
Delta-Fast Tries: Local Searches in Bounded
Universes with Linear Space?

Marcel Ehrhardt and Wolfgang Mulzer

Institut für Informatik, Freie Universität Berlin, Germany
[marehr,mulzer]@inf.fu-berlin.de

Abstract. Let w ∈ N and U = {0, 1, . . . , 2w−1} be a bounded universe
of w-bit integers. We present a dynamic data structure for predecessor
searching in U . Our structure needs O(log log∆) time for queries and
O(log log∆) expected time for updates, where∆ is the difference between
the query element and its nearest neighbor in the structure. Our data
structure requires linear space. This improves a result by Bose et al.
[CGTA, 46(2), pp. 181–189].
The structure can be applied for answering approximate nearest neighbor
queries in low dimensions and for dominance queries on a grid.

1 Introduction

Predecessor searching is one of the oldest problems in theoretical computer sci-
ence [5, 12]. Let U be a totally ordered universe. The task is to maintain a set
S ⊆ U , while supporting predecessor and successor queries: given q ∈ U , find
the largest element in S smaller than q (q’s predecessor) or the smallest element
in S larger than q (q’s successor). In the dynamic version of the problem, we
also want to be able to modify S by inserting and/or deleting elements.

In the word-RAM model of computation, all input elements are w-bit words,
where w ∈ N is a parameter. Without loss of generality, we may assume that w
is a power of 2. We are allowed to manipulate the input elements at the bit level,
in constant time per operation. In this case, we may assume that the universe
is U = {0, . . . , 2w − 1}. A classic solution for predecessor searching on the word-
RAM is due to van Emde Boas, who described a dynamic data structure that
requires space O(n) and supports insertions, deletions, and predecessor queries
in O(log log |U |) time [9, 10].

In 2013, Bose et al. [3] described a word-RAM data structure for the pre-
decessor problem that is local in the following sense. Suppose our data struc-
ture currently contains the set S ⊆ U , and let q ∈ U be a query element. Let
q+ := min{s ∈ S | s ≥ q} and q− := max{s ∈ S | s ≤ q} be the succes-
sor and the predecessor of q in S, and let ∆ = min{|q − q−|, |q − q+|} be the
distance between q and its nearest neighbor in S. Then, the structure by Bose
et al. can answer predecessor and successor queries in O(log log∆) time. Their
solution requires O(n log log log |U |) words of space, where n = |S| is the size of

? Supported in part by DFG project MU/3501-1.

2

the current set. Bose et al. apply their structure to obtain a fast data structure
for approximate nearest neighbor queries in low dimensions and for answering
dominance and range searching queries on a grid.

Here, we show how to obtain a data structure with similar guarantees for the
query and update times that reduces the space requirement to O(n). This solves
an open problem from [3]. Furthermore, this also improves the space requirement
for data structures for nearest neighbor searching and dominance reporting. Full
details and pseudocode for all the algorithms and data structures described here
can be found in the Master’s thesis of the first author [8]. Belazzougui et al. give
a linear space bound for distance-sensitive queries in the static setting, using
almost the same techniques as in the present paper [2]. Our result was obtained
independently from the work of Belazzougui et al.

2 Preliminaries

We begin by listing some known structures and background information required
for our data structure.

Compressed Tries. Our data structure is based on compressed tries [5]. These
are defined as follows: we interpret the elements from S as bitstrings of length
w (the most significant bit being in the leftmost position). The trie T ′ for S is a
binary tree of height w. Each node v ∈ T ′ corresponds to a bitstring pv ∈ {0, 1}∗.
The root r has pr = ε. For each inner node v, the left child u of v has pu = pv0,
and the right child w of v has pw = pv1 (one of the two children may not exist).
The bitstrings of the leaves correspond to the elements of S, and the bitstrings
of the inner nodes are prefixes for the elements in S, see Figure 1.

0 1

00

001

10 11

100 110 111

ε

1

001

11

100 110 111

ε

Fig. 1. A trie (left) and a compressed trie (right) for the set 000, 100, 110, 111. The
longest common prefix of 101 is 10. The lca of 101 in the compressed trie is the node
labeled 1.

