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Abstract
Let S ⊆ R2 be a set of n planar sites, such that each s ∈ S has an associated radius rs > 0. Let
D(S) be the disk intersection graph for S. It has vertex set S and an edge between two distinct sites
s, t ∈ S if and only if the disks with centers s, t and radii rs, rt intersect. Our goal is to design data
structures that maintain the connectivity structure of D(S) as sites are inserted and/or deleted.

First, we consider unit disk graphs, i.e., rs = 1, for all s ∈ S. We describe a data structure
that has O(log2 n) amortized update and O(logn/ log logn) amortized query time. Second, we look
at disk graphs with bounded radius ratio Ψ, i.e., for all s ∈ S, we have 1 ≤ rs ≤ Ψ, for a Ψ ≥ 1
known in advance. In the fully dynamic case, we achieve amortized update time O(Ψλ6(logn) log7 n)
and query time O(logn/ log logn), where λs(n) is the maximum length of a Davenport-Schinzel
sequence of order s on n symbols. In the incremental case, where only insertions are allowed, we
get logarithmic dependency on Ψ, with O(α(n)) query time and O(log Ψλ6(logn) log7 n) update
time. For the decremental setting, where only deletions are allowed, we first develop an efficient
disk revealing structure: given two sets R and B of disks, we can delete disks from R, and upon
each deletion, we receive a list of all disks in B that no longer intersect the union of R. Using this,
we get decremental data structures with amortized query time O(logn/ log logn) that support m
deletions in O((n log5 n+m log7 n)λ6(logn) + n log Ψ log4 n) overall time for bounded radius ratio
Ψ and O((n log6 n+m log8 n)λ6(logn)) for arbitrary radii.
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1 Introduction

Suppose we are given a simple, undirected graph G, and we would like to preprocess it so
that we can determine efficiently if two vertices of G lie in the same connected component.
If G is fixed, we can simply perform a graph search in G (e.g., BFS or DFS) to label the
vertices of each connected component with a unique identifier, allowing us to answer all
queries in O(1) time with linear preprocessing time and space. When G changes over time,
the problem becomes much harder. If the vertex set is fixed and edges can only be inserted,
the problem reduces to disjoint set union. Then, there is a folklore optimal data structure.It
achieves O(1) time for updates and O(α(n)) amortized time for queries, where α(n) is the
inverse Ackermann function [5]. If the vertex set is fixed, but edges can be inserted and
deleted, there is a data structure due to Holm et al. [8], with O(logn/ log logn) amortized
query time and O(log2 n) amortized update time. For planar graphs, Eppstein et al. [6] give
a structure with O(logn) amortized time for queries and updates.

In this paper, we add a geometric twist and study the dynamic connectivity problem on
different variants of disk intersection graphs. Let S ⊂ R2 be a set of planar point sites, where
each site s ∈ S has an associated radius rs > 0. The disk intersection graph (disk graph, for
short) D(S) is the undirected graph with vertex set S that has an undirected edge between
any two distinct sites s and t if and only if the Euclidean distance between s and t is at most
rs + rt. Note that even though D(S) is fully described by the n sites and their associated
radii, it might have Θ(n2) edges. Thus, our goal is to find algorithms whose running time
depends only on the number of sites and not on the number of edges. We consider three
variants of disk graphs, characterized by the possible values for the radii. In the first variant,
unit disk graphs, all radii are 1. In the second variant, bounded radius ratio, all radii must
come from the interval [1,Ψ], where Ψ is a parameter known in advance that may depend on
the number of sites n. In the third variant, general disk graphs, the radii can be arbitrary.

We assume that S is dynamic, i.e., sites can be inserted and deleted over time. At each
update, the edges incident to the modified site appear or disappear in D(S). An update can
change up to n − 1 edges in D(S), so simply storing D(S) in the data structure by Holm
et al. could lead to potentially superlinear update times and might even be slower than
recomputing the connectivity information from scratch.

For dynamic connectivity in general disk graphs, Chan et al. [4] give a data structure
with amortized O(n1/7+ε) query time and O(n20/21+ε) update time. As far as we know,
this is still the currently best fully dynamic connectivity structure for general disk graphs.
However, Chan et al. present their data structure as a special case of a more general setting,
so there is hope that the specific geometry of disk graphs may allow for better running times.

Indeed, several results show that for certain disk graphs, we can achieve polylogarithmic
update and query times. For unit disk graphs, Chan et al. [4] observe that there is a data
structure with O(log6 n) update time and O(logn/ log logn) query time.1 For bounded
radius ratio, Kaplan et al. [9] show that there is a data structure with expected amortized
update time O(Ψ2λ6(logn) log7 n) and query time O(logn/ log logn).2 Both results use the

1 Actually, Chan et al. [4] claim an update time of O(log10 n). Recent results [3] improve the bound.
2 The original paper claims an update time of O(Ψ2λ6(logn) log9 n), but recent improvements in the

underlying data structure [10] lead to the better bound.
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notion of a proxy graph, a sparse graph that models the connectivity of the original disk
graph and that can be updated efficiently with suitable dynamic geometric data structures.
The proxy graph can then be stored in the data structure by Holm et al., so the query
procedure coincides with the one by Holm et al. The update operations involve a combination
of updating the proxy graph with the help of the geometric data structures and of modifying
the edges in the structure of Holm et al.

