
Triangles and Girth in Disk Graphs and
Transmission Graphs
Haim Kaplan
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
haimk@tau.ac.il

Katharina Klost
Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
kathklost@inf.fu-berlin.de

Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
mulzer@inf.fu-berlin.de

Liam Roditty
Department of Computer Science, Bar Ilan University, Ramat Gan 5290002, Israel
liamr@macs.biu.ac.il

Paul Seiferth
Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
pseiferth@inf.fu-berlin.de

Micha Sharir
School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
michas@tau.ac.il

Abstract
Let S ⊂ R2 be a set of n sites, where each s ∈ S has an associated radius rs > 0. The disk graph
D(S) is the undirected graph with vertex set S and an undirected edge between two sites s, t ∈ S
if and only if |st| ≤ rs + rt, i.e., if the disks with centers s and t and respective radii rs and rt

intersect. Disk graphs are used to model sensor networks. Similarly, the transmission graph T (S)
is the directed graph with vertex set S and a directed edge from a site s to a site t if and only if
|st| ≤ rs, i.e., if t lies in the disk with center s and radius rs.

We provide algorithms for detecting (directed) triangles and, more generally, computing the
length of a shortest cycle (the girth) in D(S) and in T (S). These problems are notoriously hard
in general, but better solutions exist for special graph classes such as planar graphs. We obtain
similarly efficient results for disk graphs and for transmission graphs. More precisely, we show that
a shortest (Euclidean) triangle in D(S) and in T (S) can be found in O(n logn) expected time, and
that the (weighted) girth of D(S) can be found in O(n logn) expected time. For this, we develop
new tools for batched range searching that may be of independent interest.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Graph algorithms analysis

Keywords and phrases disk graph, transmission graph, triangle, girth

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.63

Related Version A full version is available on the arXiv (https://arxiv.org/abs/1907.01980).

Funding Supported in part by grant 1367/2016 from the German-Israeli Science Foundation (GIF).
Wolfgang Mulzer : Partially supported by ERC STG 757609.
Paul Seiferth: Partially supported by DFG grant MU/3501/1.
Micha Sharir : Partially supported by ISF Grant 892/13, the Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11), the Blavatnik Research Fund in Computer Science at Tel Aviv
University, and the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.

© Haim Kaplan, Katharina Klost, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, Micha Sharir;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 63; pp. 63:1–63:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haimk@tau.ac.il
mailto:kathklost@inf.fu-berlin.de
mailto:mulzer@inf.fu-berlin.de
mailto:liamr@macs.biu.ac.il
mailto:pseiferth@inf.fu-berlin.de
mailto:michas@tau.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2019.63
https://arxiv.org/abs/1907.01980
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Triangles and Girth in Disk Graphs and Transmission Graphs

Acknowledgements We like to thank Günther Rote and Valentin Polishchuk for helpful comments.

1 Introduction

Given a graph G with n vertices and m edges, does G contain a triangle (a cycle with
three vertices)? This is one of the most basic algorithmic questions in graph theory, and
many other problems reduce to it [12, 21]. The best known algorithms use fast matrix
multiplication and run in either O(nω) time or in O

(
m2ω/(ω+1)) time, where ω < 2.37287 is

the matrix multiplication exponent [1, 10, 12]. Despite decades of research, the best available
“combinatorial” algorithm1 needs O

(
n3 polyloglog(n)/ log4 n

)
time [22], only slightly better

than checking all vertex triples. This lack of progress can be explained by a connection to
Boolean matrix multiplication (BMM): if there is a truly subcubic combinatorial algorithm
for finding triangles, there is also a truly subcubic combinatorial algorithm for BMM [21].
Itai and Rodeh [12] reduced computing the girth (the length of a shortest cycle) of an
unweighted undirected graph to triangle detection. For integer edge weights, Roditty and
V. Williams [19] gave an equivalence between finding a minimum weight cycle (the weighted
girth) and finding a minimum weight triangle.

For the special case of planar graphs, significantly better algorithms are known. Itai and
Rodeh [12] and, independently, Papadimitriou and Yannakakis [17] showed that a triangle
can be found in O(n) time, if it exists. Chang and Lu [7] presented an O(n) time algorithm
for computing the girth. The weighted girth can be found in O(n log logn) time both in an
undirected and in a directed planar graph [15,16].

In computational geometry, there are two noteworthy graph classes that generalize planar
graphs: disk graphs and transmission graphs. We are given a set S of n planar point sites.
Each s ∈ S has an associated radius rs > 0 and an associated disk Ds with center s and
radius rs. The disk graph D(S) is the undirected graph on S where two sites s, t ∈ S are
adjacent if and only if Ds and Dt intersect, i.e., |st| ≤ rs + rt, where | · | is the Euclidean
distance. In a weighted disk graph, the edges are weighted according to the Euclidean distance
between their endpoints. The transmission graph T (S) is the directed graph on S where
there is an edge from s to t if and only if t lies in Ds, i.e., |st| ≤ rs. Again, there is a weighted
variant. Both graph classes have received a lot of attention, as they give simple and natural
theoretical models for geometric sensor networks (see, e.g., [13, 14]).

