367

in Fig. 10 (left). Note that ∆q1q2q3 and ∆q7q6q5 are reflections of each other with368

respect to the bisector of ∠q3q4q5. Hence the shortest distance between ∆q1q2q3 and369

∆q7q6q5 is min{|q3q5|, |q2q6|, |q1q7|}. Since c∗ ≥ 1, we have370

|q1q7| > |q7q9| = |q3q5| = a3/2 =

(
c∗

2(c∗ + 1)

)3/2

≥ c∗
2(c∗ + 1)2

.371

Further note that q2q4q6q8 is an isosceles trapezoid, so the length of its diagonal is372

bounded by |q2q6| > |q2q4| = c∗
2(c∗+1)2 . Therefore the claim holds when pk ∈ ∆q7q6q5.373

Otherwise pk ∈ g3(Pm) \ g5(Pm) = ∆q9q8q7: see Fig. 10 (right). Note that374

∆q1q2q3 and ∆q9q8q7 are reflections of each other with respect to the bisector of375

∠q4q5q6. So the shortest distance between the shaded triangles is the minimum be-376

tween |q3q7|, |q2q8|, and |q1q9|. However, all three candidates are strictly larger than377

|q4q6| = c∗
2(c∗+1)2 . This completes the proof of the claim.378

Now the diameter of g2(Pm) ∪ g3(Pm) is a = c∗
2(c∗+1) (note that there are three379

diameter pairs), so380

|pipj |+ |pjpk|
|pipk|

<
2 · c∗

2(c∗+1)
c∗

2(c∗+1)2
= 2c∗ + 2 = c,381

as required. This concludes the proof of Lemma 7 and Theorem 4.382
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q1

q2

q3 q4

q5

q6 q7

q8

q9 q1

q2

q3 q4

q5

q6 q7

q8

q9

Fig. 10. pi ∈ ∆q1q2q3, Left: pk ∈ ∆q7q6q5; Right: pk ∈ ∆q9q8q7.

4. Generalizations to Higher Dimensions. A c-chain P with n vertices and383

its stretch factor δP can be defined in any metric space, not just the Euclidean plane.384

We now discuss how our results generalize to other metric spaces, with a particular385

focus on the high-dimensional Euclidean space Rd. First, we examine the upper386

bounds from Section 2.387

4.1. Upper bounds. As already noted in Section 2, the upper bound δP ≤388

c(n− 1)log c of Theorem 1 holds for any positive distance function that need not even389

satisfy the triangle inequality.390

Theorem 2 uses only the triangle inequality, and the bound δP ≤ c(n − 2) + 1391

holds in any metric space. This bound cannot be improved, in the following sense:392

For every c ≥ 2 +
√

5 and even n, we can define a finite metric space on the vertex393

set of P by |p1pn| = 1; for 1 < i < n,394

|p1pi| =

{
c+1
2 if i is even

c−1
2 if i is odd

and |pipn| =

{
c−1
2 if i is even

c+1
2 if i is odd

;395

and |pipj | = c for all 1 < i < j < n. It is easy to verify that P is a c-chain (the case396

that puts the strongest constraint on c in (1) occurs if, e.g., i = 1, 1 < j < n is even,397

and j < k < n is odd) and that P has stretch factor398

δP =

∑n−1
i=1 |pipi+1|
|p1pn|

= |p1p2|+ |pn−1pn|+
n−2∑
i=2

|pipi+1| = c(n− 2) + 1.399

The proof of Theorem 3 uses a volume argument in the plane. The argument400

extends to Rd, for all constant dimensions d ≥ 2, and yields δP = O
(
c2(n− 1)(d−1)/d

)
.401

Theorem 10. For a c-chain P with n vertices in Rd, for some constant d ≥ 2,
we have

δP = O
(
c2(n− 1)(d−1)/d

)
.

