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Abstract Let C1, . . . , Cd+1 ⊂ Rd be d + 1 point sets, each containing the
origin in its convex hull. We call these sets color classes, and we call a sequence
p1, . . . , pd+1 with pi ∈ Ci, for i = 1, . . . , d+ 1, a colorful choice. The colorful
Carathéodory theorem guarantees the existence of a colorful choice that also
contains the origin in its convex hull. The computational complexity of finding
such a colorful choice (ColorfulCarathéodory) is unknown. This is partic-
ularly interesting in the light of polynomial-time reductions from several related
problems, such as computing centerpoints, to ColorfulCarathéodory.

We define a novel notion of approximation that is compatible with the
polynomial-time reductions to ColorfulCarathéodory: a sequence that
contains at most k points from each color class is called a k-colorful choice. We
present an algorithm that for any fixed ε > 0, outputs an dεde-colorful choice
containing the origin in its convex hull in polynomial time.

Furthermore, we consider a related problem of ColorfulCarathéodory:
in the nearest colorful polytope problem (Ncp), we are given sets C1, . . . , Cn ⊂
Rd that do not necessarily contain the origin in their convex hulls. The goal
is to find a colorful choice whose convex hull minimizes the distance to the
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origin. We show that computing a local optimum for Ncp is PLS-complete,
while computing a global optimum is NP-hard.

1 Introduction

Let P ⊂ Rd be a point set. Carathéodory’s well-known theorem [14, The-
orem 1.2.3] states that the containment of each point in conv(P ) can be
witnessed by a “small” subset of P . Moreover, the standard proof of this result
is constructive and gives a polynomial-time algorithm if the coefficients of
the original convex combination are known. In the following, we say that P
embraces a point q ∈ Rd or is q-embracing if and only if q is in the convex
hull of P . Similarly, we say P ray-embraces q if and only if q is in the cone
spanned by P .

Theorem 1.1 (Carathéodory’s theorem) Let P = {p1, . . . ,pn} ⊂ Rd be
a set of n points.

(Convex version) If P embraces the origin, there is an affinely independent
subset P ′ ⊆ P that embraces the origin.

(Cone version) If P ray-embraces a point b ∈ Rd, there is a linearly indepen-
dent subset P ′ ⊆ P that ray-embraces b. ut

As we will discuss in Section 2, the standard proof of Theorem 1.1 is
constructive and can be interpreted as a polynomial-time algorithm. Bárány [3]
generalized Carathéodory’s theorem by introducing colors: now, multiple point
sets embrace the origin, and we think of these point sets as color classes. Then,
there is a sequence of points, one from each color class, that also embraces the
origin. This is called a colorful choice. See Figure 1 for an example.

0

Fig. 1 The colorful Carathéodory theorem in two dimensions: all color classes embrace the
origin and the marked points form a 0-embracing colorful choice.
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Theorem 1.2 (Colorful Carathéodory theorem [3]) Let C1, . . . , Cd+1 ⊂
Rd be point sets that all embrace the origin. There exists a colorful choice that
embraces the origin.

Proof Let C, |C| ≤ d+ 1, be a colorful choice of C1, . . . , Cd+1. Let Φ(C) be the
minimum `2-distance between any point in conv(C) and the origin. If Φ(C) = 0,
then 0 ∈ conv(C), and we are done. Now, assume Φ(C) > 0. Let c be the point
in conv(C) with minimum `2-distance to the origin. Furthermore, let h− be the
open halfspace that contains the origin and that is bounded by the hyperplane
through c that is orthogonal to c interpreted as a vector. Since c minimizes
the distance to the origin, it is contained in a facet of conv(C). Note that c is
not necessarily contained in the interior of a facet. Theorem 1.1 implies that
there is a d-subset F ⊂ C of C with c ∈ conv(F ). Let i× be the color of the
point that is missing in F . The halfspace h− contains the origin, and thus it
contains at least one point ci× ∈ Ci× with color i×. Now, set C ′ = (F ∪{ci×}).
Since conv(C ′) contains c and a point in h−, we have Φ(C ′) < Φ(C). Thus,
if Φ(C) > 0, there is always a way to strictly decrease it. The situation is
depicted in Figure 2. Because there is only a finite number of colorful choices,
there is a colorful choice C? with Φ(C?) = 0. ut

0

c

c i×

Φ(C ) Φ(C ′)

h−

conv(C )

conv(C ′)

Fig. 2 Proof of the colorful Carathéodory theorem: if the potential function is larger than
0, it can be decreased by swapping one point with another point of the same color.