Motivated by the vastly better algorithms for planar graphs, we investigate triangle
detection and girth computation in disk graphs and transmission graphs. We will see that in
a disk graph, a triangle can be found in O(n logn) time, using a simple geometric observation
to relate disk graphs and planar graphs. By a reduction from ε-closeness [18], this is
optimal in the algebraic decision tree model, a contrast to planar graphs, where O(n) time is
possible. Our method generalizes to finding a shortest triangle in a weighted disk graph in
O(n logn) expected time. Moreover, we can compute the unweighted and weighted girth in
a disk graph in O(n logn) time, with a deterministic algorithm for the unweighted case and
a randomized algorithm for the weighted case. The latter result requires a method to find
a shortest cycle that contains a given vertex. Finally, we provide an algorithm to detect a
directed triangle in a transmission graph in O(n logn) expected time. For this, we study the
geometric properties of such triangles in more detail, and we develop several new techniques
for batched range searching that might be of independent interest, using linearized quadtrees
and three-dimensional polytopes to test for containment in the union of planar disks. As

1 An algorithm is “combinatorial” if it does not need algebraic manipulations to achieve its goal.

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir 63:3

before, this algorithm extends to the weighted version. We will assume general position,
meaning that all edge lengths (and more generally shortest path distances) are pairwise
distinct, that no site lies on a disk boundary, and that all radii are pairwise distinct. Due to
space reasons, some proofs in this extended abstract are only sketched. The complete proofs
can be found in the full version of this paper.

2 Finding a (Shortest) Triangle in a Disk Graph

We would like to decide if a given disk graph contains a triangle. If so, we would also like to
find a triangle of minimum Euclidean perimeter.

2.1 The Unweighted Case
The following property of disk graphs, due to Evans et al. [9], is the key to our algorithm.
For a proof refer to the full version.

I Lemma 2.1. Let D(S) be a disk graph that is not plane, i.e., the embedding that represents
each edge by a line segment between its endpoints has two segments that cross in their relative
interiors. Then, there are three sites whose associated disks intersect in a common point.

If D(S) is not plane, it contains a triangle by Lemma 2.1. If D(S) is plane, we can
construct it explicitly and then search for a triangle in O(n) time [12, 17]. To check whether
D(S) is plane, we begin an explicit construction of D(S) and abort if we discover too many
edges.

I Theorem 2.2. Let D(S) be a disk graph on n sites. We can find a triangle in D(S) in
O(n logn) worst-case time, if it exists.

Proof (Sketch). We compute the edges of D(S), using a sweepline approach. If at some
point we find more than 3n− 6 edges, we stop and proceed with the partial graph (which is
not plane). If there are at most 3n− 6 edges, we check for edge crossings, again by a plane
sweep. If there is a crossing, we report the resulting triangle in O(1) time. If not, D(S) is
plane and we determine if it contains a triangle in O(n) time [12,17]. J

2.2 The Weighted Case
Suppose the edges in D(S) are weighted by their Euclidean lengths. We would like to find a
triangle of minimum perimeter, i.e., of minimum total edge length. For this, we solve the
decision problem: given W > 0, does D(S) contain a triangle with perimeter at most W?
Once a decision algorithm is available, the optimization problem can be solved with Chan’s
randomized geometric optimization framework [5].

To decide if D(S) contains a triangle with perimeter at most W , we use a grid with
diameterW/3. We look for triangles whose vertices lie in a single grid cell, using the algorithm
from Section 2.1. If no cell contains such a triangle, then D(S) will be sparse and we will
need to check only O(n) further triples. Details follow.

Set ` = W/(3
√

2). Let G1 be the grid whose cells are pairwise disjoint, axis-parallel
squares with side length `, aligned so that the origin (0, 0) is a vertex of G1. The cells of G1
have diameter

√
2 · ` = W/3, so any triangle whose vertices lie in a single cell has perimeter

at most W . We make three additional copies G2, G3, G4 of G1, and we shift them by `/2 in
the x-direction, in the y-direction, and in both the x- and y-directions, respectively. In other
words, G2 has (`/2, 0) as a vertex, G3 has (0, `/2) as a vertex, and G4 has (`/2, `/2) as a

ESA 2019

63:4 Triangles and Girth in Disk Graphs and Transmission Graphs

(0, 0) (`2 , 0)

(0, `2) (`2 ,
`
2)

`/2

Figure 1 The four shifted grids, with a cell from each grid shown in red, orange, green, and blue,
respectively. Every square with side length at most `/2 is wholly contained in a single grid cell.

vertex, see Figure 1. This ensures that if all edges in a triangle are “short”, the triangle lies
in a single grid cell.

I Lemma 2.3. Let ∆ be a triangle formed by three vertices a, b, c ∈ R2 such that each edge
of ∆ has length at most `/2. There is a cell σ ∈

⋃4
i=1 Gi with a, b, c ∈ σ.

Proof. We can enclose ∆ with a square of side length `/2. This square must be completely
contained in a cell of one of the four grids, see Figure 1. J

We go through all nonempty grid cells σ ∈
⋃4
i=1 Gi, and we search for a triangle in the

disk graph D(S ∩ σ) induced by the sites in σ, with Theorem 2.2. Since each site lies in O(1)
grid cells, and since we can compute the grid cells for a given site in O(1) time (using the
floor function), the total running time is O(n logn). If a triangle is found, we return YES,
since the cells have diameter W/3 and thus such a triangle has perimeter at most W . If no
triangle is found, Lemma 2.3 implies that any triangle in D(S) has one side of length more
than `/2 and hence at least one vertex with associated radius at least `/4. We call a site
s ∈ S large if rs > `/4. A simple volume argument bounds the number of large sites in a
grid cell.