Proof. Let P = (p1, . . . , pn) be a c-chain in Rd, for some constants c ≥ 1 and402

d ∈ N. We may assume that |p1pn| = 1. By the c-chain property, all vertices of P lie403

in an ellipsoid E with foci at p1 and pn, with major axis of length c. Let U be a ball404

of radius c/2 concentric with E; and note that E ⊆ U .405

We set x = c2/(n−1)1/d; and let L0 and L1 be the sum of lengths of all edges in P406

of length at most x and more than x, respectively. By definition, we have L = L0+L1407

and408

(10) L0 ≤ (n− 1)x = c2(n− 1)(d−1)/d.409
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We shall prove that L1 = O
(
c2(n− 1)(d−1)/d

)
. For this, we further classify the edges410

in L1 according to their lengths: For ` = 0, 1, . . . ,∞, let411

(11) P` =
{
pi : 2`x < |pipi+1| ≤ 2`+1x

}
.412

As shown in the proof of Theorem 2, we have |pipi+1| ≤ c, for all i = 0, . . . , n − 1.413

Consequently, P` = ∅ when c ≤ 2`x, or equivalently log(c/x) ≤ `.414

We use a volume argument to derive an upper bound on the cardinality of P`,415

for ` = 0, 1, . . . , blog(c/x)c. Assume that pi, pk ∈ P`, and w.l.o.g., i < k. If k = i+ 1,416

then 2`x < |pipk| by (11). Otherwise,417

2`x < |pipi+1| < |pipi+1|+ |pi+1pk| ≤ c|pipk|, or
2`x

c
< |pipk|.418

Consequently, the balls of radius419

(12) R =
2`x

2c
=

2`c

2(n− 1)1/d
420

centered at the points in P` are interior-disjoint. The volume of each ball is αdR
d,421

where αd > 0 depends on d only. Since P` ⊂ E, these balls are contained in the422

R-neighborhood of the ball U , which is a ball UR of radius c
2 + R concentric with423

U . For ` ≤ log(c/x), we have 2`x ≤ c, hence R = 2`x
2c ≤

c
2c = 1

2 . Consequently, the424

radius of UR is at most c. Since UR contains |P`| interior-disjoint balls of radius R,425

we obtain426

(13) |P`| ≤
αdc

d

αdRd
=
( c
R

)d
=

(
2(n− 1)1/d

2`

)d

≤ 2d

2d`
(n− 1).427

For every segment pipi+1 with length more than x, we have that pi ∈ P`, for some428

` ∈ {0, 1, . . . , blog(c/x)c}. Using (13), the total length of these segments is429

L1 ≤
blog(c/x)c∑

`=0

|P`| · 2`+1x <

blog(c/x)c∑
`=0

2d

2d`
(n− 1) · 2`+1 · c2

(n− 1)1/d
430

< 2d+1c2(n− 1)
d−1
d

∞∑
`=0

1

2(d−1)`
≤ 2d+2c2(n− 1)(d−1)/d,431

432

as required. Together with (10), this yields L = O
(
c2(n− 1)(d−1)/d

)
.433

4.2. Lower bounds in Rd. We show that the exponent (d−1)/d in Theorem 10434

cannot be improved. More precisely, for every ε > 0, we construct a family of axis-435

parallel chains in Rd whose stretch factor is n(1−ε)(d−1)/d for sufficiently large n(ε).436

For the higher-dimensional case, we focus on axis-parallel chains, as they are easier to437

analyze. In the plane (d = 2), this construction is also possible, but it yields weaker438

bounds than Theorem 4.439

Theorem 11. Let d ≥ 2 be an integer. For all constants ε > 0 and sufficiently440

large c = Ω(d), there is a positive integer n0 such that for every n ≥ n0, there exists an441

axis-parallel c-chain in Rd with n vertices and stretch factor at least (n−1)(1−ε)(d−1)/d.442

Proof. Let d ≥ 2, ε > 0, and c = Ω(d) be given. We describe a recursive443

construction in terms of an even integer parameter444

(14) r > 3(1−ε)/(dε).445
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We recursively define a family Qc = {Qm}m∈N of axis-parallel c-chains in Rd, where446

each chain Qm has nm ≤ 3m+1rdm vertices. Then, we show that the stretch factor of447

every Qm is at least (nm − 1)(1−ε)(d−1)/d for sufficiently large m ∈ N.448

Construction of Qc. For each chain in Qc, we maintain a subset of active directed449

edges, which are disjoint, have the same length, and are parallel to the same coordinate450

axis. In a nutshell, the recursion works as follows. We start with a chain Q0 that451

consists of a single segment that is labeled active; then for m = 1, 2, . . ., we obtain452