Our results. For unit disk graphs, we significantly improve over Chan et al. [4]: with a
direct approach that uses a grid-based proxy graph and dynamic lower envelopes, we obtain
O(log2 n) amortized update and O(logn/ log logn) amortized query time (Theorem 3.2).

For bounded radius ratio, we give a data structure that improves the update time.
Specifically, we achieve expected amortized update time O(Ψλ6(logn) log7 n) and amortized
query time O(logn/ log logn), where λs(n) is the maximum length of a Davenport-Schinzel
sequence of order s on n symbols [11]. Compared to the previous data structure of Kaplan
et al., this improves the factor in the update time from Ψ2 to Ψ.

We also provide partial results that push the dependency on Ψ from linear to logarithmic.
For this, we consider the semi-dynamic setting, in which only insertions (incremental) or only
deletions (decremental) are allowed. In the incremental setting, we use a dynamic additively
weighted Voronoi diagram to obtain a data structure with O(α(n)) amortized query time and
O(log Ψλ6(logn) log7 n) expected amortized update time. Due to space reasons, this result is
deferred to the full version. In the decremental setting, a main challenge is to identify those
edges in D(S) that were incident to a freshly removed site and that change the connectivity
in D(S). To address this, we first develop a data structure for a related dynamic geometric
problem which might be of independent interest: suppose we have two sets R and B of disks
in the plane, such that the disks in B can only be deleted, while the disks in R can be both
inserted and deleted. We would like to maintain R and B in a data structure such that
whenever we delete a disk b from B, we receive a list of all the disks in the current set R
that intersect the disk b but no other disk from the remaining set B \ {b}. We say that these
are the disks in R that are revealed by the deletion of b. We call this data structure a disk
revealing structure (RDS). Due to space reasons, the details of the RDS are relegated to the
full version. Its properties are summarized in the following theorem:

I Theorem 1.1. Let R and B be disjoint sets of disks in R2 with |R|+|B| = n. We can prepro-
cess R∪B into a structure that supports deletions from R∪B, while detecting all newly revealed
disks of R after each deletion from b. Preprocessing needs O

(
|B| log5 nλ6(logn) + |R| log3 n

)
expected time and O(n logn) expected space. Deleting k disks from B and any number of disks
from R needs O

(
|R| log4 n+ k log7 nλ6(logn)

)
expected time, where λs(n) is the maximum

length of a Davenport-Schinzel sequence of order s.

The RDS plays a crucial part in developing decremental connectivity structures for disk
graphs of bounded radius ratio and for general disk graphs. For both cases, we obtain
data structures with O(logn/ log logn) amortized query time. The total expected time for
processing k deletions is O((n log5 n+ k log7 n)λ6(logn) + n log Ψ log4 n) for bounded radius
ratio (Theorem 5.6) and O((n log6 n+ k log8 n)λ6(logn)) for the general case (full version).

2 Preliminaries

Data structure for edge updates. We rely on the following existing data structure that
supports connectivity queries and edge updates on general graphs.

SoCG 2022
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Figure 1 Two levels of the hierarchical grid.

I Theorem 2.1 (Holm et al. [8, Theorem 3]). Let G be a graph with n vertices and initially no
edges. There is a deterministic fully dynamic data structure so that edge updates in G take
amortized time O(log2 n) and connectivity queries take worst-case time O(logn/ log logn).

Theorem 2.1 assumes that n is fixed, but we can easily support vertex insertions and
deletions within the same amortized time bounds, with standard rebuilding. Thorup gave a
variant of Theorem 2.1 that uses O(m) space, where m is the current number of edges [13].

The hierarchical grid and quadtrees. Let Gi be a grid with cell diameter 2i and a corner at
the origin. The hierarchical grid G is defined as G =

⋃∞
i=0 Gi. For any cell σ ∈ G, we denote

by |σ| its diameter and by a(σ) its center. We say that grid Gi has level i. We assume that
we can find the coordinates of the cell of G containing a site on a given level in O(1) time.
Furthermore, for a cell σ ∈ Gi and odd k, we call the k × k subgrid of Gi centered at σ the
(k × k)-neighborhood of σ, and denote it by Nk×k(σ); see Figure 1. Let C be a set of cells in
G. The quadtree T for C is a rooted 4-nary tree whose nodes are cells from G. The root of C
is the smallest cell ρ in G that contains all of C. If a cell σ with |σ| = 2i, for i ≥ 1, properly
contains at least one cell of C, then the four children of σ are the cells τ with |τ | = 2i−1

and τ ⊆ σ. If a cell σ does not properly contain a cell of C, it does not have any children.
Typically, we do not distinguish between a cell σ and its associated vertex. A quadtree T on
a given set of n cells can be constructed in O(n log(|ρ|)) time, where ρ is the root of T .

