
EuroCG 2017, Malmö, Sweden, April 5–7, 2017

An Experimental Study of Algorithms for Geodesic Shortest Paths in the
Constant Workspace Model∗

Jonas Cleve† Wolfgang Mulzer†

Abstract

We evaluate experimentally algorithms for finding
shortest paths in polygons in the constant workspace
model. In this model, the input resides in a read-only
array that can be accessed at random. In addition,
the algorithm may use a constant number of words for
reading and writing. The constant workspace model
has been studied extensively in recent years, and al-
gorithms for geodesic shortest paths have received
particular attention.

We have implemented three such algorithms and
compare them to the classic algorithm by Lee and
Preparata that uses linear time and space. We also
clarify implementation details that were missing in the
original descriptions. Our experiments show that all
algorithms perform as advertised and according to the
theoretical guarantees. However, the constant factors
in the running times turn out to be rather large for
the algorithms to be practical.

1 Introduction

In recent years, the constant workspace model has
enjoyed increasing popularity in computational geom-
etry. Motivated by the increasing deployment of small
devices with limited memory capacities, the goal is to
develop simple and efficient algorithms for the situa-
tion where little workspace is available. The model
posits that the input resides in a read-only array that
can be accessed at random. In addition, the algo-
rithm may use a constant number of memory words
for reading and writing. The output must be written
to a write-only memory that cannot be accessed again.
Following the initial work from 2011 [2], numerous re-
sults have been published for this model, leading to a
solid theoretical foundation for dealing with geometric
problems when memory is scarce.

But how do these theoretical results measure up
in practice? To investigate this question, we have
implemented three different algorithms for computing
geodesic shortest paths in simple polygons. This is
one of the first problems to be studied in the constant
workspace model. Given that the general shortest
path problem is unlikely to be amenable to constant
workspace algorithms, it may be a surprise that a

∗Supported by DFG projects MU/3501-1 and RO/2338-6.
†Institut für Informatik, Freie Universität Berlin, Germany.

{jonascleve,mulzer}@inf.fu-berlin.de

solution for the geodesic case exists at all. By now,
several algorithms are known, for constant workspace
as well as in the time-space-trade-off regime [1, 8].

Due to the wide variety of approaches and the funda-
mental nature of the problem, geodesic shortest paths
are a natural candidate for an experimental study. Our
experiments show that all three algorithms work well
in practice and live up to their theoretical guarantees.
However, the large running times make them ill-suited
for large input sizes.

During our implementation, we also noticed some
missing details in the original publications, and we
explain below how we have dealt with them.

2 The algorithms

We provide a brief overview over all implemented
algorithms; further details can be found in the refer-
ences. Let P be the input polygon and let s, t ∈ P be
the endpoints of the desired shortest path.

The algorithm by Lee and Preparata. In the classic
algorithm, we triangulate P and find the triangles
containing s and t. Next, we find the unique path in
the dual graph of the triangulation between these two
triangles. This gives a sequence e1, . . . , em of diagonals
crossed by the geodesic shortest path. The algorithm
walks along these diagonals while maintaining a funnel.
The funnel has a cusp p, initialized to s, and two
concave chains from p to the two endpoints of the
current diagonal ei. In each step i, there are two
cases: (i) if ei+1 remains visible from p, we update
the appropriate concave chain, using Graham’s scan;
(ii) if ei+1 is not visible from p, we proceed along the
appropriate chain until we find the cusp for the next
funnel, and we output the vertices encountered along
the way as part of the shortest path. Implemented
properly, this takes linear time and space [10].

Delaunay. The first constant-workspace-algorithm,
called Delaunay , directly adapts the method of Lee
and Preparata to the constant-workspace model. It
was proposed by Asano, Mulzer, and Wang [3] in 2011.

Since we cannot explicitly compute and store a trian-
gulation of P , we use instead a unique implicit triangu-
lation, the constrained Delaunay triangulation of P [6].
This triangulation can be navigated efficiently using
constant workspace: given a diagonal or a polygon

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

mailto:jonascleve@inf.fu-berlin.de
mailto:mulzer@inf.fu-berlin.de

33rd European Workshop on Computational Geometry, 2017

edge, we can find the incident triangles in O
(
n2

)
time.

Using an O(n) time constant-workspace-algorithm for
shortest paths in trees, we then enumerate all triangles
in the dual graph between the two triangles for s and
t in O

(
n3

)
time.