The convex version of Theorem 1.1 can be derived directly from Theorem 1.2
by setting C1 = · · · = Cd+1 = P . There are many different variants and
generalizations of the colorful Carathéodory theorem (see [16]).

We denote with ColorfulCarathéodory the computational problem of
finding a 0-embracing colorful choice under the conditions of Theorem 1.2. Col-
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orfulCarathéodory is particularly interesting in the light of its applications:
let P ⊂ Rd be a point set. We call a partition of P into r sets P1, . . . , Pr a
Tverberg r-partition if the convex hulls of the Pi have a point in common.
By Tverberg’s theorem [29], there always exists a Tverberg d|P |/(d + 1)e-
partition. We denote the computational problem of finding such a partition
by Tverberg. Sarkaria’s proof [26] of Tverberg’s theorem can be interpreted
as polynomial-time reduction of Tverberg to ColorfulCarathéodory.
Moreover, Tverberg’s theorem directly implies the centerpoint theorem [24]
that guarantees the existence of centerpoints, a popular generalization of
the median to higher dimensions. We call a point q ∈ Rd a centerpoint for
P if any closed halfspace that contains q also contains at least d|P |/(d +
1)e points from P . Consider a Tverberg r-partition P1, . . . , Pr of P for r =
d|P |/(d+1)e. Then any point in

⋂r
i=1 conv(Pi) 6= ∅ is a centerpoint. Hence, the

computational problem of computing centerpoints, Centerpoint, can again be
reduced in polynomial time to ColorfulCarathéodory. Furthermore, the
key argument of Sarkaria’s proof of Tverberg’s theorem can also be used to prove
the colorful Kirchberger theorem [2]: given n Tverberg r-partitions T1, . . . , Tn
for disjoint d-dimensional point sets of size n and r = dn/(d+ 1)e, a Tverberg
r-partition T can be constructed by taking exactly one point from each Ti and
putting it in the set of T with the same index as in Ti. Again, the proof can
be interpreted as a polynomial-time reduction to ColorfulCarathéodory
from ColorfulKirchberger, the computational problem corresponding to
the colorful Kirchberger theorem. We discuss these reductions in more detail
in Section 3.1.

In contrast to Carathéodory’s theorem, the complexity of ColorfulCara-
théodory is still unsettled. Since a solution always exists and can be verified
in polynomial-time, ColorfulCarathéodory is contained in the complexity
class total function NP (TFNP). This already implies that ColorfulCara-
théodory is not NP-hard unless NP = coNP [15, Theorem 2.1], [10, Lemma 4].
In a recent result, Meunier et al. [17] showed that ColorfulCarathéodory is
contained in the intersection of two important subclasses of TFNP: polynomial
parity argument in a directed graph (PPAD) and polynomial-time local search
(PLS). Moreover, Meunier and Sarrabezolles [18] have shown that a related
problem is PPAD-complete: given d + 1 pairs of points P1, . . . , Pd+1 ∈ Qd

and a colorful choice that embraces the origin, find another colorful choice
that embraces the origin. Complementary to this result, we show in Section 5
that a related problem is PLS-complete, the nearest colorful polytope problem
(Ncp): given n color classes C1, . . . , Cn, find a colorful choice whose distance
to the origin cannot be decreased by swapping one point with another point of
the same color. This problem is motivated by Bárány’s proof of Theorem 1.2.
Furthermore, we show that the global search variant of Ncp is NP-hard, which
answers a question by Bárány and Onn [4]. This question was also answered
independently by Meunier and Sarrabezolles [18].