Maximal bichromatic matchings. We need a data structure that dynamically maintains a
maximal bichromatic matching (MBM) between two sets of disks: let R ⊆ S and B ⊆ S be
two disjoint non-empty sets of sites, and (R ×B) ∩ D(S) the bipartite graph on R and B
with all edges of D(S) with one vertex in R and one vertex in B. An MBM between R and
B is a maximal set of vertex-disjoint edges in (R×B) ∩D(S). We show how to maintain an
MBM as sites are inserted or deleted in R and in B, in two ways. The first way uses a general
structure by Kaplan et al. [9] and applies in all settings, see the full version for details.
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Figure 2 A solution with O(log6 n) update time.
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Figure 3 The structure for our data structure

I Lemma 2.2. Let R,B ⊆ S be two disjoint sets with a total of at most n sites. Then, there
exists a dynamic data structure that maintains an MBM for R and B with O(λ6(logn) log7 n)
amortized expected update time, using O(n logn) expected space.

The second way applies only to unit disks that are separated by a vertical or horizontal
lines. It relies on dynamic lower envelopes for pseudolines [1], see the full version for details.

I Lemma 2.3. Suppose that rs = 1, for all sites s ∈ S. Let R,B ⊆ S be two disjoint sets
with a total of at most n sites, such that there is a there exists a known vertical or horizontal
line that separates R and B. Then, there exists a dynamic data structure that maintains an
MBM for R and B with O(log2 n) worst-case update time, using O(n) space.

3 Fully dynamic unit disk graphs

We first consider the case of unit disk graphs. As mentioned in the introduction, this problem
was already addressed by Chan et al. [4]. They explained how to combine several known
results into a data structure for connectivity queries in fully dynamic unit disk graphs with
update time O(log6 n) and query time O(logn/ log logn).

A visual representation of their approach can be found in Figure 2. In the core, they
use a subtree of the Euclidean minimum spanning tree (EMST) of S as a proxy graph that
accurately represents the connectivity of D(S). They store this proxy graph in a Holm et al.
data structure. In order to update the EMST efficiently, they also maintain several instances
of a dynamic bichromatic closest pair problem (DBCP). The combination of the running
times for the separated data structures then yields the overall running time claimed above.
To improve over this result, we replace the EMST by a simpler graph that still captures the
connectivity of D(S). We also replace the DBCP structure by a suitable maximal bichromatic
matching (MBM) structure that is based on dynamic lower envelopes (Lemma 2.3). These
two changes significantly improve the amortized update time to O(log2 n), without affecting
the query time. The overall structure behind our method is shown in Figure 3.

We define a proxy graph H that represents the connectivity of D(S). The vertices of H
are cells of the grid G1 of diameter 2 (cf. Section 2). More precisely, we say that two cells σ,
τ in G1 are neighboring if σ ∈ N5×5(τ). For S ⊂ R2, we define the graph H whose vertices
are the non-empty cells σ ∈ G1, i.e., the cells with σ ∩ S 6= ∅. We say that a site s ∈ S is
assigned to the cell σ ∈ G1 that contains it, and we let S(σ) denote the sites that are assigned

SoCG 2022
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to σ. Two cells σ, τ are connected by an edge in H if and only if there is an edge st ∈ D(S)
with s ∈ S(σ) and t ∈ S(τ). Then, H is sparse and represents the connectivity in D(S), as
stated in the following lemma. Its simple proof can be found in the full version.

I Lemma 3.1. The proxy graph H has at most n vertices, each with degree O(1). Two sites
s, t ∈ S are connected in D(S) if and only if their assigned cells σ and τ are connected in H.

We build a data structure H as in Theorem 2.1 for H. To query the connectivity between
two sites s and t, we first identify the cells σ and τ in G1 to which s and t are assigned. This
requires O(1) time, because when inserting a site u, we can store the assigned cell for u in the
satellite data of u. The query is then performed on H, using σ and τ as the query vertices.
When a site s is inserted into or deleted in S, only the edges incident to the assigned cell σ
are affected. By Lemma 3.1, there are only O(1) such edges. Thus, once the set E of these
edges is determined, by Theorem 2.1, we can update H in time O(log2 n).

It remains to find the edges E of H that change when we update S. For each pair σ, τ of
neighboring cells in G1, we maintain a maximal bichromatic matching (MBM) M{σ,τ} for
R = S(σ) and B = S(τ), as in Lemma 2.3 (note that the special requirements of the lemma
are met in our case). By construction, there is an edge between σ and τ in H if and only
if M{σ,τ} is not empty. When inserting or deleting a site s from S, we proceed as follows:
let σ ∈ G1 be the cell associated to σ. We go through all cells τ ∈ N5×5(σ), and we update
M{σ,τ} by inserting or deleting s from the relevant set. If M{σ,τ} becomes non-empty during
an insertion or empty during a deletion, we add the edge στ to E and mark it for insertion or
deletion, respectively. Putting everything together, we obtain the main result of this section:

I Theorem 3.2. There is a dynamic connectivity structure for unit disk graphs such that
an update takes amortized time O

(
log2 n

)
and a connectivity query takes worst-case time

O(logn/ log logn), where n is the maximum number of sites. The structure uses O(n) space.