I Lemma 2.4. Let σ ∈
⋃4
i=1 Gi be a nonempty grid cell, and suppose that D(S ∩ σ) does

not contain a triangle. Then σ contains at most 18 large sites.

Proof. Suppose σ contains at least 19 large sites. We cover σ with 3× 3 congruent squares
of side length `/3. Then, at least one square τ contains at least d19/9e = 3 large sites. The
associated radius of a large site is more than `/4 and each square has diameter (

√
2/3)` < `/2,

so the large sites in τ form a triangle in D(S ∩ σ), a contradiction. J

Let σ ∈ Gi, i ∈ {1, . . . , 4}, be a grid cell. The neighborhood N(σ) of σ is the 5× 5 block
of cells in Gi centered at σ. Since the diameter of a grid cell is W/3, any two sites u, v ∈ S
that form a triangle of perimeter at most W with a site s ∈ S ∩ σ must be in N(σ). Let
S` ⊆ S denote the large sites. At this stage, we know that any triangle in D(S) has at least
one vertex in S`. By Lemma 2.4, for any σ ∈

⋃4
i=1 Gi, we have | ∪τ∈N(σ) τ ∩ S`| = O(1).

Thus, to detect a triangle of perimeter at most W with at least two large vertices, we proceed
as follows: for each non-empty cell σ ∈ Gi, iterate over all large sites s in σ, over all large
sites t in N(σ), and over all (not necessary large) sites u in N(σ). Check whether stu is

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir 63:5

a triangle of perimeter at most W . If so, return YES. Since the sites in each grid cell are
examined O(1) times for O(1) pairs of large sites, the total time is O(n).

It remains to detect triangles of perimeter at most W with exactly one large vertex. We
iterate over all grid cells σ ∈

⋃4
i=1 Gi, and we compute D(S ∩ σ). Since D(S ∩ σ) contains

no triangle, Lemma 2.1 shows that D(S ∩ σ) is plane, has O(|S ∩ σ|) edges and can be
constructed in time O(|S ∩ σ| log |S ∩ σ|). For every edge st ∈ D(S ∩ σ) with both endpoints
in S \S`, we iterate over all large sites u in N(σ) and we test whether stu makes a triangle in
D(S) with perimeter at most W . If so, we return YES. By Lemma 2.4, this takes O(|S ∩ σ|)
time, so the total running time is O(n logn). If there is a triangle of perimeter at most W
with exactly one vertex in S`, the edge with both endpoints in S \ S` has length at most `/2
and thus must lie in a single grid cell σ ∈

⋃4
i=1 Gi. To summarize:

I Lemma 2.5. Let D(S) be a disk graph on n sites, and let W > 0. We can decide in
O(n logn) worst-case time whether D(S) contains a triangle of perimeter at most W .

Now, Chan’s framework [5] gives a randomized optimization algorithm with no additional
overhead. The details can be found in the full version.

I Theorem 2.6. Let D(S) be a weighted disk graph on n sites. We can compute a shortest
triangle in D(S) in O(n logn) expected time, if one exists.

3 Computing the Girth of a Disk Graph

We extend the results from Section 2 to the girth. The unweighted case is easy: if D(S) is
not plane, the girth is 3, by Lemma 2.1. If D(S) is plane, we use the algorithm for planar
graphs [7]. The weighted case is harder. If D(S) is plane, we use the algorithm for planar
graphs [15]. If not, Theorem 2.6 gives a shortest triangle ∆ in D(S). However, there could
be cycles with at least four edges that are shorter than ∆. To address this, we use ∆ to split
D(S) into sparse pieces where a shortest cycle can be found efficiently.

3.1 The Unweighted Case
Chang and Lu [7, Theorem 1.1] showed how to find the girth of an unweighted planar graph
with n vertices in O(n) time. Hence, we obtain a simple extension of Theorem 2.2.

I Theorem 3.1. Let D(S) be a disk graph for a set S of n sites. We can compute the
unweighted girth of D(S) in O(n logn) worst-case time.

Proof. We proceed as in Theorem 2.2. If D(S) is not plane, the girth is 3. If D(S) is plane,
we apply the algorithm of Chang and Lu [7, Theorem 1.1] to an explicit representation of
D(S). J

3.2 The Weighted Case
We describe how to find the shortest cycle through a given vertex in a weighted graph with
certain properties. This is then used to compute the weighted girth of a disk graph.

Let G be a graph with nonnegative edge weights so that all shortest paths and cycles in
G have pairwise distinct lengths and so that for all edges uv, the shortest path from u to v
is the edge uv. We present a deterministic algorithm that, given G and a vertex s, computes
the shortest cycle in G containing s, if it exists. A simple randomzied algorithm can also be
found in Yuster [23, Section 2]. The next lemma states a structural property of the shortest

ESA 2019

63:6 Triangles and Girth in Disk Graphs and Transmission Graphs

cycle through s. It resembles Lemma 1 of Roditty and V. Williams [19] that deals with an
overall shortest cycle in G.2 For details on the proof see the full version.

I Lemma 3.2. The shortest cycle in G that contains s consists of two paths in the shortest
path tree of s, and one additional edge.