Despite the recent improvements on the upper bounds on the complexity
of ColorfulCarathéodory, a polynomial-time algorithm remains elusive.
Hence, approximation algorithms are of interest. This was first considered by
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Bárány and Onn [4] who described how to find a colorful choice whose convex
hull is “close” to the origin under several general position assumptions. We call
a set ε-close to the origin if its convex hull has `2-distance at most ε to 0. Let
in the following ε, ρ > 0 be parameters. Given d + 1 sets C1, . . . , Cd+1 ∈ Qd

such that
(i) each Ci, i ∈ [d+ 1], contains a ball of radius ρ centered at the origin in its

convex hull, and
(ii) all points p ∈ Ci, i ∈ [d+ 1], fulfill 1 ≤ ‖p‖ ≤ 2.
Then, the algorithm by Bárány and Onn iteratively computes a sequence of
colorful choices such that the `2-distances of their convex hulls to the origin
strictly decrease until a colorful choice that embraces the origin is found. In
particular, if stopped earlier, a colorful choice that is ε-close to 0 can be
computed in time poly(L, log(1/ε), 1/ρ) on the Word-Ram with logarithmic
costs. Here, L denotes the length of the bit-encoding of the input points.
Note that if 1/ρ = O(poly(L)), the algorithm actually finds a colorful choice
that embraces the origin in polynomial-time. The Bárány-Onn algorithm is
essentially the algorithm from the proof of the convex version of Theorem 1.2,
and the main contribution is a careful analysis.

In the same spirit, Barman [5] showed that if the points have constant
norm, a colorful choice that is ε-close to the origin can be found in dO(1/ε2)L
time, where L is again the length of the input encoding. The algorithm uses the
following approximate version of Carathéodory’s theorem as a main ingredient:
let P ⊂ Rd be a 0-embracing point set. Then, for any ε > 0, there exists a subset
P ′ ⊆ P of size cε = O

(
maxp∈P ‖p‖/ε2

)
that is ε-close to 0. This immediately

implies a simple brute-force algorithm: let C1, . . . , Cd+1 ⊂ Qd be point sets
with 0 ∈ conv(Ci), for i ∈ [d+ 1], and assume all points have constant norm.
Let further C ⊆ ⋃d+1

i=1 Ci be a 0-embracing colorful choice whose existence is
guaranteed by Theorem 1.2. Then, the approximative version of Carathéodory’s
theorem asserts that there is a subset C ′ ⊆ C of size cε that is ε-close to the
origin. We can now guess C ′ by trying out all

(
d+1
cε

)
possibilities for the colors

in C ′, and for each color i, we try all |Ci| possibilities of picking a point with
color i. For each choice of C ′, we can check whether it is ε-close to the origin
by solving a convex quadratic program. Solving one convex quadratic program
needs O(poly(d)L) time [11, 13]. Hence, assuming that each color class is of
size O(d), we can compute an ε-close colorful choice in dO(1/ε2)L time.

It is desirable to approximate ColorfulCarathéodory in a way that
is compatible with the polynomial-time reductions to it. Then, good enough
approximation algorithms for ColorfulCarathéodory can be converted
to approximation algorithms for Tverberg, Centerpoint, and Color-
fulKirchberger. Both approximation algorithms above relax the require-
ment that the resulting colorful choice embraces the origin. However, in the
polynomial-time reductions from Tverberg, Centerpoint, and Colorful-
Kirchberger to ColorfulCarathéodory, it is crucial that the colorful
choice embrace the origin. If the convex hull is only close to the origin but does
not contain it, the reductions break down, and it is not immediate how to fix
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them. On the other hand, allowing multiple points from each color class has a
natural interpretation in the polynomial-time reductions to ColorfulCara-
théodory and leads to approximation algorithms for the other problems. Let
C1, . . . , Cd+1 ⊂ Rd be point sets that embrace the origin and let k ∈ N be a
number. We call a set C ⊆ ⋃d+1

i=1 Ci a k-colorful choice if it contains at most
k points from each Ci. In Section 3.1, we assume an oracle that computes
0-embracing k-colorful choices, and we give precise bounds on the quality of
the approximation algorithms for Tverberg, Centerpoint, and Color-
fulKirchberger depending on k. We obtain these bounds by combining
this oracle with the polynomial-time reductions. Furthermore, in Section 3,
we present an algorithm that computes for any fixed ε > 0, a 0-embracing
dεde-colorful choice.