4 Fully dynamic bounded radius ratio

We extend our structure from Theorem 3.2 to the case of bounded radius ratio Ψ. Now,
the running times will depend polynomially on Ψ. The general approach is unchanged,
but the varying sizes of the disks introduce new issues. First, we adapt Theorem 3.2 to
disks of different sizes. Instead of just G1, we rely on a hierarchical grid with dlog Ψe + 1
levels. Each site s is assigned to a cell σ of such level that |σ| ≤ rs < 2|σ|. Since the disks
have different sizes, we can no longer use Lemma 2.3 to maintain the maximal bichromatic
matchings (MBMs) between neighboring non-empty grid cells. Instead, we use the more
complex structure from Lemma 2.2. This increases the overhead for updating the MBM for
each pair of neighboring cells. Furthermore, a disk can now intersect disks from Θ(Ψ2) other
cells, instead of the O(1)-bound from the unit disk case, see Figure 4. Thus, the degree of the
proxy graph and the number of edges that need to be modified in a single update becomes
much larger. This results in the following theorem, see the full version for details.

I Theorem 4.1. There is a dynamic connectivity structure for disk graphs of bounded
radius ratio Ψ such that an update takes amortized expected time O(Ψ2λ6(logn) log7 n) and a
connectivity query takes worst-case time O(logn/ log logn), where n is the maximum number
of sites at any time. The data structure requires O(Ψ2n logn) expected space.

To remedy this latter problem—at least partially—we describe in Section 4.1 how to
refine the proxy graph so that fewer edges need to be modified in a single update operation.
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Gi

Gi−1

Gi−2

Figure 4 The neighborhood of the red colored cell in Gi−1. The area of the neighboring cells in
one level beneath is colored in a darker shade.

This will reduce the dependence on Ψ in the update time to linear. The query procedure
becomes slightly more complicated, but the asymptotic running time remains unchanged.

Note that the approach described above is similar to the method of Kaplan et al. [9,
Theorem 9.11] that achieves the same time and space bounds. However, the details of
our implementation are crucial for the adaptation in Section 4.1. Most significantly, our
implementation uses a hierarchical grid instead of a single fine grid.

4.1 Improving the dependence on Ψ
To avoid an update time dependent on the potentially quadratic number of neighbors, we
show how to reduce the degree of the proxy graph H from Θ(Ψ2) to O(Ψ). The intuition is
that to maintain the connected components of D(S), it suffices to focus on maximal disks that
are not contained in any other disk in S. From this, it follows that we only need to consider
edges between disks that intersect properly. When we want to perform a connectivity query
between sites s and t, we must find appropriate maximal disks that contain s and t. Let D
be a disk and σ ∈ G a cell. We say that σ is fully covered by D if and only if every possible
assigned disk of σ is fully contained in D. We call σ maximal if and only if there is no larger
cell τ ⊃ σ that is fully covered by Ds.

Given a disk D, the maximal cells in the quadforest F that are fully covered by D are
exactly those that are closest to the root in their quadtrees. Furthermore, the whole subtree
of F that is rooted in a maximal fully covered cell consists of cells that are fully covered by
D. The following lemma bounds the number of the different types of cells. See Figure 5.

I Lemma 4.2. Let s ∈ S be a site, and let N be the cells of F that may contain a disk that
intersects Ds. Write N = N1 ∪ N2 ∪ N3, where N1 are the cells that are not fully covered
by Ds, N2 the disks that are maximal fully covered by Ds, and N3 the disks that are fully
covered by Ds, but not maximal with this property. Then, we have |N1 ∪ N2| = O(Ψ) and
|N3| = O(Ψ2). Using the quadforest F , we can find N1 ∪N2 in O(Ψ + logn) time and N3 in
O(Ψ2 + logn) time.

Proof sketch. (Full proof in the full version) The cells of N1 form an annulus per level. A

SoCG 2022
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Gi

Gi−1

Gi−2

Figure 5 The types of cells that require checking when updating the black disk in Theorem 4.1:
N1: not fully covered N2: maximal fully covered N3: fully covered, not maximal

volume argument shows that they sum up to O(Ψ) altogether. Now, note that every cell in
N2 is either a quadtree root in F or a child of a cell in N1. Hence, we have |N1∪N2| = O(Ψ).
The bound on |N3| follows from the number of neighbors. The retrieval is possible with
simple traversal after finding the relevant roots of F in O(logn) time. J

Now, we show that it is enough to focus on a subset of the edges in the proxy graph.
More precisely, let H ′ be the subgraph of H that is defined as follows: as in H, the vertices
of H ′ are all cells σ that have S(σ) 6= ∅. Two cells σ, τ with |σ| ≥ |τ | are adjacent in H ′ if
and only if there are s ∈ S(σ) and t ∈ S(τ) such that Ds and Dt intersect and such that Ds

does not fully cover τ . Let σ be a cell in H. We define the proxy cell σ′ of σ as follows: if
there is no disk in S that fully covers σ, then σ′ = σ. Otherwise, let σ ⊇ σ be the maximal
cell that contains σ and is fully covered by a disk in S, and let Ds, s ∈ S, be a disk of
maximum radius that fully covers σ. Then, we set σ′ to be the cell with s ∈ S(σ′). If there
are multiple such disks, the choice is arbitrary.

I Lemma 4.3. Let s, t ∈ S be two sites, and let σ, τ be the cells with s ∈ S(σ) and t ∈ S(τ).
Let σ′ and τ ′ be the proxy cells for σ and τ . Then, σ′ and τ ′ are connected in H ′ if and only
if s and t are connected in D(S).