The compressed trie T for S is obtained from T ′ by contracting each maximal
path of nodes with only one child into a single edge. Each inner node in T has
exactly two children, and consequently T has O(n) nodes. Maybe somewhat

3

unusually, in the following, the height and depth of a node v in T will refer to the
corresponding height and depth in the (uncompressed) trie T ′. This convention
will make the description of the operations more convenient.

Let q ∈ {0, 1}∗ be a bitstring of length at most w. The longest common prefix
of q with S, lcpS(q), is the longest prefix that q shares with an element in S.
We say that q lies on an edge e = (u, v) of T if pu is a prefix of q and q is a
proper prefix of pv. If lcpS(q) lies on the edge (u, v), we call u the lowest common
ancestor of q in T , denoted by lcaT (q). One can show that lcaT (q) is uniquely
defined.

Associated Keys. Our algorithm uses the notion of associated keys. This notion
was introduced in the context of z-fast tries [1, 16], and it is also useful in our
data structure.

Associated keys provide a quick way to compute lcaT (q), for any element q ∈
U . A natural way to find lcaT (q) is to do binary search on the depth of lcaT (q):
we initialize (l, r) = (0, w) and let m = (l + r)/2. We denote by q′ = q0 . . . qm−1
the leftmost m bits of q, and we check whether T has an edge e = (u, v) such
that q′ lies on e. If not, we set r = m, and we continue. Otherwise, we determine
if u is lcaT (q), by testing whether pv is not a prefix of q. If u is not lcaT (q), we
set l = m and continue. In order to perform this search quickly, we need to find
the edge e that contains a given prefix q′, if it exists. For this, we precompute for
each edge e of T the first time that the binary search encounters a prefix that
lies on e. This prefix is uniquely determined and depends only on e, not on the
specific string q that we are looking for. We let αe be this prefix, and we call αe
the associated key for e = (u, v), see Figure 2.

0

1

0

1

0

1

0

1

1

2

3

4 = w/2

5

6

7

w
1 0

1

1 0

0 1

1

1 1 0 1

1

0

0

0

1

1

1

0

Fig. 2. The associated key αe of an edge e: we perform a binary search on the height
of lcpS(q) in T . The associated key of an edge e is the prefix of lcpS(q) in which the
search first encounters the edge e.

The binary search needs logw steps, and since we assumed that w is a power
of two, each step determines the next bit in the binary expansion of the length
of lcpS(q). Thus, the associated key of an edge e can be computed in O(1) time
on a word RAM as follows: consider the logw-bit binary expansions `u = |pu|2

4

and `v = |pv|2 of the lengths of the prefixes pu and pv, and let `′ be the longest
common prefix of `u and `v. We need to determine the first step when the binary
search can distinguish between `u and `v. Since `u < `v, and since the two binary
expansions differ in the first bit after `′, it follows that `u begins with `′0 and `v
begins with `′1. Thus, let ` be obtained by taking `′, followed by 1 and enough
0’s to make a logw-bit word. Let l be the number encoded by `. Then, the
associated key αe consists of the first l bits of pv; see [1, 8, 16] for more details.

Hash Maps. Our data structure also makes extensive use of hashing. In particu-
lar, we will maintain several succinct hashtables that store additional information
for supporting fast queries. For this, we will use a hashtable described by De-
maine et al. [7]. The following theorem summarizes the properties of their data
structure.

Theorem 2.1. For any r ≥ 1, there exists a dynamic dictionary that stores
entries with keys from U and with associated values of r bits each. The dictionary
supports updates and queries in O(1) time, using O(n log log(|U |/n) + nr) bits
of space. The bounds for the space and the queries are worst-case, the bounds for
the updates hold with high probability. ut

3 Static ∆-fast Tries

We are now ready to describe our data structure for the static case. In the next
section, we will discuss how to add support for insertions and deletions.

3.1 The Data Structure

Our data structure is organized as follows: let S ⊆ U , |S| = n, be given. We store
S in a compressed trie T . The leaves of T are linked in sorted order. Furthermore,
for each node v of T , let Tv be the subtree rooted at v. Then, v stores pointers
to the smallest and the largest leaf in Tv. To support the queries, we store three
additional hash maps: H∆, Hz, and Hb.