2 Preliminaries: Embracing Equivalent Points

Throughout the paper, vectors or points are set in boldface. The origin is
denoted by 0, the canonical basis of Rd is denoted by e1, . . . , ed, and the all-
ones vector

∑d
i=1 ei is denoted by 1. For a set of points P = {p1, . . . ,pn} ⊂ Rd,

we denote by

– span (P ) = {∑n
i=1 φipi |φi ∈ R} its linear span and the subspace orthogonal

to span(P ) by span (P )
⊥

=
{
v ∈ Rd

∣∣∀p ∈ span(P ) : 〈v, p〉 = 0
}
;

– aff(P ) = {∑n
i=1 αipi |αi ∈ R,

∑n
i=1 αi = 1} its affine hull;

– pos(P ) = {∑n
i=1 ψipi |ψi ∈ R+} all linear combinations with nonnegative

coefficients. We call pos(P ) the positive span of P and we call a combination
with nonnegative coefficients a positive combination;

– conv(P ) = {∑n
i=1 λipi |λi ∈ R+,

∑n
i=1 λi = 1} its convex hull;

– dimP the dimension of span(P );

Unless noted otherwise, all algorithms are analyzed in the Real-Ram
model of computation [23, Chapter 1.4].1 We begin with a constructive version
of Theorem 1.1.

Lemma 2.1 (Constructive version of Carathéodory’s theorem) Sup-
pose that P ⊂ Rd is a 0-embracing point set. Given the coefficients of the convex
combination of 0 with the points in P , a 0-embracing affinely independent subset
P ′ ⊆ P can be computed in O

(
d3|P |+ |P |2

)
time.

Proof The standard proof of Theorem 1.1 is already constructive. We repeat it
briefly before analyzing its running time when interpreted as an algorithm.

Assume P is affinely dependent. Let p1, . . . ,pn denote the points in P and
let α1, . . . , αn ∈ R be coefficients of a nontrivial affine dependency, i.e., let

0 = α1p1 + · · ·+ αnpn (1)
1 Recall that the Real-Ram is the standard model of computational geometry where

memory cells store arbitrary real numbers and operations on them can be performed at unit
cost. We emphasize that there is no known algorithm for solving linear programs that needs
a polynomial number of steps on the Real-Ram. Thus, our algorithms avoid the use of LPs.
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with
∑n

i=1 αi = 0 and αi > 0 for some i ∈ [n]. Furthermore, because 0 ∈
conv(P ), there are coefficients λ1, . . . , λn ∈ R+ such that

0 = λ1p1 + · · ·+ λnpn (2)

and
∑n

i=1 λi = 1. Let c ∈ R be a factor that is to be specified. Scaling (1) by
c ∈ R and subtracting it from (2), we obtain

0 =

n∑
i=1

λipi − c
n∑

i=1

αipi =

n∑
i=1

λ′ipi,

where λ′i = λi − cαi. Thus, let i? = arg min {λi/αi | i ∈ [n], αi > 0}, where
ties are broken arbitrarily, and set c = λi?/αi? . Then,

∑n
i=1 λ

′
ipi is a convex

combination of 0 with the points in P \ {pi?}. Indeed by definition of i?, we
have λ′i = λi− cαi ≥ 0,

∑n
i=1 λ

′
i =

∑n
i=1(λi− cαi) =

∑n
i=1 λi = 1, and λ′i? = 0.

A repeated removal of points until the remaining set is affinely independent
implies the statement.

It remains to show the running time. We compute in each iteration a linear
dependency by Gaussian elimination in O

(
d3
)
time.2 By our assumption, we

know the convex coefficients λ1, . . . , λn and thus, we can find the point pi? ∈ P
in O(n) time. Furthermore, we can compute the new coefficients λ′i ∈ R+,
i ∈ [n] \ {i?}, from λ1, . . . , λn, the coefficients of the affine dependency, and
the index i? in O(n) time. Hence, one iteration takes O

(
d3 + n

)
time and since

there are O(n) iterations, the algorithm needs in total O
(
d3n+ n2

)
time. ut

In Section 3, we present two approximation algorithms that follow the
same strategy: begin with a complete color class and then replace a subset by
points from other color classes while maintaining the property that the origin
is embraced. We conclude this section with the necessary tools to implement
the replacement step.