Proof sketch. (Full proof in the full version) First, suppose that s and t are not connected
in D(S). Since H ′ is a subgraph of H, it follows that σ′ and τ ′ are not connected in H ′.

Next, suppose that s and t are connected in D(S). We consider a path of (inclusion)
maximal disks that connects s and t in D(S), and we show that it induces a path between
σ′ and τ ′ in H’. Let Ds′ , Dt′ with s′ ∈ S(σ′), t′ ∈ S(τ ′) be the disks of maximum radius
which caused σ′, τ ′ to be proxy cells of σ, τ . Now, there is a path π in D(S) between s′ and
t′ that uses only maximal disks: indeed, along any path in D(S) between s′ and t′, we can
replace every disk by a maximal disk that contains it, and the resulting path π (possibly after
removing duplicate disks) has the required property. See Figure 6. Consider the sequence
π′ of cells in H ′ that we obtain by replacing every site u in π by the cell σu in H ′ with
u ∈ S(σu), and by removing any duplicate cells. We observe that π′ is actually a path in H ′,
since the assigned cells for two intersecting maximal disks of S must be adjacent in H ′. J



H.Kaplan, A.Kauer, K.Klost, K.Knorr, W.Mulzer, L.Roditty, and P.Seiferth 45:9

Ds′

Dt
Ds

(a) Omitting the dashed disks and querying for
s′ instead of s still leads to a valid path to t.

(b) A path between the two red disks can ignore
the dashed black disks as intermediates.

Figure 6 Depiction of the arguments in Lemma 4.3.

Now, our strategy is to maintain the proxy graph H ′ instead of the graph H, again
such that each potential edge of H ′ is supported by an MBM structure. This will make the
updates faster. However, when performing a query, we must be able to find the proxy cells
for the query sites efficiently. This requires a further modification of the quadforest F .

I Theorem 4.4. There is a data structure for dynamic disk connectivity with expected
amortized update time O(Ψλ6(logn) log7 n) and amortized query time O(logn/ log logn). It
needs O(Ψn logn) expected space.

Proof sketch. (Full proof in the full version) We may assume that Ψ = O(n3). We augment
the quadforest F : in each cell σ in F , we store the set Cσ of all sites s ∈ S such that σ is
maximal fully covered by Ds. Cσ is organized as a max-heap, ordered by radius rs.

We describe how to insert a new site s. First, we insert s into the quadforest F . Then, we
obtain the sets N1 and N2 for s using Lemma 4.2 and insert them into F . For each τ ∈ N1
we insert s into the MBM for σ and τ and update H of Theorem 2.1 accordingly. For each
τ ∈ N2, we insert s into the max-heap Cτ . A deletion is handled analogously.

To perform a connectivity query between s and t, let σ and τ be the cells with s ∈ S(σ)
and t ∈ S(τ). We determine the proxy cell σ′ via obtaining the maximal cell σ ⊇ σ that
contains σ and is fully covered by a disk from S. Let u be the site of maximum radius in the
max-heap Cσ and set σ′ = σu. τ ′ is obtained similarly. Afterwards, H is queried with σ′ and
τ ′ for the final result. By Lemma 4.3, this gives the correct answer. The overall running time
for this query procedure is O(logn), where the bottleneck consists in ascending the quadtree.

The query time can be improved via maintaining every Θ(log log Ψ) levels shortcuts
pointing upwards, each pointing to the next. To decide whether to take a shortcut, the
respective cells have another max-heap containing all intermediate max-heaps. J

5 Semi-dynamic bounded radius ratio

We turn to the semi-dynamic setting, and we show how to reduce the dependency on Ψ from
linear to logarithmic. For both the incremental and the decremental scenario, we use the
same proxy graph H to represent the connectivity in D(S). The proxy graph is described in
Section 5.1. In Section 5.2 we then describe the data structures using H. For details on how
to use the proxy graph in the incremental setting, refer to the full version of this paper.

5.1 The proxy graph
The vertex set of the proxy graph H contains one vertex for each site in S, plus one additional
vertex per certain region A ∈ A in the plane, to be described below. Each region is defined
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2π/
d

σ a(σ)

Figure 7 The cones Cd with angle 2π/d, with apex at the center a(σ) of a cell σ.

based on a cell of a quadtree and associated with two site sets, S1(A) and S2(A). The first set
S1(A) ⊆ S is defined such that all sites s ∈ S1(A) lie in A and have a radius rs comparable
to the size of A, for a notion of “comparable” to be detailed below. A site s can lie in several
sets S1(A). We will ensure that for each region A, the induced disk graph D(S1(A)) of the
associated sites is a clique. The second set S2(A) ⊆ S contains a site s if it lies in the cell
associated to the region A and if rs is “small”. The sites in S2(A) are all sites with a suitable
radius in the associated cell of A that have an edge in D(S) to at least one site in S1(A).