Qm by replacing each active edge in a fixed chain π by a homothetic copy of Qm−1.453

The chain π is defined below; it consists of 6rd + 1 edges, 3rd of which are active.454

We define the chain π in four steps, see Fig. 11 for an illustration. Let ei, i =455

1, . . . , d, be the standard basis vectors in Rd.456

(1) Consider the (d−1)-dimensional hyperrectangle A = [0, 1]× [0, r−1]d−2. Let457

γ0 be an axis-parallel Hamiltonian cycle on the 2rd−2 integer points that lie458

in A such that the origin is incident to an edge parallel to the x1-axis. We459

label the vertices of γ0 by vi, for i = 1, . . . , 2rd−2, in order, where v1 is the460

origin.461

(2) Let a = (3r2 + 1)/(3r) = r + 1/(3r), and consider the d-dimensional hyper-462

rectangle A× [0, a] = [0, 1]× [0, r−1]d−2× [0, a]. We construct a Hamiltonian463

cycle γ1 on the 4rd−2 points in464 {
vi × {0, a} | i = 1, . . . , 2rd−2

}
465

by replacing every edge (v2i−1, v2i) in γ0 with three edges466

((v2i−1, 0), (v2i−1, a)), ((v2i−1, a), (v2i, a)), and ((v2i, a), (v2i, 0)).467

Note that γ1 has 4rd−2 edges, such that 2rd−2 edges have length a and are468

parallel to the xd-axis. Also note that the origin v1 is incident to a unit edge469

parallel to the x1-axis, and to an edge of length a parallel to the xd-axis.470

(3) Delete the edge of γ1 that is incident to the origin v1 and parallel to the471

x1-axis. This turns γ1 into a Hamiltonian chain γ2 from the origin to the472

vertex e1 in the hyperrectangle A× [0, a] = [0, 1]× [0, r − 1]d−2 × [0, a].473

(4) Consider the hyperrectangle B(π) =
[
0, 3r2 + 1

]
×[0, r−1]d−2×[0, a]. Let π be474

the chain from the origin to (3r2+1)·e1 that is obtained by the concatenation475

of 3r2/2 copies of γ2, translated by vectors (2j−1) ·e1 for j = 1, 2, . . . , 3r2/2,476

interlaced with 3r2/2 + 1 unit segments parallel to e1. Note that π has477 (
3r2/2

)
·
(
4rd−2 − 1

)
+ 3r2/2 + 1 = 6rd + 1 edges,

(
3r2/2

)
· 2rd−2 = 3rd of478

which have length a and are parallel to the xd-axis. We label all these edges479

as active, so that π has 3rd active edges. Observe that B(π) is the minimum480

axis-parallel bounding box of π.481

Lemma 12. The chain π is a c′-chain for c′ = 8 + 2r
√
d− 1. Furthermore, if the482

points q1, q2, and q3 are contained in active edges, in this order along π and not all483

in the same edge, then484

|q1q2|+ |q2q3|
|q1q3|

≤ 8 + 2r
√
d− 1.485

Proof. We extend π to a chain π′ by attaching a parallel copy of γ2 to each end of486

π. We prove the lemma for π′. Then, the lemma also follows for π, as π is a subchain487

of π′. Write π′ = (p1, . . . , pn). Since pi, pj , and pk are endpoints of active edges, for488

any choice of 1 ≤ i < j < k ≤ n, the second claim in the lemma implies that π′ is a489

c′-chain.490
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γ1γ0

v1

v2

v3

v4

v8

v7

v6

v5

γ2

π

︸ ︷︷ ︸
24 copies of γ2 and 25 unit segments

· · ·

Fig. 11. The cycles γ0 (top left), γ1 (top middle), and the chains γ2 (top right), π (bottom)
for d = 3 and r = 4. The cycles and chains are in red, their bounding boxes are outlined in black.

