
EuroCG 2017, Malmö, Sweden, April 5–7, 2017

A Simple Analysis of Rabin’s Algorithm for Finding Closest Pairs∗

Bahareh Banyassady† Wolfgang Mulzer†

Abstract

The closest-pair problem is one of the most basic top-
ics in computational geometry: given a set P ⊂ R2 of
n points in the plane, find two distinct points p, q ∈ P
that minimize the Euclidean distance d(p, q), among
all pairs of points in P . In the algebraic decision
tree model, this problem can be solved optimally in
Θ(n log n) time.

However, already in 1976, Rabin observed in a sem-
inal work that, using the floor function and random-
ization, this can be improved to O(n) expected time.
We provide a new and simplified analysis of Rabin’s
algorithm that is intended to make this result more
accessible to the modern reader.

1 Introduction

The closest-pair problem in computational geometry
is defined as follows: given a set P ⊂ Rd of n points
in d dimensions, find two distinct points p, q ∈ P
that minimize the Euclidean distance d(p, q), among
all pairs of points in P . As was already observed in
the 1970s, this problem can be solved in the plane
in O(n log n) time by computing the Delaunay trian-
gulation of P [11, 13, 14]. For any fixed d ≥ 2, the
classic divide-and-conquer algorithm by Bentley and
Shamos also achieves O(n log n) time [2,5]. This run-
ning time is asymptotically optimal in the algebraic
decision tree model of computation [1, 11].

However, this is far from the whole story. Once
we leave the confines of the algebraic decision tree
model, faster algorithms are possible. For example, in
the transdichotomous model, where the input may be
manipulated at the bit-level, we can compute planar
Delaunay triangulations, and hence also the planar
closest pair, in O(n log log n) expected time [3].

More famously, if we admit the floor-function x 7→
bxc into our model, there are randomized algorithms
that can compute the closest pair in linear expected
time. This was shown first by Rabin, in a famous
paper that is often considered the starting point for
the study of randomized algorithms [12]. Indeed, it
has been claimed that Rabin’s algorithm is one of the
first randomized algorithms in theoretical computer
science [15].

∗Supported by DFG project MU/3501-2.
†Institut für Informatik, Freie Universität Berlin, Germany

{bahareh, mulzer}@inf.fu-berlin.de

Since then, a lot more work has been done on the
closest pair problem: Dietzfelbinger et al. [6] describe
how to implement rigorously the hashing-based data
structure that was left open in Rabin’s original al-
gorithm. They also provide a detailed analysis of
Rabin’s algorithm that shows that bounded indepen-
dence suffices to obtain the desired expected run-
ning time. Khuller and Matias [9] describe an al-
ternative, sieve based approach to closest pairs, and
Golin et al. [7] give a very simple randomized algo-
rithm that uses the randomized incremental construc-
tion paradigm and that can be found in several text-
books [8, 10]. Finally, Chan [4] presents a random-
ized framework for geometric optimization problems
that also leads to a new randomized linear-time al-
gorithm for the closest pair problem. The survey by
Smid [15] contains a much more comprehensive treat-
ment of these results.

Despite the amount of activity on the closest pair
problem, the presentation of Rabin’s original algo-
rithm has remained untouched for more than 40
years [12]. We give a new description and analysis
of this algorithm in today’s terms. We hope that
this simplified presentation will make Rabin’s algo-
rithm more accessible for modern students of compu-
tational geometry, and it may lead to new insights
on the closest pair problem. Here, we focus on the
planar case, although all the arguments hold for d
dimensions, when d ∈ N is a constant.

2 Preliminaries

Let P ⊂ R2 be a set of n points in the plane such that
all
(
n
2

)
interpoint distances in P are pairwise distinct.

Furthermore, we assume that P lies completely in the
upper right quadrant, i.e., that all points in P have
positive coordinates.

For i ∈ Z, we define the ith grid Gi as the subdivi-
sion of the plane into square grid cells of diameter 2i.
The cells have pairwise disjoint interiors, side length
2i/
√

2, and they cover the whole plane. The grid Gi
is aligned such that the origin appears as a corner of
four adjacent grid cells. The neighborhood of a grid
cell σ ∈ Gi consists of the 7 × 7 square of grid cells
centered at σ. Two cells σ, τ ∈ Gi are neighboring if τ
lies in the neighborhood of σ (and hence σ lies in the
neighborhood of τ). We define the identifier of a cell
σ ∈ Gi as a pair from Z × Z, indicating the column
and row for σ. The cell whose lower left corner is the

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

33rd European Workshop on Computational Geometry, 2017

origin is identified as (0, 0). As it is standard in ran-
domized algorithms for the closest pair problem, we
assume that there is an operation findGridCell(i, p),
for i ∈ Z and p ∈ R2, that returns the identifier of the
cell σ in Gi, that contains the point p [7, 9, 12, 15].
Using the floor function, findGridCell can be imple-
mented in O(1) time.