I Theorem 3.3. Let G = (V,E) be a weighted graph with n vertices and m edges that has
the properties given at the beginning of this section. Let s ∈ V . We can compute the shortest
cycle in G that contains s in O(n logn+m) time, if it exists.

Proof (Sketch). We find the shortest path tree T for s, and we identify the edges that close
a cycle in T containing s. We check all candidate cycles to find the shortest. Correctness
follows from Lemma 3.2. The running time for finding the shortest path tree dominates the
rest of the algorithm. J

Let D(S) be a weighted disk graph on n sites. A careful combination of the tools
developed so far gives an algorithm for the weighted girth of D(S).

I Theorem 3.4. Given a weighted disk graph D(S) on n sites, we can compute the weighted
girth of D(S) in O(n logn) expected time.

Proof (Sketch). We find the shortest triangle in D(S) in O(n logn) expected time, if it
exists (Theorem 2.6). If D(S) has no triangle, it is plane by Lemma 2.1, and we construct
D(S) in O(n logn) time. We find the girth of D(S) using the algorithm of Ła̧cki and
Sankowski [15, Section 5], in O(n log logn) time. If D(S) has a triangle, let W be the
perimeter of the shortest triangle in D(S). Then, W is an upper bound for the girth of D(S).
We set ` = W/(3

√
2), and we call a site s ∈ S large, if rs ≥ `/4, and we write S` ⊆ S for the

set of large sites. Let G be the grid with side length ` and the origin (0, 0) as a vertex.
We must check whether D(S) contains a cycle with more than three vertices and length

less than W . By our choice of `, the graph D(S \ S`) induced by S \ S` is plane. Thus, we
can find a cycle in D(S \ S`) with the algorithm of Ła̧cki and Sankowski [15, Section 5],
in O(n log logn) time. It remains to test cycles with at least one large site. The choice
of ` implies that each cycle of length at most W is contained in a grid neighborhood of
constant size. Since there are O(1) large sites in each neighborhood, the induced graph in
each neighborhood has linear size. We check the remaining cycles by applying Theorem 3.3
to all large sites in each neighborhood. J

4 Finding a Triangle in a Transmission Graph

Given a transmission graph T (S) on n sites, we want to decide if T (S) contains a directed
triangle. We first describe an inefficient algorithm for this problem, and then we will explain
how to implement it in O(n logn) expected time.

The algorithm iterates over each directed edge e = st with rt ≥ rs, and it performs two
tests: first, for each directed edge tu with ru ≥ rt/2, it checks if us is an edge in T (S), i.e., if
s ∈ Du. If so, the algorithm reports the triangle stu. Second, the algorithm tests if there is
a site u such that ru ∈ [rs, rt/2) and such that us is an edge in T (S), i.e., such that s ∈ Du.
If such a u exists, it reports the triangle stu. If both tests fail for each edge e, the algorithm
reports that T (S) contains no triangle. The next lemma shows that the algorithm is correct.

2 Even though this seems to be a simple fact, we could not locate a previous reference for this.

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir 63:7

t us

(a) We do not need to check u ∈ Dt.

r
4

r
6

(b) Three disks with radius at least r/4 in the same
grid cell form a clique.

I Lemma 4.1. A triple stu reported by the algorithm is a triangle in T (S). Furthermore, if
T (S) contains a triangle, the algorithm will find one.

Proof (Sketch). It is easy to see that the algorithm finds a triangle if one exists. The
algorithm is also sound: a triple reported by the first test is a triangle by construction, and
for the second test, Figure 2a shows that u ∈ Dt, so tu is an edge of T (S). J

There are several challenges for making the algorithm efficient. First of all, there might
be many edges st with rt ≥ rs. However, the following lemma shows that if there are ω(n)
such edges, the transmission graph T (S) must contain a triangle.

I Lemma 4.2. There is an absolute constant α so that for any r > 0, if there is an r × r
square σ that contains more than α sites s ∈ S with rs ≥ r/4, then T (S) has a directed
triangle.

Proof. We cover σ with a 6× 6 grid of side length r/6; see Figure 2b. There are 36 grid cells.
For every s ∈ S ∩ σ with rs ≥ r/4, the disk Ds completely covers the grid cell containing s.
If σ contains more than α = 72 sites s with rs ≥ r/4, then one grid cell contains at least
three such sites. These sites form a directed triangle in T (S). J

Thus, to implement the algorithm, we must solve two range searching problems.
(R1) EITHER determine that for every site s ∈ S, there are at most α outgoing edges st

with rt ≥ rs/2 and report all these edges; OR find a square σ of side length r > 0 that
contains more than α sites s ∈ S with rs ≥ r/4.

(R2) Given O(n) query triples (s, r1, r2) with s ∈ S and 0 < r1 < r2, find a site u ∈ S such
that there is a query triple (s, r1, r2) with u 6= s, ru ∈ [r1, r2), and s ∈ Du; or report that
no such site exists.

The query (R1) indeed always has a valid outcome: suppose there is a site s ∈ S with more
than α outgoing edges st with rt ≥ rs/2. Then, all the endpoints t lie in Ds, so the square σ
centered at s with side length r = 2rs contains more than α sites with associated radius at
least r/4. The next theorem shows that we can detect a triangle in T (S) with linear overhead
in addition to the time needed for answering (R1) and (R2). The proof is in the full version.