First, we describe the hash map H∆. Set m = log logw. For i = 0, . . . ,m, we
let hi = 22

i

and di = w−hi. The hash map H∆ stores the following information:
for each s ∈ S and each di, i = 1, . . . ,m, let si = s0 . . . sdi−1 be the leftmost
di-bits of s and let e = (u, v) be the edge of T such that si lies on e. Then, H∆

stores the entry si 7→ u.

Next, we describe the hash map Hz. It is defined similarly as the hash map
used for z-fast tries [1,16]. For each edge e of T , let αe be the associated key of
e, as explained in Section 2. Then, Hz stores the entry αe 7→ e.

Finally, the hash map Hb is used to implement a second layer of indirection
that lets us achieve linear space. It will be described below.

5

3.2 The Predecessor Query

Let q ∈ U be the query, and let q− and q+ be the predecessor and the successor
of q in S, as described above. We first show how to get a running time of
O(log log∆) for the queries, with ∆ = |q − q+|. In Theorem 3.2, we will see
that this can easily be improved to ∆ = min{|q − q−|, |q − q+|}.

The predecessor search works in several iterations. In iteration i, we consider
the prefix qi that consists of the first di bits of q.

First, we check whether H∆ contains an entry for qi. If so, we know that T
contains an edge e such that qi lies on e. Hence, qi must be a prefix of lcpS(q).
If one of the endpoints of e happens to be lcaT (q), we are done. Otherwise, we
consider the two edges emanating from the lower endpoint of e, finding the edge
e′ that lies on the path to q. We take the associated key αe′ of e′, and we use it to
continue the binary search for lcaT (q), as described in Section 2. Since |qi| = di,
this binary search takes O(log(w− di)) = O(log hi) steps to complete. Once the
lowest common ancestor v = lcaT (q) is at hand, we can find the predecessor of q
in O(1) additional time: it is either the rightmost element in Tv, the predecessor
of the leftmost element in Tv, or the rightmost element in the left subtree of
v. Given the pointers stored with v and the leaves of T , all these nodes can be
found in O(1) time.

If H∆ contains no entry for qi and if qi does not consist of all 1’s, we check if
H∆ contains an entry for qi + 1. Notice that qi + 1 is the successor of qi. If such
an entry exists, we first obtain u = H∆[qi + 1], and the child v of u such that
qi + 1 lies on the edge e = (u, v). Then, we follow the pointer to the leftmost
element of Tv. This is the successor q+ of q. The predecessor q− can then be
found by following the leaf pointers. This takes O(1) time overall.

Finally, if there is neither an entry for qi nor for qi + 1, we continue with
iteration i+ 1, see Figure 3.

Fig. 3. The query algorithm: first we perform an exponential search from the lowest
level, to find a prefix of qk or qk + 1 (left). If a prefix qk is found, we perform a
binary search for lcaT (q) (middle), which can then be used to find the predecessor and
successor of q (right). If a prefix qk + 1 is found, the successor and predecessor can be
found immediately (not shown).

From the above discussion, it follows that the total time for the predecessor
query is O(k+log hk), where k is the number of iterations and log hk is the worst-
case time for the predecessor search once one of the lookups in an iteration

6

succeeds. By our predecessor algorithm, we know that S contains no element
with prefix qk−1 or qk−1 + 1, but an element with prefix qk or qk + 1. Thus,
there must be at least 2w−dk = 2hk consecutive elements in U \ S following

q. By our definition of hk, it follows that ∆ ≥ 2hk−1 = 22
2k−1

, so k ≤ 1 +

log log log∆. Furthermore, since hk = 22
k

=
(

22
k−1

)2

= (hk−1)2, it follows that

hk = O(log2∆).

3.3 Obtaining Linear Space

We now analyze the space requirement for our data structure. Clearly, the trie
T and the hash map Hz require O(n) words of space. Furthermore, as described
so far, the number of words needed for H∆ is O(n log logw), since we store at
most n entries for each height hi, i = 0, . . . ,m = log logw.