Let C ⊂ Rd be a 0-embracing point set. We say C is minimally 0-embracing
if C \ {c} is not 0-embracing for all points c ∈ C.

0
h

conv(C )

c×

conv(C )

Fig. 3 The blue points constitute the linearly dependent set C. The removal of c× maintains
the embrace of the origin.

2 On the Real-Ram, we need not worry about the bit-complexity of Gaussian elimination.
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Lemma 2.2 Let C ⊂ Rd be an affinely independent 0-embracing set. Then, a
subset C ′ of C is linearly dependent if and only if C ′ embraces the origin.

Proof Clearly, all 0-embracing subsets of C must be linearly dependent. Let
now C ′ be a linearly dependent subset of C. We need to show that C ′ is
0-embracing. Assume without loss of generality that C ′ is a proper subset
and let c× ∈ C \ C ′ be a missing point. We prove that the set C = C \ {c×}
is 0-embracing. A repeated application of this argument then implies the
statement.

Since C ′ ⊆ C, the set C is linearly dependent. Thus, we can write 0 as a
nontrivial linear combination

∑
c∈C φcc of the points in C, where φc ∈ R, for

all c ∈ C. Furthermore, since C is affinely independent, so is C, and hence∑
c∈C φc 6= 0. By rescaling the coefficients, we obtain an affine combination of

0. This implies aff(C) = span(C). Now, because C = C \ {c×} and because C
is affinely independent, the point c× is not contained in the affine hull of C
and thus not in the linear span of C. Then, there exists a hyperplane h that
contains span(C) but not c×. See Figure 3. Because conv(C) is on one side of
h, the intersection h ∩ conv(C) = conv(C) is a face of conv(C). Since h and
conv(C) both contain the origin, the face conv(C) must contain the origin, too.
Hence, C is 0-embracing. ut

Lemma 2.3 Let C ⊂ Rd be a minimally 0-embracing set. Then, the following
holds:

(i) C is affinely independent and all proper subsets of C are linearly indepen-
dent.

(ii) For all c ∈ C, the point −c is ray-embraced by C \ {c}.
In particular, dimC = |C| − 1 and pos(C) = span(C).

Proof If C is affinely dependent, then by Theorem 1.1 there exists a proper
subset that embraces the origin. Thus, C must be affinely independent. Hence, (i)
is implied by Lemma 2.2. Write now C as c1, . . . , cn and let λ1, . . . , λn ∈ R+

be coefficients that sum to 1 such that 0 =
∑m

i=1 λici. Then, −λici ∈ pos(C)
for all i ∈ [n]. Because C \ {c} does not embrace the origin for any c ∈ C, we
have λi > 0 for i ∈ [n]. This implies (ii). ut

Using the fact that all proper subsets of a minimally 0-embracing set C are
linearly independent, we show how to compute for each point in the positive
span of C the coefficients of the positive combination.

Lemma 2.4 Let C ⊂ Rd be a minimally 0-embracing set and let q ∈ pos (C)
be a point. Then, we can compute the coefficients of a nontrivial positive
combination of q with the points in C in O

(
d4
)
time.

Proof Consider first the case that q = 0. Let c× ∈ C be an arbitrary point
and denote with C = C \ {c×} the remaining points. By Lemma 2.3, −c×
is ray-embraced by C. Thus, the linear system Ax = −c×, where A is the
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matrix whose columns are the points from C, has a solution. By Lemma 2.3 (i),
the set C is linearly independent and hence this solution is unique. Thus, we
can compute the coefficients ψc ∈ R, c ∈ C, such that −c× =

∑
c∈C ψcc in

O
(
d3
)
time with Gaussian elimination. Moreover, since the solution is unique,

we must have ψc ≥ 0 for all c ∈ C. Set ψc× to 1. Then, 0 =
∑

c∈C ψcc, all
coefficients are nonnegative, and not all coefficients are zero.