As in Lee and Preparata [10], we need to maintain
the visibility funnel while walking along the triangles.
Instead of the whole chains, we store only the two line
segments that define the current visibility cone, and
we recompute the two chains when necessary. The
total running time of the algorithm is O

(
n3

)
.

Trapezoid. This algorithm was also published by
Asano, Mulzer, and Wang [3]. It is based on the same
principle as Delaunay , but it uses the trapezoidal
decomposition of P [5]. Instead of walking along trian-
gles, in O

(
n2

)
time per step, we walk along trapezoids,

which takes O(n) time per step. Since there are O(n)
steps, the running time improves to O

(
n2

)
.

Makestep. This algorithm was presented by Asano
et al. [2], and it uses a different approach. We maintain
a current vertex p of the shortest path together with
a visibility cone, defined by two points a and b on
the boundary of P . The segments pa and pb cut off
a subpolygon P ′ ⊆ P . The invariant is that t lies
in P ′. We gradually shrink P ′ by advancing a and
b, sometimes also relocating p. A charging argument
shows that there are O(n) shrinking steps. Each step
takes O(n) time, for a total running time of O

(
n2

)
.

3 Implementation

We have implemented the algorithms in Python [11].
Graphical output and plots use the matplotlib li-
brary [9]. Even though there are some geometry pack-
ages available for Python, none of them seemed suit-
able for our needs. Thus, we decided to implement all
geometric primitives on our own. The source code of
the implementation is available online1.

For Lee–Preparata, we need a triangulation of P .
Since polygon triangulation is not the main objective
of our study, we relied for this on the Python Triangle
library by Rufat [12], a wrapper for Shewchuk’s Trian-
gle [13]. Triangle does not provide a linear-time algo-
rithm, but it implements Fortune’s sweep, randomized
incremental construction, and a divide-and-conquer
algorithm, all with a running time of O(n log n). We
used the divide-and conquer algorithm, the default
choice. The triangulation phase is not included in the
time and memory measurement.

General implementation details. All three constant-
workspace algorithms have a general position assump-
tion: Delaunay and Makestep assume that no three

1https://github.com/jonasc/constant-workspace-algos

cusp

b

tw

u

vv

Figure 1: During the Jarvis march from the cusp to
the diagonal b, the vertices need to be restricted to
the shaded area. Otherwise, u would be considered
part of the geodesic shortest path, as it is left of vw.

vertices lie on a line. Our implementations also as-
sume general position but throw exceptions if a non-
recoverable general position violation is encountered.
Most violations, however, can be recovered; e.g. when
trying to find the delaunay triangle(s) for a diagonal
we can simply ignore points collinear to this diago-
nal. Trapezoid on the other hand assumes that no
two vertices have the same x-coordinate. As described
by Asano, Mulzer, and Wang [3], this can be fixed by
changing the x-coordinate of every vertex to x + εy
for some small ε such that the x-order of all vertices
is maintained. We apply this fix to every polygon in
which two vertices share the same x-coordinate.

The coordinates are stored as 64 bit IEEE 754 floats,
and the coordinates of randomly generated polygons
are rounded to four decimal places. To prevent preci-
sion or rounding problems we take the following steps:
We never explicitly calculate angles but rely on the
three-point-orientation test, i.e. the position of a point
c relative to the line through points a and b. Addi-
tionally, if points need to be placed somewhere on a
polygon edge, an edge reference is stored to account for
inaccuracies when calculating the point’s coordinates.

Delaunay and Trapezoid. In both algorithms, we
need to find a piece of the shortest path as soon as
the next diagonal is no longer visible from the current
cusp. Asano, Mulzer, and Wang [3] only say that
this should be done with a Jarvis march. During the
implementation, we noticed that a naive Jarvis march
with all vertices on P between the cusp and the next
diagonal might include vertices that are not visible.
Figure 1 shows an example: the vertex u would be
included in the shortest path because it lies to the
right of the cone and to the left of vw.

The solution for Trapezoid is to consider only ver-
tices whose x-coordinate is between the cusp and the
point where the visibility cone leaves P for the first
time. For ease of implementation, one can also limit
it to the x-coordinate of the last trapezoid boundary
visible from the cusp. Figure 1 shows this region in

https://github.com/jonasc/constant-workspace-algos

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

q1

q2

succ(q1)

p

q′

t

Figure 2: Asano et al. [2] state that one should check
whether “t lies in the subpolygon from q′ to q1.” Here,
we should use q1pq

′ to shrink the cutoff region.

green. For Delaunay , a similar approach can be used.
The only difference is that the triangle boundaries are
not all vertical lines.