Using a trick due to Pǎtraşcu [15], we can introduce another level of indirec-
tion to reduce the space requirement to O(n). The idea is to store in H∆ the
depth du of each branch node u in T∆, instead of storing u itself (here, we mean
the depth in the original trie, i.e., the length of the prefix pu). We then use an
additional hash map Hb to obtain u. This is done as follows: when trying to find
the branch node u for a given prefix qi, we first get the depth du = |pu| of u
from H∆. After that, we look up the branch node u = Hb[q0 . . . qdu−1] from the
hash map Hb. Finally, we check whether u is actually the lowest branch node of
qi. If any of those steps fails, we return ⊥.

Let us analyze the needed space: clearly, Hb needs O(n) words, since it stores
O(n) entries. Furthermore, we have to store O(n log logw) entries in H∆, each
mapping a prefix qi to the depth of its lowest branch node. This depth requires
dlogwe bits. By Theorem 2.1, a retrieval only hash map for n′ items and r bits

of data needs O(n′ log log |U |n′ + n′r) bits. Therefore, the space in bits for H∆ is
proportional to

n log logw · log log
|U |

n log logw
+ n log logw · dlogwe

= O(n log logw · logw)

= o(n · w),

using n′ = n log logw, r = dlogwe and w = log |U |. Thus, we can store H∆ in
O(n) words of w bits each. The following lemma summarizes the discussion

Lemma 3.1. The ∆-fast trie needs O(n) words space.

3.4 Putting it Together

We can now obtain our result for the static predecessor problem.

Theorem 3.2. Let U = {0, . . . , 2w − 1} and let S ⊆ U , |S| = n. The static ∆-
fast trie for S requires O(n) words of space, and it can answer a static predecessor

7

query for an element q ∈ U on S in time O(log log min{|q−q−|, |q−q+|}), where
q− and q+ denote the predecessor and successor of q in S. The preprocessing time
is O(n log log log |U |), assuming that S is sorted.

Proof. The regular search for q ∈ S can be done in O(1) time by a lookup in Hz.
We have seen that the predecessor of q can be found in O(log log |q− q+|) time.
A symmetric result also holds for successor queries. In particular, we can achieve
query time O(log log |q − q−|) by checking for H∆[qi − 1] instead of H∆[qi + 1]
in the query algorithm.

By interleaving the two searches, we obtain the desired running time of
O(log log min{|q − q−|, |q − q+|}). Of course, in a practical implementation, it
would be more efficient to check directly for H∆[qi − 1] and H∆[qi + 1] in the
query algorithm.

The trie T and the hash maps Hz and Hb can be computed in O(n) time,
given that S is sorted. Thus, the preprocessing time is dominated by the time to
fill the hash map H∆. Hence, the preprocessing needs O(n log log log |U |) steps,
because O(n log logw) nodes have to be inserted into H∆. By Lemma 3.1, the
space requirement is linear. ut

4 Dynamic ∆-fast tries

We will now explain how to extend our data structure to the dynamic case. The
basic data structure remains the same, but we need to update the hashtables
and the trie T after each insertion and deletion. In particular, our data structure
requires that for each v in Tv, we can access the leftmost and the rightmost node
in the subtree Tv. In the static case, this could be done simply by maintaining
explicit pointers from each node v ∈ T to these nodes in Tv, letting us find the
nodes in O(1) time. In the dynamic case, we will maintain a data structure which
allows finding and updating these nodes in in O(log log∆) time.

4.1 Computing Lowest Common Ancestor

To perform the update operation, we need a procedure to compute the lowest
common ancestor lcaT (q) for any given element q ∈ U . For this, we proceed as
in the query algorithm from Section 3.2, but skipping the lookups for H∆[qi−1]
and H∆[qi + 1]. By the analysis in Section 3.2, this will find lcaT (q) in time
O(log log l), where l is height of lcaT (q) in T .

Unfortunately, it may happen that this height l is as large as w, even if q is
close to an element in the current set S. To get around this, we use a trick of
Bose et al. [3]. Namely, their idea is to perform a random shift of the universe.
More precisely, we pick a random number r ∈ U , and we add r to all query and
update elements that appear in the data structure (modulo |U |).