We give an upper bound for the ratio (|q1q2|+ |q2q3|)/|q1q3|. Recall that all the491

active edges in π′ come from the 3r2/2 + 2 translated copies of the chain γ2; and492

γ2 has vertices in an axis-aligned bounding box B = [0, 1] × [0, r − 1]d−2 × [0, a].493

Denote by B0, B1, . . . , B3r2/2, B3r2/2+1 the minimum axis-aligned bounding boxes of494

the 3r2/2 + 2 translates of γ2 in π′. Suppose that q1, q2, and q3 are in Bi1 , Bi2 , and495

Bi3 , respectively. By assumption, i1 ≤ i2 ≤ i3.496

If i1 = i3, then q1, q2, and q3 are in Bi1 . Since q1 and q3 are not on the same497

active edge, and since γ0 has integer coordinates, we have |q1q3| ≥ 1. Consequently,498

|q1q2|+ |q2q3|
|q1q3|

≤ 2 · diam (Bi1)

1
499

≤ 2
√

12 + (d− 2)(r − 1)2 + a2500

= 2
√

1 + (d− 2)(r − 1)2 + (r + 1/(3r))2501

≤ 2
√

2 + (d− 1)r2502

< 2
√

2 + 2r
√
d− 1.503504

Otherwise i1 < i3, and the first coordinates of q1 and q3 differ by at least 2(i3 −505

i1)− 1 ≥ i3 − i1, hence |q1q3| ≥ i3 − i1. In this case,506

|q1q2|+ |q2q3|
|q1q3|

≤ 2 · diam(Bi1 ∪Bi3)

i3 − i1
507

≤
2 ·
√

(2(i3 − i1) + 1)2 + (d− 2)(r − 1)2 + a2

i3 − i1
508

≤ 4(i3 − i1) + 4 + 2r
√
d− 1

i3 − i1
509

≤ 8 + 2r
√
d− 1,510511

as claimed. This completes the proof of Lemma 12.512
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Q0

Q1

Q2

Fig. 12. The chains Q0 (top), Q1 (middle), and Q2 (bottom) for d = r = 2. The active edges
are highlighted by red bold lines. The bounding box B of Q1 and bounding boxes B′ of homothetic
copies of Q1 in Q2 are shaded.

Fig. 13. The chains Q1 (top) and Q2 (bottom) for d = 3 and r = 2.

Now the axis-parallel chains Qm can be defined recursively (see Fig. 12 for an513

illustration). Let Q0 be a line segment of length 3r2 + 1, parallel to the x1-axis,514

labeled active. Let Q1 be π and let B = B(π) be its minimum axis-parallel bounding515

box. Recall that B =
[
0, 3r2 + 1

]
× [0, r − 1]d−2 × [0, a].516

We maintain the invariant that each chain Qm (m ∈ N) is contained in B. In517

order to do this, let B′ be a hyperrectangle obtained from B by a rotation of 90518
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degrees in the 〈e1, ed〉 plane, and scaling by a factor of a/(3r2 + 1) = 1/(3r); i.e.,519

B′ = [0, a/(3r)]× [0, (r−1)/(3r)]d−2× [0, a]. In particular, the longest edges of B′ are520

parallel to the active edges in B, and they all have length a. Place a translate of B′521

along each active edge inQ1 such that all such translates are contained in B. Note that522

the distance between any two translates is at least 1−2a/(3r) = 1/3−2/(9r2) ≥ 5/18.523

For all m ≥ 1, we construct Qm+1 by replacing the active edges of Q1 with a524

scaled (and rotated) copy of Qm in each translate of B′; and we let the active edges525

of Qm+1 be the active edges in these new copies of Qm.526

Instead of keeping track of the total length of Qm, we analyze the total length of527

the active edges of Qm. In each iteration, the number of active edges increases by a528

factor of 3rd and the length of an active edge decreases by a factor of a/(3r2 + 1) =529

1/(3r). Overall the total length of active edges increases by a factor of rd−1. It follows530

that for all m ∈ N, the chain Qm has 3mrdm active edges, and their total length is531

(3r2 + 1) · r(d−1)m. Thus, we have532

(15) |Qm| ≥ (3r2 + 1) · r(d−1)m,533

for m ∈ N. Next we estimate the number of vertices in Qm. Recall that the recursive534

construction replaces each active edge with 3rd active edges and 3rd+1 inactive edges535

(which are never replaced). Consequently, for m ≥ 1, the number of inactive edges in536