Makestep. In our implementation of Makestep, we
would like to point out an interesting detail; see Fig-
ure 2. The description by Asano et al. [2] says that to
advance the visibiliy cone, we should check if “t lies
in the subpolygon from q′ to q1.” If so, the visibility
cone should be shrunk to q′pq1, otherwise to q2pq

′.
However, the “subpolygon from q′ to q1” is not

clearly defined if the line segment q′q1 is not contained
in P . To avoid this difficulty, we consider pq′ instead.
This line segment is always in P , and it divides the
cutoff region P ′ into two parts, a “subpolygon” be-
tween q′ and q1 and a “subpolygon” between q2 and
q′. Now we can easily choose the one containing t.

4 Experiments

Test set generation. Our experiments were con-
ducted as follows: given a number of vertices n, we
generate 4–10 random polygons, depending on n. For
this, we use a tool developed in a software project
at our department [7] which (among others) uses the
Space Partitioning algorithm by Auer and Held [4].

For each edge e of each generated polygon, we find
the incident triangle te of the constrained Delaunay
triangulation. We add the barycenter of te to a point
set S. Then, S has between bn/2c and n− 2 points.

Test execution. For each pair of points from S, we
find the shortest path using all of the implemented
algorithms. Since the number of pairs grows quadrat-
ically, we restrict the tests to 1500 random pairs for
all n ≥ 200. We first run each algorithm once in order
to determine the memory consumption. To obtain
reproducible numbers, we disable the garbage collec-
tion functionality. After that, we run the algorithm
between 5 and 20 times, depending on how long it
takes. We measure the time for each run. We then
take the median of the times as a representative for
this point pair.

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

vertices vs. memory in kB

Lee–Preparata O(n) Makestep O(1)

Trapezoid O(1) Delaunay O(1)

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

vertices vs. memory in kB

Lee–Preparata O(n) Makestep O(1)

Trapezoid O(1) Delaunay O(1)

Figure 3: Memory consumption for random instances.
The solid shapes are the median values; the transparent
crosses are maximum values.

Test setup. Since we have a quadratic number of test
cases, a lot of time is needed to run the tests. Thus
the tests were distributed on multiple machines and on
multiple cores. We had six computing machines, each
with two quad-core CPUs. Three machines had Intel
Xeon E5430 CPUs with 2.67 GHz; the other three had
AMD Opteron 2376 CPUs with 2.3 GHz.

5 Results

The results of the experiments can be seen in the
following plots. The plot in Figure 3 shows the median
and maximum memory consumption as solid shapes
and transparent crosses, respectively, for each algo-
rithm and each input size. More precisely, the plot
shows the median and the maximum over all polygons
with a given size and over all pairs of points in each
such polygon.

We observe that the memory consumption for Trape-
zoid and Makestep is always smaller than a certain
constant. The shape of the median values might sug-
gest logarithmic growth. However, a smaller number
of vertices leads to a higher probability that s and t
lie in the same triangle or can see each other. In this
case, many geometric functions and subroutines, each
of which requires an additional constant amount of
memory, are not called. A large number of point pairs
with only small memory consumption naturally entails
a smaller median value.

The second plot in Figure 4 shows the median and
the maximum running time in the same way as Fig-
ure 3. Not only does Delaunay have a cubic running
time, but it also seems to have a quite large constant,
as it grows much faster than the other algorithms.

In the lower part of Figure 4, we see the same x-
domain, but with a much smaller y-domain. Here,
we observe that Trapezoid and Makestep both have a
quadratic running time; Trapezoid needs about two

33rd European Workshop on Computational Geometry, 2017

0 500 1000 1500 2000 2500 3000

0

5

10

15

vertices vs. time in s

Lee–Preparata O(n)

Makestep O
(
n2

)
Trapezoid O

(
n2

)
Delaunay O

(
n3

)

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

vertices vs. time in s

Lee–Preparata O(n)

Makestep O
(
n2

)
Trapezoid O

(
n2

)
Delaunay O

(
n3

)

Figure 4: Runtime for random instances. Solid shapes
are median values; transparent crosses are maximum
values. The bottom plot is a scaled version of the top.

thirds of the time needed by Makestep. Finally, the
linear-time behavior of Lee–Preparata is clearly visible.