I Theorem 4.3. If (R1) and (R2) can be solved in time R(n) for input size n, we can find
a directed triangle in a transmission graph T (S) on n sites in time R(n) +O(n), if it exists.

In the next section, we will implement (R1) and (R2) in O(n logn) expected time.

I Theorem 4.4. Let T (S) be a transmission graph on n sites. We can find a directed triangle
in T (S) in expected time O(n logn), if it exists.

ESA 2019

63:8 Triangles and Girth in Disk Graphs and Transmission Graphs

Canonical path of s7

Canonical nodes of s7 Vertex containing s7 in Iv

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

Figure 3 Example is for a query of type (R1), assuming that rs3 < rs7/2 ≤ rs4 .

5 Batched Range Searching

The range queries must handle subsets of sites whose associated radii lie in certain intervals:
a query s in (R1) concerns sites t ∈ S such that rt ≥ rs/2; and a query (s, r1, r2) in (R2)
concerns sites t such that rt ∈ [r1, r2). Using a standard approach [2, 20], we subdivide each
such query interval into O(logn) pieces from a set of canonical intervals. For this, we build
a balanced binary tree B whose leaves are the sites of S, sorted by increasing associated
radius. For each vertex v ∈ B, let the canonical interval Iv be the sorted list of sites in the
subtree rooted at v. There are O(n) canonical intervals.

Next, we define canonical paths and canonical nodes. For a radius r > 0, the (proper)
predecessor of r is the site s ∈ S with the largest radius rs ≤ r (rs < r). The (proper)
successor of r is defined analogously. For a query s in (R1), we consider the path π in B
from the root to the leaf with the proper predecessor t of rs/2. If t does not exist (i.e.,
if rt ≥ rs/2, for all t ∈ S), we let π be the left spine of B. We call π the canonical path
for s. The canonical nodes for s are the right children of the nodes in π that are not in π
themselves, plus possibly the last node of π, if rt ≥ rs/2, for all t ∈ S, see Figure 3.

For a query (s, r1, r2) in (R2), we consider the path π1 in B from the root to the leaf
with the proper predecessor t1 of r1 and the path π2 in B from the root to the leaf for the
successor t2 of r2. Again, if t1 does not exist, we take π1 as the left spine of B, and if t2
does not exist, we take π2 as the right spine of B. Then, π1 and π2 are the canonical paths
for (s, r1, r2). The canonical nodes for (s, r1, r2) are defined as follows: for each vertex v in
π1 \ π2, we take the right child of v if it is not in π1, and for each v in π2 \ π1, we take the
left child of v if it is not in π1. Furthermore, we take the last node of π1 if t1 does not exist,
and the last node of π2 if t2 does not exist. A standard argument bounds the number and
total size of the canonical intervals, see the full version for the proof.

I Lemma 5.1. The total size of the canonical intervals is O(n logn). The tree B and the
canonical intervals can be built in O(n logn) time. For any query q in (R1) or (R2), there are
O(logn) canonical nodes, and they can be found in O(logn) time. The canonical intervals
for the canonical nodes of q constitute a partition of the query interval for q.

5.1 Queries of Type (R1)
We build a compressed quadtree on S, and we perform the range searches the compressed
quadtree. It is possible to compute a compressed quadtree for each canonical interval without
logarithmic overhead. Since Lemma 4.2 gives us plenty of freedom in choosing the squares

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir 63:9

ρ

τ

σ σ̃

Figure 4 Z-Order. On the very right we have σ ≤Z τ ≤Z σ̃.

for our range queries, we take squares from the grid that underlies the quadtree. This allows
us to reduce the range searching problem to predecessor search in a linear list, a task that
can be accomplished by one top-down traversal of B. Details follow.

Hierarchical grids, Z-order, compressed quadtrees. We translate and scale S (and the
associated radii), so that S lies in the interior of the unit square U = [0, 1]2 and so that all
radii are at most

√
2. We define a sequence of hierarchical grids that subdivide U . The grid

G0 consists of the single cell U . The grid Gi, i ≥ 1, consists of the 22i square cells with side
length 2−i and pairwise disjoint interiors that cover U . The hierarchical grids induce an
infinite four-regular tree T : the vertices are the cells of G =

⋃∞
i=0 Gi. The unit square U is

the root, and for i = 1, . . . , a cell σ in Gi is the child of the cell in Gi−1 that contains it. We
make no explicit distinction between a vertex of T and its corresponding cell.

The Z-order ≤Z is a total order on the cells of G; see [4] for more details. Let σ, τ ∈ G.
If σ ⊆ τ , then σ ≤Z τ : and if τ ⊆ σ, then τ ≤Z σ, If σ and τ are unrelated in T , let ρ be the
lowest common ancestor of σ and τ in T , and let σ′ and τ ′ be the children of ρ with σ ⊆ σ′
and τ ⊆ τ ′. We set σ ≤Z τ if σ′ is before τ ′ in the order shown in Figure 4; and τ ≤Z σ,
otherwise. The next lemma shows that given σ, τ ∈ G, we can decide if σ ≤Z τ in constant
time.

I Lemma 5.2 (Chapter 2 in Har-Peled [11]). Suppose the floor function and the first differing
bit in the binary representations of two given real numbers can be computed in O(1) time.
Then, we can decide in O(1) time for two given cells σ, τ ∈ G whether σ ≤Z τ or τ ≤Z σ.