Qm is (3rd + 1)
∑m−1

i=0 3irdi, and the total number of vertices is537

nm = 1 + 3mrdm + (3rd + 1)

m−1∑
i=0

3irdi = 1 + 3mrdm + (3rd + 1)
3mrdm − 1

3rd − 1
.538

Note that539

(16) 3mrdm < nm ≤ 3 · 3mrdm.540

Since the distance between the two endpoints of Qm remains 3r2 + 1, we can use (15)541

and the upper bound in (16) to obtain542

(17)
|Qm|

3r2 + 1
≥ r(d−1)m ≥

( nm
3m+1

) d−1
d

.543

Now, (14) implies that r = β · 3(1−ε)/(dε), for a constant β > 1. Thus, using the lower544

bound in (16), we get that545

nεm > 3εmrεdm = 3εm
(
β · 3

(1−ε)
εd

)εdm
= βεdm · 3m ≥ 3m+1,546

for sufficiently large m. Hence, combining with (17), we can bound the stretch factor547

from below as548
|Qm|

3r2 + 1
≥ n(1−ε)

d−1
d

m ,549

for sufficiently large m.550

It remains to show that Qc = {Qm : m ∈ N} is a family of c-chains, where551

c = Ω(d). We proceed by induction on m. The claim is trivial for m = 0, and it552

follows from Lemma 12 for m = 1.553

Now, let m ≥ 2. Write Qm = (p1, . . . , pn), and let 1 ≤ i < j < k ≤ n. We554

shall derive an upper bound for the ratio (|pipj | + |pjpk|)/|pipk|. Recall that Qm is555
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obtained by replacing each active edge of Q1 = π by a scaled copy of Qm−1. If pi and556

pk are in the same copy of Qm−1, then so is pj and induction completes the proof.557

Otherwise let B′i, B
′
j , and B′k be the bounding boxes of the copies of Qm−1 that558

contain pi, pj , and pk, respectively. Let ai, aj , and ak be the active segments in Q1559

that are replaced by B′i, B
′
j , and B′k; and let qi ∈ ai, qj ∈ aj , and qk ∈ ak be the560

orthogonal projections of pi, pj , and pk onto ai, aj , and ak, respectively. (If i = 1,561

then let qi = p1; if k = n, then let qk = pn. Since the proof of Lemma 12 works on562

the extended chain π′, it applies to qi, qj , and qk regardless of this special condition.)563

Since each projection happens within a hyperplane orthogonal to the xd-axis onto564

an active edge in a translated copy of [0, a/(3r)]× [0, (r− 1)/(3r)]d−2× [0, a], we have565

that |piqi|, |pjqj |, and |pkqk| are each bounded above by566 √
a2

(3r)2
+ (d− 2)

(r − 1)2

(3r)2
≤
√
d− 1

3
+

1

3r
≤
√
d− 1

3
+

1

6
.567

As there are at least two distinct active edges among ai, aj , and ak (and as the568

distance between p1 or pn and any active edge in π is at least 1), we have569

|qiqj |+ |qjqk| ≥ max{|qiqj |, |qjqk|} ≥ 1.570

Combining these two bounds with the triangle inequality, we get571

|pipj |+ |pjpk| ≤ (|piqi|+ |qiqj |+ |qjpj |) + (|pjqj |+ |qjqk|+ |qkpk|)572

≤ |qiqj |+ |qjqk|+
4

3

√
d− 1 +

2

3
573

≤
(

5

3
+

4

3

√
d− 1

)
(|qiqj |+ |qjqk|).574

575

On the other hand, we have |pipk| ≥ 5
18 |qiqk|, as this lower bound holds for the576

projections of the edges to each coordinate axis. Now Lemma 12 yields577

|pipj |+ |pjpk|
|pipk|

≤ 5/3 + 4
√
d− 1/3

5/18
· |qiqj |+ |qjqk|

|qiqk|
578

≤ (6 + 24
√
d− 1/5) · (8 + 2r

√
d− 1)579

= O(r(d− 1)).580581

This completes the proof of Theorem 11.582

5. Algorithm for Recognizing c-Chains. In this section, we design a ran-583

domized Las Vegas algorithm to recognize c-chains in d-dimensional Euclidean space.584