Lemma 4.1 (Lemma 4 in [3]). Let x, y ∈ U be two fixed elements in U .
Let r ∈ U be picked uniformly at random. After a random shift of U by r, the
expected height of the lowest common ancestor of x and y in a compressed trie
is O(log |x− y|). ut

8

Corollary 4.1. Let S ⊆ U and let T be a randomly shifted ∆-fast trie stor-
ing S. Let q ∈ U . We can find lcaT (q) in expected time O(log log∆), where
∆ = min{|q − q+|, |q − q−|}, the elements q+ and q− being the predecessor and
successor of q in S. The expectation is over the random choice of the shift r.

Proof. Suppose without loss of generality that ∆ = |q − q+|. By Lemma 4.1,
the expected height hk of the lowest common ancestor of q and q+ is O(log∆).
We perform the doubly exponential search on the prefixes of q, as in Section 3.2
(without checking qi+ 1) to find the height hk. After that, we resume the search
for lcaT (q) on the remaining hk bits. Since hk = O(log∆) in expectation, it
follows by Jensen’s inequality that the number k of loop iterations to find hk is
O(log log log∆) in expectation. Thus, the expected running time is proportional
to k + log hk = O(log log∆). ut

4.2 Managing the Left- and Rightmost Elements of the Subtrees

We also need to maintain for each node v ∈ T the leftmost and the rightmost
element in the subtree Tv. In the static case, it suffices to have direct pointers
from v to the respective leaves, but in the dynamic case, we need an additional
data structure.

Fig. 4. For each leaf v′ of T , the nodes v ∈ T for which v is the leftmost leaf in Tv if a
subpath of a root-to-leaf path in T . Considering these subpaths for all leaves in T , we
obtain a path decomposition of T (shown in bold).

To do this, we observe the following: let v′ ∈ T be a leaf in T . Then, v′ is
the leftmost (or rightmost) leaf in the subtrees of at most w ancestors v of v′.
Furthermore, all these nodes form a subpath (more precisely, a prefix) of the
path from v to the root, see Figure 4. Hence, if we maintain the nodes of this
subpath in a concatenable queue data structure (realized by, e.g., a balanced
binary tree) [14], we can obtain O(logw) update and query time to find the
leftmost (or rightmost) element in Tv for each v ∈ T . However, we need that
the update and query time for this data structure depend on the height hi (i.e,
the remaining bits) of the query node v. Thus, we partition the possible heights
{0, 1, . . . , w} of the nodes on a subpath into the sets T−1 = {0}, Ti = [2i, 2i+1),
for i = 0, . . . , logw − 1, and Tlogw = {w}. Each set is managed by a balanced

9

binary tree, and the roots of the trees are linked together. The height of the i-th
binary search tree is log |Ti| = O(i). Furthermore, if a query node of height h is
given, the set Tblog hc is responsible for it, see Figure 5.

· · ·

0 [1, 2) [2, 4) [w/2, w)

1
2

logw − 1

T0
T1

Tlogw−1

Fig. 5. The data structure for a subpath. We group the nodes in the subpath according
to their heights, where the groups grow exponentially in size. Each group is represented
by a balanced tree. The roots are joined in a linked list. With this data structure, a
node v of height h can find the leftmost leaf in the subtree Tv in time O(log h).

Moreover, T−1 is a leaf (the depth of that node is w) in the trie and therefore
the minimum of the whole subpath. Thus, the minimum of a subpath can be
found from a given node v ∈ Ti in O(i) time by following the pointers to the
root of Ti and the pointers down to T−1.

If a node v has hk = O(log∆) height (remaining bits), the node is within the
tree Tblog hkc. Thus, it takes O(log hk) = O(log log∆) time to find the leftmost
or rightmost leaf in Tv.