For a site s ∈ S, let σs be the largest cell in G that contains only s. The quadtree for S is
the smallest connected subtree of T that contains the root U and all cells σs, for s ∈ S. The
compressed quadtree C for S is obtained from the quadtree by contracting any maximal path
of vertices with only one child into a single edge. Vertices that were at the top of such a
path are now called compressed vertices. The compressed quadtree for S has O(n) vertices,
and it can be constructed in O(n logn) time (see, e.g., [3, Appendix A] and [11]).

The linearized compressed quadtree L for S is the sorted sequence of cells obtained by
listing the nodes of C according to a postorder traversal, were the children of a node σ ∈ C
are visited according to the Z-order from Figure 4. The cells in L appear in increasing
Z-order, and range searching for a given cell σ ∈ G reduces to a simple predecessor search in
L, as is made explicit in the following lemma.

I Lemma 5.3. Let σ be a cell of G, and let L be the linearized compressed quadtree on S.
Let τ = maxZ{ρ ∈ L | ρ ≤Z σ} be the Z-predecessor of σ in L (τ = ∅, if the predecessor
does not exist). Then, if σ ∩ τ = ∅, then also σ ∩S = ∅, and if σ ∩ τ 6= ∅, then σ ∩S = τ ∩S.

Proof. Let C be the compressed quadtree on S, and let Cσ = {τ ∈ C | τ ⊆ σ} be the cells in
C that are contained in σ. If Cσ is non-empty, then Cσ is a connected subtree of C. Let τ be

ESA 2019

63:10 Triangles and Girth in Disk Graphs and Transmission Graphs

5

5

Figure 5 The neighborhood of a site has constant size

the root of this subtree. Then, τ = maxZ{ρ ∈ Cσ}, and τ ≤Z σ. Furthermore, all other cells
in C \ Cσ are either smaller than all cells in Cσ or larger than σ. Thus, τ is the Z-predecessor
of σ in L, and σ ∩ S = τ ∩ S 6= ∅. Otherwise, if Cσ = ∅, the Z-predecessor of σ in L either
does not exist or is disjoint from σ. Thus, in this case, we have ∅ = σ ∩ τ = σ ∩ S. J

The search algorithm. For a site s ∈ S, we define the neighborhood N(s) of s as all cells in
G with side length 2blog2 rsc that intersect Ds. The neighborhood will be used to approximate
Ds for the range search in the quadtrees.

I Lemma 5.4. There is a constant β such that |N(s)| ≤ β for all s ∈ S.

Proof. We have rs/2 < 2blog2 rsc, and a 5× 5 grid with cells of side length rs/2 covers Ds,
no matter where s lies; see Figure 5. Thus, the lemma holds with β = 25. J

We now show that a linearized compressed quadtree for each canonical interval can be
found without logarithmic overhead.

I Lemma 5.5. We can compute for each v ∈ B the linearized quadtree Lv for the sites in
Iv in O(n logn) time.

Proof (Sketch). We traverse B and build the compressed quadtree Cv for Iv, for each v ∈ B.
For the root, this takes O(n logn) time. The compressed quadtree Cw for a child w of a node
v can be found by traversing Cv in O(|Cv|) time. Then, we compute the linearized trees Lv
by a postorder traversal of each Cv. J

Using the linearized compressed quadtrees, the range searching problem can be solved by
a batched predecessor search, using a single traversal of B.

I Lemma 5.6. The range searching problem (R1) can be solved in O(n logn) time.

Proof (Sketch). We apply Lemma 5.5 to find the linearized quadtrees for B. Let Q′ =⋃
s∈S

{
(σ, s) | σ ∈ N(s)

}
. We call Q′ the set of split queries. They approximate the disks Ds

by cells from the hierarchical grid. By Lemma 5.4, |Q′| = O(n). We now want to perform
range queries for all the cells in the split queries. For this, we first sort the elements of Q′ in
the Z-order of their first components, in O(n logn) time. Now we store all split queries (σ, s)
with all nodes v ∈ B such that v is a canonical node of s. This can be done by one traversal
over B. We call the resulting lists Q′′v , for v ∈ B.

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir 63:11

We iterate over all v ∈ B, and we merge the lists Q′′v with the lists Lv, in Z-order. This
takes O

(∑
v∈B |Lv|+ |Q′′v |

)
= O(n logn) time. By Lemma 5.3, we obtain for each (σ, s) ∈ Q′′v

a cell τσ,sv . If σ ∩ τσ,sv 6= ∅, we know that σ ∩ Iv = τσ,sv ∩ Iv. Since these sites are all from Iv
they all have radius at least rs/2. We can find all these sites in O(k) time, where k is the
output size. If k > α, we stop and report σ as a square with many sites of large radius.3

Otherwise, we use the sites in σ to accumulate the sites for the query disk Ds. This
we can do by considering all canonical nodes of s and for each cell σ iterate over the sites
contained in σ. In each such cell there are at most α sites. For each site t ∈ σ we can check
if t ∈ Ds. If we find a query disk Ds with more than α sites of large radius, we stop and
report its enclosing square with many sites of large radius.4 Otherwise, for each s ∈ S, we
have found the at most α sites of radius at least rs/2 in Ds. The whole algorithm takes
O(n logn) time. J

5.2 Queries of Type (R2)
We use the tree structure of the canonical intervals (i) to construct quickly the search
structures for each canonical interval; and (ii) to solve all queries for a canonical interval in
one batch. We exploit the connection between planar disks and three-dimensional polytopes.
Let U =

{
(x, y, z) | x2 + y2 = z

}
be the three-dimensional unit paraboloid. For a site s ∈ S,

the lifted site ŝ is the vertical projection of s onto U . Each disk Ds is transformed into an
upper halfspace D̂s, so that the projection of D̂s ∩ U onto the xy-plane is the set R2 \Ds;5
see Figure 6. The union of a set of disks in R2 corresponds to the intersection of the lifted
upper halfspaces in R3.

