
Insertion-Only Dynamic Connectivity in General
Disk Graphs
Haim Kaplan1, Katharina Klost2, Kristin Knorr∗2, Wolfgang
Mulzer†2, and Liam Roditty3

1 School of Computer Science, Tel Aviv University
haimk@tau.ac.il

2 Institut für Informatik, Freie Universität Berlin
{kathklost, knorrkri, mulzer}@inf.fu-berlin.de

3 Department of Computer Science, Bar Ilan University
liamr@macs.biu.ac.il

Abstract
Let S ⊆ R2 be a set of n sites in the plane, so that every site s ∈ S has an associated radius rs > 0.
Let D(S) be the disk intersection graph defined by S, i.e., the graph with vertex set S and an edge
between two distinct sites s, t ∈ S if and only if the disks with centers s, t and radii rs, rt intersect.
Our goal is to design data structures that maintain the connectivity structure of D(S) as S changes
dynamically over time.

We consider the incremental case, where new sites can be inserted into S. While previous work
focuses on data structures whose running time depends on the ratio between the smallest and the
largest site in S, we present a data structure with O(α(n)) amortized query time and O(log6 n)
expected amortized insertion time.

1 Introduction

The question if two vertices in a given graph are connected is crucial for many applications.
If multiple such connectivity queries need to be answered, it makes sense to preprocess the
graph into a suitable data structure. In the static case, where the graph does not change, we
get an optimal answer by using a graph search to determine the connected components and
by labeling the vertices with their respective components. In the dynamic case, where the
graph can change over time, things get more interesting, and many variants of the problem
have been studied.

We construct an insertion-only dynamic connectivity data structure for disk graphs.
Given a set S ⊆ R2 of n sites in the plane with associated radii rs for each site s, the disk
graph D(S) for S is the intersection graph of the disks Ds induced by the sites and their
radii. While D(S) is represented by O(n) numbers describing the disks, it might have Θ(n2)
edges. Thus, when we start with an empty disk graph and successively insert sites, up to
Ω(n2) edges may be created. We describe a data structure whose overall running time for
any sequence of n site insertions is o(n2), while allowing for efficient connectivity queries.
For unit disk graphs (i.e., all associated radii rs = 1), a fully dynamic data structure with
a similar performance guarantee is already given by Kaplan et al. [2]. In the same paper,
Kaplan et al. present an incremental data structure whose running time depends on the ratio

∗ Supported by the German Science Foundation within the research training group ‘Facets of Complexity’
(GRK 2434).

† Supported in part by ERC StG 757609.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

47:2 Insertion-Only Dynamic Connectivity in General Disk Graphs

D(S)
Perfect

Binary Tree

Disjoint Set
DS H

AWNN
S

S

S

join

Figure 1 Overview of the data structure (Theorem 2.5)

C0

C1

C2

C0

in l0

Q : l3

C1

in l1

C2

in l2
empty

l3

C0∪C1 C2

C0∪C1∪C2

Figure 2 Disk graph with associated component tree and queue Q (tiling of a component
corresponds to the tiling of nodes storing its disks).

Ψ of the smallest and the largest radius in S. In this setting, they achieve O(α(n)) amortized
query time and O(log(Ψ) log4 n) expected amortized insertion time.

We focus on general disk graphs, with no assumption on the radius ratio. Our approach
has two main ingredients. First, we simply represent the connected components in a data
structure for the disjoint set union problem [1]. This allows for fast queries, in O(α(n))
amortized time, also mentioned by Reif [5]. The second ingredient is an efficient data
structure to find all components in D(S) that are intersected by any given disk (and hence
tells us which components need to be merged after an insertion of a new site). A schematic
overview of the data structure is given in Figure 1.

2 Insertion-Only Data Structure for Unbounded Radii

As in the incremental data structure for disk graphs with bounded radius ratio by Kaplan et
al. [2], we use a disjoint set union data structure to represent the connected components of
D(S) and to perform the connectivity queries. To insert a new site s into S, we first find the
set Cs of components in D(S) that are intersected by Ds. Then, once Cs is known, we can
simply update the disjoint set union structure to support further queries.