Furthermore, we can support the following update operations: (i) split: given
a subpath π and a node v on π, split the representation of π into two represen-
tations, one for the lower subpath from the leaf up to the child of v, and one
for the upper subpath starting from v; and (ii) join: given a representation of
an upper subpath starting at a node v obtained from an operation of type (i),
and a representation for a lower subpath up to a child of v, join the two repre-
sentations into the representation for a joint subpath. Given the data structure,
we can support both split and join in O(log h) time, where h is the height of
the node v where the operation occurs. This decomposition of T into dynami-
cally changing suppaths is similar to the preferred paths decomposition of Tango
trees [6].

4.3 Performing an Update

We know from the Lemma 4.1, that the lowest common ancestor of a query
element q has expected height hk = O(log∆).

10

Lemma 4.2. Let S ⊆ U , and let T be a randomly shifted ∆-fast tree for S. Let
q ∈ U be fixed. We can insert or delete q into T in O(log log∆) expected time,
where the expectation is over the random choice of the shift r.

Proof. To insert q into T , we need to split an edge (u, v) of T into two edges
(u, b) and (b, v). This creates exactly two new nodes in T , an inner node and
a leaf node. The branch node is exactly lcaT (q), and it has expected height
hk = O(log∆), by Lemma 4.1. Thus, it will take O(log log∆) expected time to
find the edge (u, v), by Corollary 4.1.

Once the edge (u, v) is found, the hash maps Hz and Hu can then be updated
in constant time. Now let us consider the update time of the hash mapH∆. Recall
that H∆ stores the lowest branch nodes for all prefixes of the elements in S that
have certain lengths. This means that all prefixes on the edge (b, v) which are
stored in the hash map T∆ need to be updated. Furthermore, prefixes at certain
depths which are on the new edge (b, q) need to be added. For the edge (b, v),
we will enumerate all prefixes at certain depths, but we will select only those
that lie on the edge (b, v). This needs O(log log log∆) insertions and updates in
total: we have to insert the prefixes q0 . . . qdi for all i ≥ 1 with di < |b|. Since

we defined di = w − hi = w − 22
i

, and since |b| = w − O(log∆), we have that

di ≤ |b| as soon as c log∆ < 22
i

. This holds for i > log log(c log∆), and hence
i = Θ(log log log∆).

After that, the leftmost and rightmost elements for the subtrees of T have
to be updated. For this, we need to add one subpath for the new leaf q, and
we may need to split a subpath at a node of height hk = O(log∆) and join
the resulting upper path with the newly created subpath. As we have seen, this
takes O(log hk) = O(log log∆) time.

The operations for deleting an element q from S are symmetric. ut

The following theorem summarizes our result.

Theorem 4.3. Let r ∈ U be picked uniformly at random. After performing
a shift of U by r, the ∆-fast trie provides a data structure for the dynamic
predecessor problem such that the query operations take O(log log∆) worst-case
time and the update operations need O(log log∆) expected time, for ∆ = min{|q−
q+|, |q−q−|}, where q is the requested element and q+ and q− are the predecessor
and successor of q in the current set S. At any point in time, the data structure
needs O(n) words of space, where n = |S|.

5 Applications

Bose et al. [3] describe how to combine their structure with a technique of
Chan [4] and random shifting [11, Chapter 11] for obtaining a data structure
for distance-sensitive approximate nearest neighbor queries on a grid. More pre-
cisely, let d ∈ N be the fixed dimension, U = {0, . . . , 2w − 1} be the universe,
and let ε > 0 be given. The goal is to maintain a dynamic set S ⊆ Ud under
insertions, deletions, and ε-approximate nearest neighbor queries: given a query

11

point q ∈ Ud, find a p ∈ S with d2(p, q) ≤ (1 + ε)d2(p, S). Plugging our ∆-fast
tries into the structure of Bose et al. [3, Theorem 9], we can immediately improve
the space requirement of their structure to linear:

Theorem 5.1. Let U = {0, . . . , 2w − 1} and let d be a constant. Furthermore,
let ε > 0 be given. There exists a data structure that supports (1+ε)-approximate
nearest neighbor queries over a subset S ⊆ Ud in (1/εd) log log∆) expected time
and insertions and deletions of elements of Ud in O(log log∆) expected time.
Here, ∆ denotes the Euclidean distance between the query element and S. At any
point in time, the data structure requires O(n) words of space, where n = |S|.