I Lemma 5.7. The range searching problem (R2) can be solved in O(n logn) expected time.

Proof (Sketch). For each v ∈ B, we construct the intersection Ev of the D̂s, s ∈ Iv. We
can find all the polyhedra Ev, for v ∈ B, in overall O(n logn) time, by a single traversal of
B. This traversal goes bottom up and uses that we can find the intersection of two convex
polyhedra in O(n) time [6]. For batched query processing, we need for each v ∈ B the convex
hull of the lifted query sites that have v as a canonical node. These convex hulls can be
computed top-down by splitting the current convex hulls in each node in O(n logn) overall
time, using linear time per node [8]. We call these hulls Q̂v.

To answer all queries, we use the polyhedra Q̂v and Ev. For each node v ∈ B, we compute
the lifted sites in Q̂v that are not inside of Ev. These sites correspond to the vertices of Q̂v
that are not vertices of Q̂v ∩ Ev. These intersections can be found in overall O(n logn) time,
again by using the fact that we can intersect two polyhedra in O(n) time. If for any such
intersection Q̂v∩Ev, there is a lifted site ŝ ∈ Q̂v that is not a vertex of Q̂v∩Ev, we report s as
the result of the range search. Otherwise, we report our range search to be unsuccessful. J

6 Finding the Shortest Triangle in a Transmission Graph

We extend Theorem 4.4 to find the shortest triangle in T (S). As in Section 2.2, we solve the
decision problem: given W > 0, does T (S) have a directed triangle of perimeter at most W?

3 Note that here the radii are ≥ rs/2 inside of the cells σ. This might be larger than the value 2dlog2 rse/4
needed by (R1). But still, if there are more than α sites in σ, we still have a triangle in a square.
Otherwise we will later determine that each disk contains few sites of radius at least rs/2.

4 r = 2rs is the side length of the enclosing square, the radii are at least r/4 as desired.
5 This halfspace is bounded by the plane z = 2xsx− x2

s + 2ysy − y2
s + r2

s , where s = (xs, ys).

ESA 2019

63:12 Triangles and Girth in Disk Graphs and Transmission Graphs

Ds

p

D̂s

p̂

Figure 6 Lifting disks and points. For D̂ only the bounding plane is shown.

We set ` = W/
√

27, and call a site s ∈ S large if rs > `. We let S` ⊆ S be the set of all large
sites.

I Lemma 6.1. We can find a triangle in T (S \ S`) of perimeter at most W in O(n logn)
time, if it exists.

Proof. Any triangle in T (S \ S`) has perimeter at most W : consider a directed triangle
stu in T (S \ S`) with rs ≥ max{rt, ru}. Then we have t, u ∈ Ds, so the triangle stu lies
in Ds. Elementary calculus shows that a triangle of maximum perimeter in Ds must be
equilateral with its vertices on ∂Ds, so any triangle contained in Ds has perimeter at most
3 ·
√

3 · rs ≤
√

27 · ` = W . We can find a triangle in T ′ in O(n logn) time by Theorem 4.4. J

It remains to check for triangles of perimeter at most W with at least one large vertex.
Some such triangles have to be considered individually, while the others can be handled
efficiently in batch mode. The following lemma shows that we may assume that there are
few edges from S \ S` to S`.

I Lemma 6.2. If T (S) does not have a triangle of perimeter at most W , every site in S`
has at most six incoming edges from S \ S`. Furthermore, in O(n logn) time, we can either
find a triangle of perimeter at most W in T (S) or determine for each site in S` all incoming
edges from S \ S`.

Proof (Sketch). By a suitable variant of (R1), we either find a triangle of perimeter at most
W , or we restrict the overall number of edges from S \ S` to S` to O(n) in O(n logn) time.
To bound the indegree of the large sites, we observe that if a large site has 7 incoming edges
from S \ S`, then there is a triangle in T (S) of perimeter at most W . J

Next, we want to limit the number of relevant edges between large sites. For this, we
subdivide the plane with a grid G of side length `/

√
2. Then, we have the following:

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, P. Seiferth, M. Sharir 63:13

I Lemma 6.3. A triangle contained in a cell σ ∈ G has perimeter at most W . If there is no
triangle in σ, then σ contains O(1) large sites. We can check for such triangles in O(n logn)
overall expected time.

Proof. The maximum perimeter of a triangle contained in σ is (1 +
√

2)` < W . Furthermore,
if there are at least three large sites in σ, these large sites form a triangle, since the disk of a
large site covers σ. By applying Theorem 4.4 to the induced subgraph in each cell of G, we
can find such a triangle in O(n logn) total expected time. J

We define the neighborhood N(σ) of a cell σ ∈ G as the 5× 5 block of cells centered at
σ. Let t be a site and σ the cell containing t, then the neighborhood N(t) of t are all sites
contained in N(σ). Since the side length of a grid cell is W/3

√
6, each triangle of perimeter

at most W is completely contained in the neighborhood of some cell.