In order to identify Cs efficiently, we use a component tree TC. This is a binary tree
whose leaves store the connected components of D(S). The idea is illustrated in Figure 2
showing a disk graph and its associated component tree. We require that TC is a complete
binary tree, and some of its leaves may not have a connected component assigned to them,
like l3 in Figure 2. Those leaves are empty. Typically, we will not distinguish the leaf

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 47:3

(+ +)

Q :

l0 l1 l2 l3

l2 Q :

l0 l1 l2 l3

l3l3Q :

l0 l1

Figure 3 If the tree has no empty leaves before the insertion of an isolated component, a new
root and an empty subtree are added (second tree is an intermediate state before actual insertion).

storing a connected component and the component itself. Also when suitable, we will treat a
connected component as a set of sites. Every node of TC stores a fully dynamic additively
weighted nearest neighbor data structure (AWNN). An AWNN stores a set P of n points, each
associated with a weight wp. On a nearest neighbor query with a point q ∈ R2 it returns the
point p ∈ P that minimizes ‖pq‖+ wp. For this data structure, we use the following result
by Kaplan et al. [3] with an improvement by Liu [4].

I Lemma 2.1 (Kaplan et al. [3, Theorem 8.3, Section 9], Liu [4, Corollary 4.3]). There is a
fully dynamic AWNN data structure that allows insertions in O(log2 n) amortized expected
time and deletions in O(log4 n) amortized expected time. Furthermore, a nearest neighbor
query takes O(log2 n) worst case time. The data structure requires O(n logn) space.

The component tree maintains the following invariants. Invariant 2 allows us to use a query
to the AWNN to find the disk whose boundary is closed to a query point.
Invariant 1: Every connected component of D(S) is stored in exactly one leaf of TC , and
Invariant 2: The AWNN of a node u ∈ TC contains the sites of all connected components

that lie in the subtree rooted at u, where a site s ∈ S has assigned weight −rs.
In addition to TC , we store a queue QC that contains exactly the empty leaves in TC .

We now describe how to update TC when a new site s is inserted. We maintain TC in
such a way that the structure of TC changes only when s creates a new isolated component in
D(S). In the following lemma, we consider the slightly more general case of inserting a new
connected component C that does not intersect any connected component already stored
in TC .

I Lemma 2.2. Let TC be a component tree of height h with n sites and let C be an isolated
connected component. We can insert C into TC in amortized time O(h · |C| · log2 n).

Proof. The insertion performs two basic steps: first, we find or create an empty leaf li into
which C can be inserted. Second, the AWNN structures along the path from li to the root of
TC are updated.

For the first step, we check if QC is non-empty. If so, we extract the first element from
QC to obtain our empty leaf li. If QC is empty, there are no empty leaves, and we have to
expand the component tree. For this, we create a new root for TC , and we attach the old tree
as one child. The other child is an empty complete tree of the same size as the old tree. This
creates a complete binary tree, see intemediate state in Figure 3. We copy the AWNN of the
former root to the new root, we add all new empty leaves to QC , and we extract li from QC .

EuroCG’23

47:4 Insertion-Only Dynamic Connectivity in General Disk Graphs

+

Q : l1 Q :

l0 l1 l0 l1

C0

Ds

Figure 4 Inserting a component (potentially isolated disk Ds) into an empty leaf (Ci stored in
li): The isolated component C, yellow disk Ds, is inserted in the empty leaf l1 and all its ancestors
(indicated by coloring).

For the second step, we insert C into li, and we store an AWNN structure with the sites
from C in li. Then, the AWNN structures on all ancestors of li are updated by inserting the
sites of C, see Figure 4 and Figure 3 in case of tree extension respectively.

This procedure maintains both invariants: since an isolated component does not affect the
remaining connected components of D(S), it has to be inserted into a new leaf, maintaining
the first invariant. The second invariant is taken care of in the second step, by construction.
Afterwards, the queue has the correct state, since we extract the leaf used in the insertion.