The proxy graph H is bipartite, with all edges going between the site-vertices and the
region-vertices. The edges of H connect every region A to all sites in S1(A) ∪ S2(A). The
connections between the sites in S1(A) and A constitute a sparse representation of the
corresponding clique D(S1(A)). The edges connecting a site in S2(A) to A allow us to
represent all edges in D(S) between S2(A) and S1(A) by two edges in H, and since D(S1(A))
is a clique, this sparse representation does not change the connectivity between the sites. We
will see that the sites in S2(A) can be chosen such that every edge in D(S) is represented by
two edges in H. Furthermore, we will ensure that the number of regions, and the total size
of the associated sets S1(A) and S2(A) is small, giving a sparse proxy graph.

Now, we describe the details of the regions in A. For each site s ∈ S we consider the
cell σs ∈ G with s ∈ σs and |σs| ≤ rs < 2|σs| and its (15× 15)-neighborhood N(s). We let
N = {N(s) | s ∈ S} and construct the quadforest F for N . This quadforest F contains
quadtrees that cover the lowest blog Ψc + 1 levels of the hierarchical grid G, see the full
version for details. The set A of region-vertices of H is a subset of the set AF that contains
certain regions for every cell of F . There are three kinds of regions for a cell σ of F : the
outer regions, the middle regions, and the inner region.

To describe these regions, we first define for d ∈ N a set Cd of d cones with opening angle
2π/d, such that all cones in Cd have their apex in the origin, have pairwise disjoint interiors,
and cover the plane. For a cell σ ∈ F , we denote by Cd(σ) a translated copy of Cd whose
apex has been moved to the center a(σ), of σ, as shown in Figure 7.

Let Γ(a, r1, r2) be the annulus centered at a with inner radius r1 and outer radius
r2. To define the outer regions for a cell σ, we consider the set Cd1(σ), for some in-
teger parameter d1 to be determined below. For each Cd1 we set the outer regions to
be
{
C ∩ Γ(a(σ), 5

2 |σ|,
9
2 |σ|) | C ∈ Cd1

}
. Similarly to this, we define the middle regions as{

C ∩ Γ(a(σ), |σ|, 5
2 ) | C ∈ Cd2

}
. Finally, the inner region for σ is the disk with center a(σ)

and radius |σ|. See Figure 8 for an illustration of the regions for a cell σ.
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σ

outer regions inner region

middle regions

|σ|

9
2 |σ|

5
2 |σ|

Figure 8 The regions defined by a cell σ.

A

A′

Figure 9 The set S1(A) is marked blue. The orange site in A is not in the set because its radius
is too small. The orange site in A′ is not in S1(A′): even though its radius is in the correct range, it
does not touch or intersect the inner boundary.
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A

Figure 10 The red sites in σ are in S2(A). The radius of the orange site is in the correct range,
but it does not intersect a site in S1(A) (marked blue).

We associate a set of sites S1(A) ⊆ S with each region A ∈ AF . The set S1(A) contains
all sites t such that (i) t ∈ A; (ii) |σ| ≤ rt < 2|σ|; and (iii) ‖a(σ)t‖ ≤ rt + 5

2 |σ|. This means
that the disk Dt has size comparable to |σ|, a center in A. If t is in a middle or inner region,
the third property is trivially true. If t is in an outer region it implies that t intersects the
inner boundary of A.

We define A ⊆ AF as the set of regions where S1(A) 6= ∅. In the following, we will not
strictly distinguish between a vertex from A and the corresponding region, provided it is
clear from the context.

For each region A ∈ A, we define a set S2(A) as the set of all sites s such that (i) s ∈ σ;
(ii) s is adjacent in D(S) to at least one site in S1(A); and (iii) rs < 2|σ|.

We add an edge sA in H between a site s and a region A if and only if s ∈ S1(A)∪S2(A).
Note that the sets S1(A) and S2(A) are not necessarily disjoint, as for the center region
defined by a cell σ, a site with |σ| ≤ rs < 2|σ| will be both in S1(A) and S2(A). However,
this will adversely affect neither the preprocessing time nor the correctness. The following
structural lemma will help us both to show that H accurately represents the connectivity as
well as to bound the size of H and the preprocessing time in the decremental setting.

I Lemma 5.1. Let st be an edge in D(S) with rs ≤ rt, then
1. there is a cell σ ∈ N(t) with s ∈ σ such that σ defines a region A with t ∈ A; and
2. all cells that define a region A with t ∈ S1(A) are in N(t).

The proof for Lemma 5.1 can be found in the full version of the paper. Before we argue
that H accurately represents the connectivity of D(S), we show that the associated sites of a
region in A form a clique in D(S).

I Lemma 5.2. Suppose that d1 ≥ 23 and d2 ≥ 8. Then, for any region A ∈ A, the associated
sites in S1(A) form a clique in D(S).

Proof sketch. (Full proof in the full version) The diameter of the inner and middle regions
is at most 2|σ|, thus two sites in S1(A) always intersect.

If a site t lies in the outer region, we can show that the lines segments that are perpendicular
to the boundary rays of the cones, go through t and are inside the cone are contained in Dt.
Then any other site t′ that has a larger distance to a(σ) than t either lies in the convex hull



H.Kaplan, A.Kauer, K.Klost, K.Knorr, W.Mulzer, L.Roditty, and P.Seiferth 45:13

Figure 11 The disk D(t, 9
2 |σ|) is contained in N15×15(τ).

defined by the perpendicular line segments, or Dt′ contains a line segment that intersects
the convex hull, see Figure 11. J

Having Lemmas 5.1 and 5.2 at hand, we can now show that H accurately represents the
connectivity of D(S).