I Lemma 6.4. We can check the remaining triangles in O(n) overall time.

Proof. Consider a remaining triangle sut with rt ≥ max{ru, ts}. Then, t ∈ S`, and s, t, u all
lie in N(t). By Lemma 6.3, there are O(1) large candidates for u in N(t), and by Lemma 6.2,
there are O(1) small candidates for u. Having fixed a t and a possible candidate u, we iterate
over all s ∈ N(t) and check if s, u, and t form a triangle with weight at most W . Every site
s is contained in O(1) grid neighborhoods, and since there are O(1) candidate pairs in each
grid neighborhood, s participates in O(1) explicit checks. The result follows. J

The following theorem summarizes the considerations in this section.

I Theorem 6.5. It takes O(n logn) expected time to find the shortest triangle in a transmis-
sion graph.

Proof. We already saw that there is an O(n logn) time decision algorithm for the problem.
As in Theorem 2.6, the result follows from an application of Chan’s randomized optimization
technique [5]. J

7 Conclusion

Once again, disk graphs and transmission graphs prove to be a simple yet powerful graph
model where difficult algorithmic problems admit faster solutions. It would be interesting to
find a deterministic O(n logn) time algorithm for finding a shortest triangle in a disk graph.
Currently, we are working on extending our results to the girth problem in transmission
graphs; can we find an equally simple and efficient algorithm as for disk graphs?

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.
2 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark H. Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag, third edition, 2008.
3 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Preprocessing imprecise

points for Delaunay triangulation: Simplified and extended. Algorithmica, 61(3):674–693,
2011.

4 Kevin Buchin and Wolfgang Mulzer. Delaunay triangulations in O(sort(n)) time and more. J.
ACM, 58(2):6:1–6:27, 2011.

5 Timothy M. Chan. Geometric applications of a randomized optimization technique. Discrete
Comput. Geom., 22(4):547–567, 1999.

ESA 2019

63:14 Triangles and Girth in Disk Graphs and Transmission Graphs

6 Timothy M. Chan. A simpler linear-time algorithm for intersecting two convex polyhedra in
three dimensions. Discrete Comput. Geom., 56(4):860–865, December 2016.

7 Hsien-Chih Chang and Hsueh-I Lu. Computing the girth of a planar graph in linear time.
SIAM J. Comput., 42(3):1077–1094, 2013.

8 Bernard Chazelle and Wolfgang Mulzer. Computing hereditary convex structures. Discrete
Comput. Geom., 45(4):796–823, 2011.

9 William S. Evans, Mereke van Garderen, Maarten Löffler, and Valentin Polishchuk. Recognizing
a DOG is hard, but not when it is thin and unit. In Proc. 8th FUN, pages 16:1–16:12, 2016.

10 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. 39th Internat.
Symp. Symbolic and Algebraic Comput. (ISSAC), pages 296–303, 2014.

11 Sariel Har-Peled. Geometric approximation algorithms. American Mathematical Society, 2008.
12 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput.,

7(4):413–423, 1978.
13 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Spanners and reachability

oracles for directed transmission graphs. In Proc. 31st Int. Sympos. Comput. Geom. (SoCG),
pages 156–170, 2015.

14 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Spanners for directed
transmission graphs. SIAM J. Comput., 47(4):1585–1609, 2018.

15 Jakub Ła̧cki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs inO(n log logn)
time. In Proc. 19th Annu. European Sympos. Algorithms (ESA), pages 155–166, 2011.

16 Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, and Oren Weimann. Minimum cut of directed
planar graphs in O(n log logn) time. In Proc. 29th Annu. ACM-SIAM Sympos. Discrete
Algorithms (SODA), pages 477–494, 2018.

17 Christos H. Papadimitriou and Mihalis Yannakakis. The clique problem for planar graphs.
Inform. Process. Lett., 13(4/5):131–133, 1981.

18 Valentin Polishchuk. Personal communication. 2017.
19 Liam Roditty and Virginia Vassilevska Williams. Minimum weight cycles and triangles:

Equivalences and algorithms. In Proc. 52nd Annu. IEEE Sympos. Found. Comput. Sci.
(FOCS), pages 180–189, 2011.

20 Dan E. Willard and George S. Lueker. Adding range restriction capability to dynamic data
structures. J. ACM, 32(3):597–617, 1985.

21 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.

22 Huacheng Yu. An improved combinatorial algorithm for Boolean matrix multiplication. In
Proc. 42nd Internat. Colloq. Automata Lang. Program. (ICALP), pages 1094–1105, 2015.

23 Raphael Yuster. A shortest cycle for each vertex of a graph. Inform. Process. Lett., 111(21-
22):1057–1061, 2011.

	Introduction
	Finding a (Shortest) Triangle in a Disk Graph
	The Unweighted Case
	The Weighted Case

	Computing the Girth of a Disk Graph
	The Unweighted Case
	The Weighted Case

	Finding a Triangle in a Transmission Graph
	Batched Range Searching
	Queries of Type (R1)
	Queries of Type (R2)

	Finding the Shortest Triangle in a Transmission Graph
	Conclusion