A cell dictionary is a data structure for storing cells
that are in a grid [7]. It supports the following oper-
ations:

• create(i): create an empty cell dictionary D for
Gi.

• insert(D, p): insert the point p into D.

• lookup(D,σ): Suppose that D is a cell dictio-
nary for Gi and σ is a cell in Gi. Then, the lookup
operation reports the set of all points stored in D
that lie in σ. It returns ∅, if σ contains no points.

As explained by Golin et al. [7], the cell dictionary
can be implemented using the hashing-based tech-
niques of Dietzfelbinger et al. [6], so that the expected
time for create and insert is O(1) and the expected
time for lookup is O(1 + k), where k is the output
size. Alternatively, an implementation based on bi-
nary search trees achieves a worst-case running time of
O(1) for create, O(log n) for insert, and O(log n+k)
for lookup, where again k denotes the output size. In
our analysis, we will separately count the operations
on the cell dictionary and the remaining computa-
tional steps.

3 The Algorithm

We now describe our version of Rabin’s algorithm.
Let P ⊂ R2 be the n input points in the plane, and
set k = blog nc − 1. We compute a random gradation
P = P0 ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pk of P , where for
i = 1, . . . , k, the set Pi is a random subset of Pi−1
with exactly |Pi| = bn/2ic elements. In particular,
we have |Pk| = O(1).

The algorithm proceeds in rounds. The rounds are
numbered from k+1 to 1, beginning with round k+1.
For i = k+ 1, . . . , 1, the goal of round i is to compute
a cell dictionary Di−1 that stores all points from Pi−1
such that:

(A) each cell in Di−1 contains at most one point from
Pi−1; and

(B) let p, q ∈ Pi−1 be the two points that constitute
the closest pair in Pi−1. Then, the cells in Di−1
that contain p and q are neighboring.

Since |Pk| = O(1), this can be easily achieved in
round k + 1: by checking all pairs in Pk, we compute
the closest pair distance δk for Pk. Then, we set j =
dlog δke−1, and we create a cell dictionary Dk for the

grid Gj . We insert all points of Pk into Dk. Since the
diameter of the cells of Gj is 2j ∈ [δk/2, δk), each cell
in Dk contains at most one point of Pk. Furthermore,
since the cells in Gj have side length at least δk/2

√
2,

the cells for the closest pair in Pk are neighboring.
In round i, i = k, . . . , 1, the algorithm has the cell

dictionary Di from the previous round available, and
it constructs the dictionary Di−1 for round i as fol-
lows: first, we insert all points from Pi−1 into Di.
Then, for each non-empty cell σ in Di, we find the
set Qσ of points inside σ. We use a brute-force al-
gorithm to compute the closest pair distance δσ for
Qσ, and we set δi−1 = minσ∈Di δσ. Next, we set
j = dlog δi−1e−1, and we create a cell dictionary Di−1
for Gj . Then, we insert all points from Pi−1 into Di−1.
By construction, the diameter of the cells of Di−1 is
2j ∈ [δi−1/2, δi−1), and so, each cell of Di−1 contains
at most one point of Pi−1. Furthermore, since the
cells in Di−1 have side length at least δi−1/2

√
2, the

cells for the closest pair in Pi−1 must be neighboring
(we note that the closest pair distance could be much
less than δi−1, since we only check the distances in-
side each cell of Di to compute δi−1). The following
lemma summarizes the running time of round i.

Lemma 1 Let i ∈ {1, . . . , k}. In round i, the algo-
rithm performs O(|Pi−1|) cell dictionary operations,
and the additional work is proportional to∑

σ∈Di

|Qσ|2,

where the sum is over all non-empty cells σ stored in
Di, and Qσ is defined as Pi−1 ∩ σ.

Once we have the cell dictionary D0 for P at hand,
we can compute the closest pair of P with O(n) cell
dictionary operations and O(n) additional work: we
simply check the neighborhood of each non-empty cell
in D0, and we find the closest pair among all points
that reside in these cells. Since each cell of D0 con-
tains at most one point, and since the closest pair
must be in neighboring cells, this gives the closest
pair of P in the desired time.

4 Analysis

We now analyse our version of Rabin’s algorithm. For
i ∈ {1, . . . , k}, let

Zi =
∑
σ∈Di

|Qσ|2

be the random variable that represents the amount
of work in round i, excluding the time for the cell
dictionary operations. We will show that E[Zi] =
O(|Pi−1|), for i = 1, . . . , k.