As a second application, Bose et al. [3] present a data structure for dom-
inance queries on a grid, based on a technique of Overmars [13]. Again, let
U = {0, . . . , 2w − 1}, and let S ⊆ U2, |S| = n be given. The goal is to con-
struct a data structure for dominance queries in S. That is, given a query point
q ∈ U2, find all points p in S that dominate q, i.e., for which we have px ≥ qx
and py ≥ qy, there px, py and qx, qy are the x- and y-coordinates of p and q.

Again, using ∆-fast tries, we can immediately improve the space requirement
for the result of Bose et al. [3, Theorem 10, Corollary 13].

Theorem 5.2. Let U = {0, . . . , 2w−1}, and let S ⊆ U2, |S| = n be given. There
exists a data structure that reports the points in S that dominate a given query
point q = (a, b) ∈ U2 in expected time O(log log(h+ v) + k), where h = 2w − a,
v = 22−b, and k is the number of points in S dominated by q. The data structure
uses O(n log n) space.

6 Conclusion

We present a new data structure for local searches in bounded universes. This
structure now interpolates seamlessly between hashtables and van-Emde-Boas
trees, while requiring only a linear number of words. This provides an improved,
and in our opinion also slightly simpler, version of a data structure by Bose
et al. [3]. All the operations of our structure can be presented explicitly in pseu-
docode. This can be found in the Master’s thesis of the first author [8].

Acknowledgments. We thank the anonymous reviewers for numerous insight-
ful comments that improved the quality of the paper. In particular, we would
like to thank the anonymous reviewers for pointing us to [2].

References

1. Belazzougui, D., Boldi, P., Vigna, S.: Dynamic z-fast tries. In: Proc. 17th Int.
Symp. String Processing and Information Retrieval (SPIRE). pp. 159–172 (2010)

2. Belazzougui, D., Boldi, P., Vigna, S.: Predecessor search with distance-sensitive
query time (2012), arXiv:1209.5441

3. Bose, P., Doüıeb, K., Dujmovic, V., Howat, J., Morin, P.: Fast local searches and
updates in bounded universes. Comput. Geom. Theory Appl. 46(2), 181–189 (2013)

12

4. Chan, T.M.: Closest-point problems simplified on the RAM. In: Proc. 13th Annu.
ACM-SIAM Sympos. Discrete Algorithms (SODA). pp. 472–473 (2002)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT Press, third edn. (2009)

6. Demaine, E.D., Harmon, D., Iacono, J., Pǎtraşcu, M.: Dynamic optimality – al-
most. SIAM J. Comput. 37(1), 240–251 (2007)

7. Demaine, E.D., Meyer auf der Heide, F., Pagh, R., Pǎtraşcu, M.: De dictionariis
dynamicis pauco spatio utentibus. In: Proc. 7th Latin American Symp. Theoretical
Inf. (LATIN). pp. 349–361 (2006)

8. Ehrhardt, M.: An In-Depth Analysis of Data Structures Derived from van-
Emde-Boas-Trees. Master’s thesis, Freie Universität Berlin (2015), http://

www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/Ehrhardt15.pdf

9. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient
priority queue. Math. Systems Theory 10(2), 99–127 (1976)

10. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Inform. Process. Lett. 6(3), 80–82 (1977)

11. Har-Peled, S.: Geometric approximation algorithms, Mathematical Surveys and
Monographs, vol. 173. American Mathematical Society (2011)

12. Knuth, D.E.: The art of computer programming. Vol. 3. Sorting and searching.
Addison-Wesley, second edn. (1998)

13. Overmars, M.H.: Efficient data structures for range searching on a grid. J. Algo-
rithms 9(2), 254–275 (1988)

14. Preparata, F.P., Shamos, M.I.: Computational geometry. An introduction. Springer
Verlag (1985)

15. Pǎtraşcu, M.: vEB space: Method 4 (2010), http://infoweekly.blogspot.de/

2010/09/veb-space-method-4.html

16. Ružić, M.: Making deterministic signatures quickly. ACM Transactions on Algo-
rithms 5(3), 26:1–26:26 (2009)