More precisely, given a polygonal chain P = (p1, . . . , pn) in Rd, and a parameter585

c ≥ 1, the algorithm decides whether P is a c-chain, in O
(
n3−1/d polylog n

)
ex-586

pected time. By definition, P = (p1, . . . , pn) is a c-chain if |pipj | + |pjpk| ≤ c |pipk|587

for all 1 ≤ i < j < k ≤ n; equivalently, pj lies in the ellipsoid of major axis c with588

foci pi and pk. Consequently, it suffices to test, for every pair 1 ≤ i < k ≤ n, whether589

the ellipsoid of major axis c|pipk| with foci pi and pk contains pj , for all j, i < j < k.590

For this, we can apply recent results from geometric range searching.591

Theorem 13. For every integer d ≥ 2, there are randomized algorithms that can592

decide, for a polygonal chain P = (p1, . . . , pn) in Rd and a threshold c > 1, whether593

P is a c-chain in O
(
n3−1/d polylog n

)
expected time and O(n log n) space.594
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Agarwal, Matoušek and Sharir [3, Theorem 1.4] constructed, for a set S of n595

points in Rd, a data structure that can answer semi-algebraic range searching queries;596

in particular, it can report the number of points in S that are contained in a query597

ellipsoid. Specifically, they showed that, for every d ≥ 2 and ε > 0, there is a constant598

B and a data structure with O(n) space, O
(
n1+ε

)
expected preprocessing time, and599

O
(
n1−1/d logB n

)
query time. The construction was later simplified by Matoušek600

and Patáková [28]. Using this data structure, we can quickly decide whether a given601

polygonal chain is a c-chain.602

Proof of Theorem 13. Subdivide the polygonal chain P = (p1, . . . , pn) into two603

equal-sized subchains (to within 1) P1 = (p1, . . . , pdn/2e) and P2 = (pdn/2e, . . . , pn);604

and recursively subdivide P1 and P2 until reaching 1-vertex chains. Denote by T the605

recursion tree. Then, T is a binary tree of depth dlog ne. There are at most 2i nodes606

at level i; the nodes at level i correspond to edge-disjoint subchains of P , each of607

which has at most n/2i edges. Let Wi be the set of subchains on level i of T ; and let608

W =
⋃

i≥0Wi. We have |W | ≤ 2n.609

For each polygonal chain Q ∈ W , construct an ellipsoid range searching data610

structure DS(Q) described above [3] for the vertices of Q, with a suitable parameter611

ε > 0. Their overall expected preprocessing time is612

dlogne∑
i=0

2i ·O
(( n

2i

)1+ε
)

= O

n1+ε

dlogne∑
i=0

(
1

2i

)ε
 = O

(
n1+ε

)
,613

and their space requirement is
∑dlogne

i=0 2i ·O
(
n/2i

)
= O(n log n). The query time of614

each chain in Wi is O
((
n/2i

)1−1/d
polylog

(
n/2i

))
.615

For each pair of indices 1 ≤ i < k ≤ n, we do the following. Let Ei,k denote616

the ellipsoid of major axis c|pipk| with foci pi and pk. The chain (pi+1, . . . , pk−1) is617

subdivided into O(log n) maximal subchains in W , using at most two subchains from618

each set Wi, i = 0, . . . , dlog ne. For each of these subchains Q ∈ W , query the data619

structure DS(Q) with the ellipsoid Ei,k. If all queries are positive (i.e., the count620

returned is |Q| in all queries), then P is a c-chain; otherwise there exists j, i < j < k,621

such that pj /∈ Ei,k, hence |pipj |+ |pjpk| > c|pipk|, witnessing that P is not a c-chain.622

The query time over all pairs 1 ≤ i < k ≤ n is bounded above by623 (
n

2

) dlogne∑
i=0

2 ·O
(( n

2i

)1−1/d
polylog

( n
2i

))
=

(
n

2

)
·O
(
n1−1/d polylog n

)
624

= O
(
n3−1/d polylog n

)
.625

626

This subsumes the expected time needed for constructing the structures DS(Q), for627

all Q ∈ W . So the overall running time of the algorithm is O
(
n3−1/d polylog n

)
, as628

claimed.629

In the decision algorithm in the proof of Theorem 13, only the construction of630

the data structures DS(Q), Q ∈ W , uses randomization, which is independent of the631

value of c. The parameter c is used for defining the ellipsoid Ei,k, and the queries to632

the data structures; this part is deterministic. Hence, we can find the optimal value633

of c by Meggido’s parametric search [29] in the second part of the algorithm.634

Meggido’s technique reduces an optimization problem to a corresponding decision635

problem at a polylogarithmic factor increase in the running time. An optimization636
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problem is amenable to this technique if the following three conditions are met [35]:637