For this, we fix an i ∈ {1, . . . , k} and a subset Q ⊆
P with |Q| = bn/2i−1c. First, we rewrite Zi in a
slightly different way.

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Lemma 2 Let i ∈ {1, . . . , k} and Q ⊆ P with |Q| =
bn/2i−1c be given. For p ∈ Q, let Xp denote the
number of points from Q that are in the same cell of
Di as p (including p). Then,

E[Zi | Pi−1 = Q] =
∑
p∈Q

E[Xp | Pi−1 = Q].

Proof. This can be seen through a simple application
of the double-counting principle. We have

E[Zi | Pi−1 = Q]

= E

[∑
σ∈Di

|Qσ|2
∣∣∣ Pi−1 = Q

]
= E

[∑
σ∈Di

∑
p∈σ∩Q

|Qσ|
∣∣∣ Pi−1 = Q

]

= E

[∑
p∈Q

∑
σ∈Di
p∈σ

|Qσ|
∣∣∣ Pi−1 = Q

]

= E

[∑
p∈Q

Xp

∣∣∣ Pi−1 = Q

]
,

as claimed. �

Next, we bound the expectation of Xp.

Lemma 3 Let i ∈ {1, . . . , k} and Q ⊆ P with |Q| =
bn/2i−1c be given. Let p ∈ Q, and let Xp denote the
number of points from Q that are in the same cell of
Di as p (including p). Then,

E[Xp | Pi−1 = Q] = O(1).

Proof. Set q = |Q|, and let r ∈ {1, . . . , q}. We know
that q ≥ 2 (since |Pi−1| ≥ 2). First, we show that

Pr[Xp ≥ r | Pi−1 = Q] ≤ 2r
(2

3

)r−1
. (1)

For this, consider the event that Xp ≥ r. This means
that, the cell σ ∈ Di that contains p must contain
at least r points from Q. How can this happen? For
j ∈ Z, let τj be the cell of Gj that contains p, and let
Qj = Q ∩ τj . Obviously, for j small enough, we have
Qj = {p}, for j large enough, we have Qj = Q (since
we assumed that all coordinates in P are positive),
and as j increases, Qj grows monotonically. Let j∗ be
the smallest index such that τj∗ has at least r point
of Q , |Qj∗ | ≥ r. And let R ⊆ Qj∗ be an arbitrary
subset with |R| = r. Now, if the cell σ ∈ Di with
p ∈ σ contains at least r points from Q, due to the
definition of j∗, the grid cell τj∗ is a subcell of the
grid cell σ, and so, σ contains all of R. Furthermore,
since σ appears in Di, by the invariant it must be the
case that σ contains at most one point from Pi; see
Figure 1. Thus, |Pi ∩R| ≤ 1, which implies:

Pr[Xp ≥ r | Pi−1 = Q] ≤ Pr[|Pi ∩R| ≤ 1 | Pi−1 = Q].

p

σ

p
τj∗

Figure 1: Left: The grid Gj∗ and the set Q of points
are shown. For q = 2 and the point p, the cell τj∗ is
specified. The points of the set R ⊆ Qj∗ , are filled
with black color. Right: The cell σ of Di is specified.
The red crosses show the points of Pi. The cell σ
contains all the points of R, thus |Pi ∩R| = 1.

Given Pi−1 = Q, we have that Pi is a random subset
of bq/2c points from Q. Since R is also a subset of
Q, the desired probability is easily bounded. If r >
dq/2e, then the intersection of Pi and R is not empty,
in another words Pr[|Pi ∩ R| = 0 | Pi−1 = Q] = 0.
Otherwise, if r ≤ dq/2e, we have

Pr[|Pi ∩R| = 0 | Pi−1 = Q]

=

(
q − r
bq/2c

)/(
q

bq/2c

)
=

(q − r)!
bq/2c! (dq/2e − r)!

bq/2c! dq/2e!
q!

=

r−1∏
k=0

dq/2e − k
q − k

≤
(
dq/2e
q

)r
≤
(2

3

)r
,

since q ≥ 2. Moreover, if we have r > dq/2e + 1,
then Pr[|Pi ∩ R| = 1 | Pi−1 = Q] = 0. Otherwise, if
r ≤ dq/2e+ 1, we have

Pr[|Pi ∩R| = 1 | Pi−1 = Q]

= r

(
q − r
bq/2c − 1

)/(
q

bq/2c

)
= r

(q − r)!
(bq/2c − 1)! (dq/2e − r + 1)!

bq/2c! dq/2e!
q!