Consider now the case that q 6= 0. We iterate through all c× ∈ C and solve
the linear system Lc× : Ax = q, where the columns of A are the points in
C \ {c×}. Again by Lemma 2.3 (i), the columns of A are linearly independent
and hence the solution xc× to Lc× is unique, if it exists. If xc× ≥ 0, we have
found the desired coefficients. By Theorem 1.1, there exists a proper subset
C ′ of C that ray-embraces q and thus there exists a point c? ∈ C for which
xc? ≥ 0. Solving the linear system Lc× takes O

(
d3
)
time for each point c× ∈ C

with Gaussian elimination, and hence we need O
(
d4
)
time in total until finding

the q-embracing subset C \ {c?} together with the coefficients of the positive
combination. ut

We can now combine the previous results to show that given a 0-embracing
set, we can find a minimally 0-embracing subset in polynomial time together
with the coefficients of the convex combination of the origin.

Lemma 2.5 Let C ⊂ Rd be a 0-embracing set of size n. Given the coefficients
of the convex combination of 0 with the points in C, we can find a minimally
0-embracing subset C ′ ⊆ C and the coefficients of the convex combination of 0
with the points in C ′ in O

(
n2 + nd3 + d4

)
time.

Proof First, we apply Lemma 2.1 to obtain an affinely independent subset C ′
of C that embraces the origin. Then, we iteratively test for each point c ∈ C ′
whether the set C ′ \ {c} is linearly dependent. If so, we remove c from C ′.
After iterating through all points, the resulting set still embraces the origin by
Lemma 2.2 and moreover, since no proper subset is linearly dependent, it is
minimally 0-embracing.

The initial application of Lemma 2.1 needs O
(
n2 + nd3

)
time. Then, check-

ing for one point c ∈ C ′ whether C ′ \ {c} is linearly dependent takes O
(
d3
)

time with Gaussian elimination. Because C ′ is affinely independent, we have
|C ′| ≤ d+ 1 and thus the claimed running time follows. ut

Let now Q ⊂ Rd be a set and let C ⊂ Rd be a 0-embracing set, as before.
We say a subset C ′ of C is 0-embracing equivalent to Q with respect to C if
(C \ C ′) ∪ Q embraces 0. In the following, we show that if Q embraces the
origin when orthogonally projected onto span(C)⊥, there is always at least one
point in C that is 0-embracing equivalent to Q. See Figure 4.

Lemma 2.6 Let C ⊂ Rd be a 0-embracing set and let Q be a set whose
orthogonal projection Q⊥ onto span(C)⊥ embraces 0. Then, there exists a point
c ∈ C that is 0-embracing equivalent to Q with respect to C. Furthermore, if
both C and Q⊥ are minimally 0-embracing, we can compute c together with
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0 span(C )⊥

Q

Q⊥

c

Fig. 4 An example of Lemma 2.6. The red points constitute the minimal 0-embracing set
C and the blue points constitute the set Q that embraces the origin when projected onto
span(C)⊥. The point c ∈ C is 0-embracing equivalent to Q.

0

r 2

C1

r 1

C2

Fig. 5 An example of Lemma 2.7. The set C consists of the vertices of the simplex, and the
two representative points are with respect to the indicated partition.

the coefficients of the convex combination of 0 with the points in (C \ {c}) ∪Q
in O

(
d4
)
time.

Proof We first prove that there is always a point in C that is 0-embracing
equivalent to Q. After that, we show how to find this point efficiently. We
can assume without loss of generality that C is minimally 0-embracing, since
otherwise the statement holds trivially. Let now q1, . . . , qm ∈ Rd denote the
points in Q and write each qi, i ∈ [m], as the sum of a vector pi ∈ span(C) and
a vector p⊥i ∈ span(C)⊥. Because Q projected onto span(C)⊥ is 0-embracing,
there are coefficients λ1, . . . , λm ∈ R+ that sum to 1 such that 0 =

∑m
i=1 λip

⊥
i .