(1) the objective function is monotone in the given parameter; (2) the decision problem638

can be solved by evaluating bounded-degree polynomials, and (3) the decision problem639

admits an efficient parallel algorithm (with polylogarithmic running time using a640

polynomial number of processors). All three conditions hold in our case: The area of641

each ellipsoid with foci in S monotonically increases with c; the data structure of [28]642

answers ellipsoid range counting queries by evaluating polynomials of bounded degree;643

and the
(
n
2

)
queries can be performed in parallel. Alternatively, Chan’s randomized644

optimization technique [12] is also applicable. Both techniques yield the following645

result.646

Corollary 14. There are randomized algorithms that can find, for a polygonal647

chain P = (p1, . . . , pn) in Rd, the minimum c ≥ 1 for which P is a c-chain in648

O
(
n3−1/d polylog n

)
expected time and O(n log n) space.649

We note that, for c = 1, the test takes O(n) time: it suffices to check whether650

points p3, . . . , pn lie on the line spanned by p1p2, in that order.651

Remark. Recently, Agarwal et al. [1, Theorem 13] designed a data structure for652

semi-algebraic range searching queries that supports O(log n) query time, at the ex-653

pense of higher space and preprocessing time. The size and preprocessing time depend654

on the number of free parameters that describe the semi-algebraic set. An ellipsoid655

in Rd is defined by 2d + 1 parameters: the coordinates of its foci and the length of656

its major axis. Specifically, they showed that, for every d ≥ 2 and ε > 0, there is a657

data structure with O(n2d+1+ε) space and O(n2d+1+ε) expected preprocessing time658

that can report the number of points in S contained in a query ellipsoid in O(log n)659

time. This data structure allows for a tradeoff between preprocessing time and overall660

query time in the algorithm above. However the resulting tradeoff does not seem to661

yield an improvement over the expected running time in Theorem 13 for any d ≥ 2.662

6. Conclusion. We conclude with some remarks and open problems.663

1. The lower bound construction in the plane can be slightly improved as follows.664

For m ≥ 1, let Pm
∗ = g2(Pm)∪ g3(Pm), see Fig. 14 (right). Observe that Pm

∗665

is a c-chain with n = 4m/2 + 1 vertices and stretch factor666 √
c(c− 2)/8(n− 1)

1+log(c−2)−log c
2 .667

Since
√
c(c− 2)/8 ≥ 1 for c ≥ 4, this improves the result of Theorem 4 by a668

constant factor. Since this construction does not improve the exponent, and669

the analysis would be longer (requiring a case analysis without new insights),670

we omit the details.

Fig. 14. The chains P 4 (left) and P 4
∗ (right).

671
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2. The lower bound construction in the plane depends on a parameter c∗ =672

(c− 2)/2. If c were used instead, the condition c ≥ 4 in Theorem 4 could be673

replaced by c ≥ 1, and the bound could be improved from674

(n− 1)
1+log(c−2)−log c

2 to (n− 1)
1+log c−log(c+1)

2 .675

Although we were unable to prove that the resulting Pm’s, m ∈ N, are c-676

chains, a computer program has verified that the first few generations of677

them are indeed c-chains.678

3. The upper bounds in Theorem 1–3 (and their generalizations to higher dimen-679

sions, e.g., Theorem 10) are valid regardless of whether the chain is crossing680

or not. On the other hand, the lower bounds in Theorem 4 and Theorem 11681

are given by noncrossing chains. A natural question is whether sharper upper682

bounds hold if the chains are required to be noncrossing. Specifically, can the683

exponent of n in the upper bound for Rd be reduced to d−1
d − ε, where ε > 0684

depends on c?685

4. The running time of the algorithm in Theorem 13 is sub-cubic, but super-686

quadratic. Is this necessary, or is it possible to decide the c-chain property in687

time O(n2) or better?688
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