We observed that the tests ran approximately 85 %
slower on the AMD machines compared to the Intel
servers. This reflects the difference between 2.3 GHz
and 2.67 GHz. Since the tests were distributed equally
on the machines it does not change the overall results.

6 Conclusion

We have implemented and experimented on three
different constant-workspace algorithms for geodesic
shortest paths in simple polygons. Not only did we
observe the cubic worst-case running time of Delau-
nay , but we also noticed that the constant factor is
rather large. This renders the algorithm useless al-
ready for polygons with a few hundred vertices, where
the computation might, in the worst case, take several
minutes.

As predicted by the theory, Makestep and Trapezoid
exhibit the same asymptotic time and space consump-
tion. Trapezoid has an advantage in the constant factor
of the running time, while Makestep needs only about
half as much memory. Since in both cases the mem-
ory requirement is bounded by a constant, Trapezoid
would be our preferred algorithm.

We chose Python for the implementation mostly
due to our experience, good debugging facilities, fast
prototyping possibilities and the availability of numer-
ous libraries. In hindsight, it might have been better
to choose another programming language. Python’s
memory profiling and tracking abilities are limited, so
that we cannot easily get a detailed view of the used
memory with all the variables. Furthermore, a more
detailed control of the memory management could be
useful for performing more detailed experiments.

References

[1] T. Asano, K. Buchin, M. Buchin, M. Korman,
W. Mulzer, G. Rote, and A. Schulz. “Memory-
Constrained Algorithms for Simple Polygons”. In:
CGTA 46.8 (2013), pp. 959–969.

[2] T. Asano, W. Mulzer, G. Rote, and Y. Wang.
“Constant-Work-Space Algorithms for Geometric
Problems”. In: JoCG 2.1 (2011), pp. 46–68.

[3] T. Asano, W. Mulzer, and Y. Wang. “Constant-
Work-Space Algorithms for Shortest Paths in Trees
and Simple Polygons”. In: JGAA 15.5 (2011),
pp. 569–586.

[4] T. Auer and M. Held. “Heuristics for the Generation
of Random Polygons”. In: Proc. 8th Canada Conf.
Comput. Geom. Ottawa, 1996, pp. 38–43.

[5] M. de Berg, O. Cheong, M. van Kreveld, and M.
Overmars. Computational Geometry. Springer, 2008.

[6] L. P. Chew. “Constrained Delaunay Triangulations”.
In: Algorithmica 4 (1-4 1989), pp. 97–108.

[7] S. Dierker, M. Ehrhardt, J. Ihrig, M. Rohde, S.
Thobe, and K. Tugan. Abschlussbericht zum Soft-
wareprojekt: Zufällige Polygone und kürzeste Wege.
Institut für Informatik, Freie Universität Berlin,
Aug. 20, 2012. url: https://github.com/marehr/
simple-polygon-generator.

[8] S. Har-Peled. “Shortest Path in a Polygon Using
Sublinear Space”. In: JoCG 7.2 (2016), pp. 19–45.

[9] J. D. Hunter. “Matplotlib: A 2D Graphics Environ-
ment”. In: Computing In Science & Engineering 9.3
(2007), pp. 90–95.

[10] D. T. Lee and F. P. Preparata. “Euclidean Shortest
Paths in the Presence of Rectilinear Barriers”. In:
Networks 14.3 (23 1984), pp. 393–410.

[11] Python Software Foundation. Python. Version 3.5.
url: https://www.python.org/.

[12] D. Rufat. Python Triangle. Version 20160203. 2016.
url: http://dzhelil.info/triangle/ (visited on
12/05/2016).

[13] J. R. Shewchuk. “Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator”. In:
Applied Computational Geometry towards Geometric
Engineering. Springer, 1996, pp. 203–222.

http://dx.doi.org/10.1016/j.comgeo.2013.04.005
http://dx.doi.org/10.20382/jocg.v2i1a4
http://dx.doi.org/10.7155/jgaa.00240
http://dx.doi.org/10.1007/BF01553881
https://github.com/marehr/simple-polygon-generator
https://github.com/marehr/simple-polygon-generator
http://dx.doi.org/10.20382/jocg.v7i2a3
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1002/net.3230140304
https://www.python.org/
http://dzhelil.info/triangle/
http://dx.doi.org/10.1007/BFb0014497

	Introduction
	The algorithms
	Implementation
	Experiments
	Results
	Conclusion