I Lemma 5.3. Two sites are connected in H if and only if they are connected in D(S).

Proof. Let s, t ∈ S. First, we show that if s and t are connected in H, they are also connected
in D(S). The path between s and t in H alternates between vertices in S and vertices in
A. Thus, it suffices to show that if two sites u and u’ are connected with the same region
A ∈ A, they are also connected in D(S). This follows directly from Lemma 5.2: if u and
u′ both lie in S1(A), they are part of the same clique. Otherwise, S2(A) is non-empty, and
there is at least one site in S1(A) which intersects the site in S2(A). Then u is connected to
u′ via the clique induced by S1(A), and the claim follows.

Now, we consider two sites connected in D(S), and we show that they are also connected
in H. It suffices to show that if s, t are adjacent in D(S), they are connected in H. Assume
without loss of generality that rs ≤ rt, and let σ be the cell in N(t) with s ∈ σ. The cell
σ exists by the first property of Lemma 5.1, and it belongs to F , since σ lies in the first
dlog Ψe+ 1 levels of G and since σs ⊆ σ. Thus, we get that t ∈ S1(A) for some A ∈ AF . As
the regions with non-empty sets S1(A) are in A, by definition, the edge tA exists in H.

Now we argue that s ∈ S2(A), and thus the edge As also exists in H. This follows by
straightforward checking of the properties of a site in S2(A). We have s ∈ σ by the definition
of σ, and, by assumption, rs ≤ rt < 2|σ|. Finally, as t is in S1(A) and as Ds and Dt intersect,
there is at least one site in S1(A) that intersects Ds. The claim follows. J

After we have shown that H accurately represents the connectivity relation in D(S), we
now show that the number of edge in H depends only on n and Ψ, and not on the number
of edges in D(S) or the diameter of S. The proof of the following lemma can be found in the
full version.

I Lemma 5.4. The proxy graph H has O(n) vertices and O(n log Ψ) edges.
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Dynamic Connectivity DS
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Figure 12 The structure of the decremental data structure.

5.2 The decremental data structure
The decremental data structure has several components: we store a quadforest containing
the cells defining A and for every A ∈ A, we store the sets S1(A) and S2(A). For each region
A ∈ A, we store a disk revealing structure (RDS) as in Theorem 1.1 with B = S1(A) and
R = S2(A). Finally, we store the proxy graph H in a Holm et al. data structure H [8]. See
Figure 12 for an illustration.

As usual, the connectivity queries are answered using H. To delete a site s, we first
remove from H all incident edges of s. Then, we go through all regions A with s ∈ S1(A). We
remove s from S1(A) and the RDS of A, and we let U be the set of revealed sites from S2(A)
reported by the RDS. We delete each such site u ∈ U from S2(A) and the corresponding RDS.
Additionally, we delete the edges uA for u ∈ U from H for all u ∈ U that are not also in
S1(A). Next, for each region A with s ∈ S2(A), we remove s from S2(A) and the associated
RDS.

This gives us a time bound for the preprocessing time and the main theorem follows.

I Lemma 5.5. Given a set S of n sites, we can construct the data structure described above
in O

(
n log5 nλ6(logn) + n log Ψ log3 n

)
time.

I Theorem 5.6. The data structure handles m site deletions in overall O
((
n log5 n +

m log7 n
)
λ6(logn) + n log Ψ log4 n

)
time. Furthermore, it correctly answers connectivity

queries in O(logn/ log logn) amortized time.

6 Semi-dynamic arbitrary radius ratio

We extend the approach from Section 5 to obtain a decremental data structure with a
running time that is independent of Ψ. The cost for dropping the dependence on Ψ is
replacing the additive O

(
n log Ψ log4 n

)
term in the running time of Theorem 5.6 with an

additional O(logn) factor in the first term. The O
(
n log Ψ log4 n

)
term in Theorem 5.6

arose from the total size of the sets S2(A), and thus from the height of the quadtrees in
F . We can get rid of this dependency by using a compressed quadtree Q instead of F . The
height and size of Q do not depend on the radius ratio of the diameter of S, but only on n.
Nonetheless, the height of Q could still be Θ(n), which is not favorable for our purposes. In
order to reduce the number of edges in our proxy graph to O(n logn), we use a heavy path
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Figure 13 Four cells from N15×15(σ) with the virtual sites

decomposition of Q in combination with a canonical decomposition for every heavy path. Let
diam(S) = maxs,t∈S ‖st‖. To simplify our arguments, we assume without loss of generality
that S and its associated radii are scaled all associated radii are at least 1. This allows us to
keep working with our hierarchical grid G, as defined in Section 2.

Compressed quadtrees. The quadtree defined for a set C of O(n) cells as in Section 2,
has O(n) leaves and height O(log(|ρ|)), where ρ is the smallest cell in G that contains all
cells of C. This height can be arbitrarily large, even if n is small. To avoid this, we use the
notion of a compressed quadtree Q as defined by Har-Peled [7] among others. Q has O(n)
vertices, height O(n), and it can be constructed in O(n logn) time [2, 7]. While the latter
construction algorithm is stated for planar point sets it can be applied by considering a set
of O(n) virtual sites, similar to a construction of Har-Peled [7], see Figure 13.