The running time for finding or creating an empty leaf is amortized O(1). This is
immediate if QC 6= ∅, and otherwise, we can charge the cost of building the empty tree,
inserting the empty leaves into QC , and producing an AWNN structure for the new root to the
previous insertions. The most expensive step consists in updating the AWNN structures for
the new component. In each of the h AWNN structures of the ancestors of li, we must insert
|C| disks. By Lemma 2.1, this results into an expected amortized time of O(h·|C|·log2 n). J

Next, we describe how to find the set Cs of connected components that are intersected by
a disk Ds.

I Lemma 2.3. Let TC be a component tree of height h that stores n disks. We can find Cs in
worst case time O(max{|Cs| · h, 1} · log2 n}).

Proof. First, observe that if the site returned by a query to an AWNN structure with s does
not intersect Ds, then Ds does not intersect any disk for the sites stored in this AWNN. Thus,
the case where Cs = ∅ can be identified by a query to the AWNN structure in the root of TC ,
in O(log2 n) time.

In any other case, we perform a top down traversal of TC. Let u be the current node.
We query the AWNN structures of both children of u with s, and we recurse only into the
children where the nearest neighbor intersects Ds. The set Cs then contains exactly the
connected components of all leaves where Ds intersects its weighted nearest neighbor. Since
every leaf found corresponds to one connected component intersecting Ds and we recurse
into all subtrees whose union of sites have a non-empty intersection with s, we do not miss
any connected components.

For every connected component, there are at most h queries to AWNN structures along
the path from the root to the components. A query takes O(log2 n) amortized time by
Lemma 2.1, giving an amortized time of O(|Cs| · h · log2 n), if s is not isolated. The overall
time follows from taking the maximum of both cases. J

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 47:5

+

Q : l1

l0 l1 l0 l1

Q : l1

C0

Ds

Figure 5 Inserting a site if |Cs| = 1 (Ci stored in li): The yellow disk Ds intersects C0 (dashed
edge). Site s is added to the AWNN of the associated leaf l0 and its ancestors.

+

Q :

l0 l1 l2 l3 l0 l1 l2 l3

l3 Q : l3 l2

merge

C0

C2

Ds

C1

Figure 6 Inserting a site if |Cs| > 1 (Ci stored in li): Ds intesects C0 and C2. Since |C0| = 3 and
|C2| = 2, the largest component CL is C0. Thus, Ds and C2 are merged into C0 and C2 is removed
from l2 up to the lca, the root. The empty leave l2 is enqueued.

Using Lemma 2.2 and Lemma 2.3, we can now describe how to insert a single disk into a
component tree.

I Lemma 2.4. Let TC be a component tree that stores n sites. A new site s can be inserted
into TC in O(log6 n) amortized expected time.

Proof. First, we use the algorithm from Lemma 2.3. to find Cs. If |Cs| = 0, we use Lemma 2.2
to insert s as a singleton isolated connected component.

Otherwise, if |Cs| ≥ 1, let CL = arg maxC∈Cs
|C| be a largest connected component in

Cs. We insert s into CL and into the AWNN structures of all ancestors of CL. Then, if
|Cs| = 1, we are done, see Figure 5. If |Cs| > 1, all components in Cs now form a new, larger,
component in D(S). We perform the following clean-up step in TC .

For each component Ci ∈ Cs \ {CL}, all sites from Ci are inserted into CL. Let lca be
the lowest common ancestor of the leaves for Ci and CL in TC. Then all sites from Ci are
deleted from the AWNN structures along the path from Ci to lca, and reinserted along the
path from CL to lca. Finally, all newly empty leaves are inserted into QC . For an illustration
of the insertion of s and the clean-up step, see Figure 6.