Consider the convex combination q =
∑m

i=1 λiqi of the points in Q with the
same coefficients. Since

q =

m∑
i=1

λi
(
pi + p⊥i

)
=

(
m∑
i=1

λipi

)
+

(
m∑
i=1

λip
⊥
i

)
=

m∑
i=1

λipi,
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the point q is contained in span(C). By Lemma 2.3, we have pos(C) = span(C)
and hence −q is ray-embraced by C. Now, the cone version of Theorem 1.1
states that there is a linearly independent subset C ′ of C that ray-embraces
−q. Because dimC = |C| − 1 by Lemma 2.3, the set C ′ must be a proper
subset. Then, Q is 0-embracing equivalent to all points in C \ C ′ 6= ∅.

It remains to show how to find a point in C \ C ′. Recall that we assume
that both C and Q⊥ are minimally 0-embracing, where Q⊥ is the orthogonal
projection of Q onto span(C)⊥. Using the algorithm from Lemma 2.4, we
compute the coefficients of the convex combination of the origin with the points
in Q⊥ and hence the point −q in O

(
d4
)
time. Applying Lemma 2.4 again,

we can determine the coefficients of the positive combination of −q with the
points in C in O

(
d4
)
time. Similar to the algorithm from Lemma 2.5, we try

all (|C| − 1)-subsets of C until we find the linearly independent subset of C
that ray-embraces −q. Since the linear combination of −q is unique, we thus
obtain the minimally (−q)-ray-embracing subset C ′ of C in O

(
d4
)
time. Then,

we can choose any point in C \ C ′ as c. Finally, since we know the coefficients
of the convex combination of q with the points in Q and since we can apply
Lemma 2.4 to compute the coefficients of the positive combination of −q with
the points in C ′, we can compute the coefficients of the convex combination of
the origin with the points in C ′ ∪Q by rescaling appropriately. The algorithm
takes in total O

(
d4
)
time, as claimed. ut

Lemma 2.6 by itself does not yet yield a nontrivial approximation algorithm.
This is due to the weak guarantee that only a single point in C is 0-embracing
equivalent to Q. To amplify the number of points that can be replaced, we
conclude this section by showing how to compute a set of representative points
R for C. Each representative point stands for a specific subset of C such that
if a point in R is 0-embracing equivalent to a set Q with respect to R, then
the corresponding subset of C is 0-embracing equivalent to Q with respect to
C. See Figure 5.

Lemma 2.7 Let C ⊂ Rd be a minimally 0-embracing set and let C1, . . . , Cm

be a partition of C into m ≥ 2 sets with |Ci| ≥ 1, for all i ∈ [m]. Then, we
can compute in O

(
d4
)
time a set of points R = {r1, . . . , rm} ⊂ Rd with the

following properties:

(i) R is minimally 0-embracing.
(ii) Let Q ⊂ Rd be a set that is 0-embracing equivalent to some point rj ∈ R

with respect to R. Then, Q is 0-embracing equivalent to Cj with respect to
C.

We call the points in R representative points for C with respect to the partition
C1, . . . , Cm.

Proof Since C is minimally 0-embracing, we can write 0 as a convex combina-
tion

∑
c∈C λcc such that all λc are strictly greater than 0 and sum to 1. With

the algorithm from Lemma 2.4, we can compute these coefficients in O
(
d4
)

time. For i ∈ [m], set ri to
∑

c∈Ci
λcc. Clearly, R is 0-embracing. Moreover, for
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all j ∈ [m], the set {ri | i ∈ [m], i 6= j} is not 0-embracing since otherwise the
set
⋃m

i=1, i 6=j Ci, a strict subset of C, is 0-embracing, a contradiction to C being
minimally 0-embracing. Let now Q be a set that is 0-embracing equivalent to
some point rj ∈ R with respect to R. That is, the set Q∪ (R \ {rj}) embraces
the origin. Because ri ∈ pos (Ci), for i ∈ [m], then the set Q∪

(⋃m
i=1, i 6=j Ci

)
is

0-embracing as well, and hence Q is 0-embracing equivalent to Cj with respect
to C. ut