= r
bq/2c

q − r + 1

r−2∏
k=0

dq/2e − k
q − k

≤ r
(
dq/2e
q

)r−1
≤ r
(2

3

)r−1
,

since q ≥ 2 and bq/2c/(q − r + 1) ≤ 1. Now, (1)
follows, since

Pr[Xp ≥ r | Pi−1 = Q] ≤ Pr[|Pi ∩R| ≤ 1 | Pi−1 = Q]

= Pr[|Pi ∩R| = 0 | Pi−1 = Q]

+ Pr[|Pi ∩R| = 1 | Pi−1 = Q]

≤
(2

3

)r
+ r
(2

3

)r−1
≤ 2r

(2

3

)r−1
.

33rd European Workshop on Computational Geometry, 2017

Now, we have

E[Xp | Pi−1 = Q] ≤
q∑
r=1

Pr[Xp ≥ r | Pi−1 = Q]

≤
∞∑
r=1

2r
(2

3

)r−1
= O(1),

as claimed. �

Lemma 4 For i ∈ {1, . . . , k}, E[Zi] = O(|Pi−1|).

Proof. Fix Q ⊆ P with |Q| = bn/2i−1c. By
Lemma 2 and Lemma 3, we have

E[Zi | Pi−1 = Q] =
∑
p∈Q

E[Xp | Pi−1 = Q]

=
∑
p∈Q

O(1) = O(|Q|) = O(|Pi−1|).

Thus, using the law of total probability

E[Zi] =
∑
Q⊆P

|Q|=bn/2i−1c

Pr[Pi−1 = Q]E[Zi | Pi−1 = Q]

= O(|Pi−1|)
∑
Q⊆P

|Q|=bn/2i−1c

Pr[Pi−1 = Q]

= O(|Pi−1|),

as claimed. �

The following theorem summarizes the analysis:

Theorem 5 The algorithm from Section 3 computes
the closest pair for P in expected time O(n).

Proof. We already argued correctness in Section 3.
As mentioned above, using randomization and the
floor function, we can implement all operations of the
cell dictionary in O(1) expected time [6, 7]. Thus, by
Lemma 1, the total expected time for the cell dictio-
nary operations is:

k∑
i=1

O (|Pi−1|) = O

(
k−1∑
i=0

n

2i

)
= O(n).

Similarly, by Lemma 1 and Lemma 4, the total ex-
pected time for the remaining steps is:

k∑
i=1

E[Zi] = O

(
k∑
i=1

|Pi−1|

)
= O(n).

We also argued that, having the cell dictionary D0 for
P , we can compute the closest pair of P in O(n) time.
This concludes the analysis. �

References

[1] M. Ben-Or. Lower bounds for algebraic compu-
tation trees (preliminary report). In Proc. 15th
Annu. ACM Sympos. Theory Comput. (STOC),
pages 80–86, 1983.

[2] J. L. Bentley and M. I. Shamos. Divide-and-
conquer in multidimensional space. In Proc. 8th
Annu. ACM Sympos. Theory Comput. (STOC),
pages 220–230, 1976.

[3] K. Buchin and W. Mulzer. Delaunay triangu-
lations in o(sort(n)) time and more. J. ACM,
58(2):6, 2011.

[4] T. M. Chan. Geometric applications of a ran-
domized optimization technique. Discrete Com-
put. Geom., 22(4):547–567, 1999.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press,
third edition, 2009.

[6] M. Dietzfelbinger, T. Hagerup, J. Katajainen,
and M. Penttonen. A reliable randomized algo-
rithm for the closest-pair problem. J. Algorithms,
25(1):19–51, 1997.

[7] M. Golin, R. Raman, C. Schwarz, and M. Smid.
Simple randomized algorithms for closest pair
problems. Nordic J. Comput., 2(1):3–27, 1995.

[8] S. Har-Peled. Geometric approximation algo-
rithms. Mathematical Surveys and Monographs.
American Mathematical Society, vol 173, 2011.

[9] S. Khuller and Y. Matias. A simple randomized
sieve algorithm for the closest-pair problem. In-
form. and Comput., 118(1):34–37, 1995.

[10] J. M. Kleinberg and É. Tardos. Algorithm design.
Addison-Wesley, 2006.

[11] F. P. Preparata and M. I. Shamos. Computa-
tional geometry. Springer-Verlag, 1985.

[12] M. O. Rabin. Probabilistic algorithms. In Algo-
rithms and Complexity: New Directions and Re-
cent Results, pages 21–40. Academic Press, 1976.

[13] M. I. Shamos. Geometric complexity. In Proc. 7th
Annu. ACM Sympos. Theory Comput. (STOC),
pages 224–233, 1975.

[14] M. I. Shamos and D. Hoey. Closest-point prob-
lems. In Proc. 16th Annu. IEEE Sympos. Found.
Comput. Sci. (FOCS), pages 151–162, 1975.

[15] M. Smid. Closest-point problems in computa-
tional geometry. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry,
pages 877–935. Elsevier, 2000.