Heavy paths. Let T be a rooted ordered tree. An edge uv ∈ T is called heavy if v is the first
child of u that maximizes the total number of nodes in the subtree rooted at v. Otherwise,
the edge uv is light. By definition, every interior node in T has exactly one child that is
connected by a heavy edge. A heavy path is a maximum path in T that consists only of
heavy edges. The heavy path decomposition of T is the set of all the heavy paths in T . The
following lemma summarizes a classic result on the properties of heavy path decompositions.

I Lemma 6.1 (Sleator and Tarjan [12]). Let T be a tree with n vertices. Then, the following
properties hold:
1. Every leaf-root path in T contains O(logn) light edges;
2. every vertex of T lies on exactly one heavy path; and
3. the heavy path decomposition of T can be constructed in O(n) time.

The proxy graph. The general structure of the proxy graph is as in Section 5.1, and we
will often refer back to it. We still have a bipartite graph with S on one side and a set of
regions vertices on the other side. The regions will again be used to define sets S1(A) and
S2(A) that will determine the edges. However, we will adapt the regions A and define them
based certain subpaths of the compressed quadtree Q instead of single cells. Furthermore, we
will relax the condition on the radii in the definition of the sets S1(A).

As usual, for a site s ∈ S, let σs be the cell in G with s ∈ σs and |σs| ≤ rs < 2|σs|.
Let N(s) be the (15 × 15)-neighborhood of σs. Let N = {N(s) | s ∈ S}, and let Q be
the compressed quadtree for N . Now, let R be the heavy path decomposition of Q, as in
Lemma 6.1. For each heavy path R ∈ R, we find a set PR of canonical paths such that every
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Figure 14 Illustration of Lemma 6.2. On the left, we see the decomposition of R into R1, . . . Rk.
On the right, the vertices defining Pπ are depicted in green.

subpath of R can be written as the disjoint union of O(logn) canonical paths. To be precise,
for each R ∈ R, we build a biased binary search tree TR with the cells of R in the leaves,
sorted by increasing diameter. The weights in the biased binary search tree are chosen as
described by Sleator and Tarjan [12]: for a node σ of R, let the weight wσ be the number of
nodes in Q that are below σ (including σ), but not below another node of R below σ. Then,
the depth of the leaf σ in TR is O(log(wR/wσ)), where wR is the total weight of all leaves
in TR. We associate each vertex v in TR with the path induced by the cells in the subtree
rooted at v, and we add this path to PR. Using this construction, we can write every path
in Q that starts at the root as the disjoint union of O(logn) canonical path:

I Lemma 6.2. Let σ be a vertex of Q, and let π be the path from the root of Q to σ. There
exists a set Pπ of canonical paths such that: (i) |Pπ| = O(logn); and (ii) π is the disjoint
union of the canonical paths in Pπ.

Proof sketch. (Full proof in full version) By Lemma 6.1 there are O(logn) heavy paths
R1, . . . , Rk along π. The subpaths defined by the search paths to the smallest cell of a heavy
path Ri partition π. Furthermore, by summing over the weights of the leaves of the biased
binary search tree, we get that the overall number of canonical paths for π is O(logn). J

The vertex set of the proxy graph H again consists of S and a set of regions A. We
define O(1) regions for each canonical path R in a similar way as in Section 5.1. Let σ be
the smallest cell and τ the largest cell of R. The inner and middle regions of R are defined
as in Section 5.1, using σ as the defining cell. For the outer regions of R, we extend the
outer radius of the annulus: they are defined as the intersections of the cones in Cd1 with the
annulus of inner radius 5

2 |σ| and outer radius 5
2 |σ|+ 2|τ |, again centered at a(σ). The set A

now contains the regions defined in this way for all canonical paths.
Given a region A ∈ A for a canonical path R with smallest cell σ and largest cell τ , we

can now define the sets S1(A) and S2(A). These definitions are similar to the analogous sets
in Section 5.1. The set S1(A) contains all sites t such that (i) t ∈ A; (ii) |σ| ≤ rt ≤ 2|τ |;
and (iii) ‖a(σ)t‖ ≤ rt + 5

2 |σ|. The definition for S2(A) is also similar to Section 5.1, using
canonical paths instead of cells. Let s ∈ S be a site, and πs be the path in Q from the root
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to σs. Let Ps be the decomposition of πs into canonical paths as in Lemma 6.2. Let A be a
region, defined by a canonical path P . Then, s ∈ S2(A) if (i) P ∈ Ps; and (ii) s is adjacent in
D(S) to at least one site in S1(A). These are basically the conditions we had in Section 5.1.
However, as the definition is restricted to those canonical paths in Pπs , not all sites satisfying
these conditions are considered. Using similar arguments as in Section 5.1, this suffices to
make sure that the proxy graph represents the connectivity, while also ensuring that each
site s lies in few sets S2(A).

The graph H is now again defined by connecting each region A ∈ A to all sites in
s ∈ S1(A) ∪ S2(A). By similar considerations as in Section 5, we obtain a decremental data
structure for disk graphs with arbitrary radii. The details can be found in the full version.
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