To show correctness, we again argue that the invariants are maintained. If |Cs| = 0 this
follows by Lemma 2.2. In the other case, we directly insert s into a connected component
intersected by s and update all AWNN structures along the way. As Lemma 2.3 correctly finds
all relevant connected components, and we explicitly move the sites in these components to
CL during clean-up, Invariant 1 is fulfilled. In a similar vein, we update all AWNN structures
of sites that move to a new connected component, satisfying Invariant 2. Moreover, we keep

EuroCG’23

47:6 Insertion-Only Dynamic Connectivity in General Disk Graphs

QC updated by inserting or removing empty leaves when needed during the algorithm.
To complete the proof, it remains to analyze the running time. In the worst case, where

all components are singletons, a component tree that stores n sites has height O(logn). If
|Cs| = 0 the running time for finding Cs is O(log2 n) by Lemma 2.3. The insertion and
restructuring is done with Lemma 2.2, yielding an expected amortized time of O(log3 n).
In the case |Cs| = 1, with h = O(logn) a running time of O(log3 n) for finding Cs follows
by Lemma 2.3. Following similar arguments to the case |Cs| = 0, the time needed for the
insertion and restructuring is expected amortized O(log3 n).

Finally, we consider the case |Cs| > 1. By Lemma 2.3, finding Cs takes worst case time
O(|Cs| · log3 n). Then the insertion of s can be done in expected amortized time O(log3 n),
as in the cases above. It remains to analyze the running time of the clean-up step. We know
that the first common ancestor might be the root of TC . Hence, in the worst case, we have
to perform

∑
Ci∈(Cs\{CL}) |Ci| ·O(logn) insertions and deletions for a single clean-up step.

As the time for the deletions in the AWNN structures dominates, this is expected amortized∑
Ci∈Cs\{CL} O(|Ci| · log5 n) worst case time. Note that since |Ci| ≥ 1 and we have to insert

s, the running time of Lemma 2.3 is dominated by the clean-up step.
The overall time spent on all clean-up steps over all insertions is then upper bounded

by
∑

s∈S

∑
Ci∈(Cs\{CL}) O(|Ci| · log5 n). Observe, that during the lifetime of the component

tree, each disk can only be merged into O(logn) connected components. Thus, we have∑
s∈S

∑
Ci∈Cs\{CL}

|Ci| = O(n logn),

and the overall expected time spent on clean-up steps is O(n log6 n). As the case |Cs| > 1
turned out to be the most complex case, the overall running time follows. J

I Theorem 2.5. There is an incremental data structure for connectivity queries in disk
graphs with O(α(n)) amortized query time and O(log6 n) expected amortized update time.

Proof. We use a component tree as described above to maintain the connected components.
Additionally, we maintain a disjoint set data structure H, where each connected component
forms a set, see Figure 1. Queries are performed directly in H in O(α(n)) amortized time.

When inserting an isolated component during the update, this component is added to H.
When merging several connected components in the clean-up step, this change is reflected in
H by suitable union operations. The time for updates in the component tree dominates the
updates in H, leading to an expected amortized update time of O(log6 n). J

3 Conclusion

We introduced a data structure that solves the incremental connectivity problem in general
disk graphs with O(α(n)) amortized query and O(log6 n) amortized expected update time.
The question of finding efficient fully-dynamic data structures for both the general and the
bounded case remains open.

References
1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.
2 Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam

Roditty, and Paul Seiferth. Dynamic connectivity in disk graphs. In 38th International

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 47:7

Symposium on Computational Geometry (SoCG 2022), pages 49:1–49:17, 2022. doi:10.
4230/LIPIcs.SoCG.2022.49.

3 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
Discrete Comput. Geom., 64(3):838–904, 2020. doi:10.1007/s00454-020-00243-7.

4 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. SIAM Journal on Computing, 51(3):723–765, 2022. doi:10.1137/20m1388371.

5 John H. Reif. A topological approach to dynamic graph connectivity. Information Processing
Letters, 25(1):65–70, 1987. doi:10.1016/0020-0190(87)90095-0.

EuroCG’23

https://doi.org/10.4230/LIPIcs.SoCG.2022.49
https://doi.org/10.4230/LIPIcs.SoCG.2022.49
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1137/20m1388371
https://doi.org/10.1016/0020-0190(87)90095-0

	Introduction
	Insertion-Only Data Structure for Unbounded Radii
	Conclusion