3 k-Colorful Choices

Lemmas 2.6 and 2.7 give rise to a simple approximation algorithm. Let
C1, . . . , Cm ⊂ Rd be m color classes that each embrace the origin, and set
k = max

(
d−m+ 2,

⌈
d+1
2

⌉)
. Then, the following algorithm recursively com-

putes a 0-embracing k-colorful choice. First, we prune C1 with Lemma 2.5 and
partition it into two sets C ′, C ′′ of size at most d(d+ 1)/2e. Using Lemma 2.7,
we compute two representative points r′, r′′ for this partition of C1. Then, we
project the remainingm−1 color classes onto the (d−1)-dimensional space that
is orthogonal to span(r′, r′′)⊥, and we recursively compute a 0-embracing k-
colorful choice Q with respect to the projections of C2, . . . , Cm. By Lemmas 2.6
and 2.7, one of the two sets C ′, C ′′, say C ′, is 0-embracing equivalent to Q
with respect to C1. Since Q is a k-colorful choice that does not contain points
from C1 and since |C ′|, |C ′′| ≤ k, the set C ′′ ∪Q is a 0-embracing k-colorful
choice. The recursion stops once only one color class is left. Then, we are in
dimension d−m+ 1. Since d−m+ 2 ≤ k, pruning the single remaining color
class with Lemma 2.5 results already in a 0-embracing k-colorful choice. For
details, see Algorithm 3.1.

Algorithm 3.1: Simple Approximation
Input: m sets C1, . . . , Cm ⊂ Rd that each embrace the origin, and for each Ci,

i ∈ [m], the coefficients of the convex combination of 0 with the points in Ci

Output: minimally 0-embracing max
(
d−m + 2,

⌈
d+1
2

⌉)
-colorful choice

1 C ← prune C1 with Lemma 2.5;
2 if m = 1 then return C;

3 C′, C′′ ← partition of C into two sets, each of size at most
⌈
d+1
2

⌉
;

4 Compute representative points r′, r′′ for C′, C′′;
5 qC2, . . . , qCm ← orthogonal projection of C2, . . . , Cm onto span(r′, r′′)⊥;
6 qQ← recurse( qC2, . . . , qCm);
7 Q← replace projected points in qQ by original points from

⋃m
i=2 Ci;

8 Determine which point r× ∈ {r′, r′′} is 0-embracing equivalent to Q with Lemma 2.6
and let C× be the corresponding subset of C;

9 return
(
C \ C×

)
∪Q pruned with Lemma 2.5;
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Theorem 3.1 Let C1, . . . , Cm ⊂ Rd be m ≤ d color classes such that Ci is a
0-embracing set of size O(d), for i ∈ [m]. On input C1, . . . , Cm and given the
coefficients of the convex combination of the origin for each set Ci, Algorithm 3.1
computes a 0-embracing max

(
d−m+ 2,

⌈
d+1
2

⌉)
-colorful choice in O

(
d5
)
time.

In particular, for m = bd/2c+ 1, the algorithm computes a (dd/2e+ 1)-colorful
choice.

Proof The correctness of Algorithm 3.1 is a direct consequence of Lemmas 2.6
and 2.7. It remains to analyze the running time. In each step of the recursion
except for the last one, we prune two times a set of size O(d) with Lemma 2.5.
This needs O

(
d4
)
time. Furthermore, by Lemma 2.7, computing two repre-

sentative points also takes O
(
d4
)
time. Finally, given the set Q, determining

which representative point is 0-embracing equivalent to Q takes also O
(
d4
)

by Lemma 2.6 and using the fact that the recursively computed solution is
minimally embracing. Thus, we need O

(
d4
)
time per step of the recursion and

there are O(d) recursion steps in total. The total running time is O
(
d5
)
. ut

Although nontrivial, the fact that we can take in polynomial time half of
the points from each color class to construct a 0-embracing (dd/2e+ 1)-colorful
choice may not be too surprising. In the remainder of this section, we present
a generalization of Algorithm 3.1 that computes 0-embracing dεde-colorful
choices in polynomial time for any fixed ε > 0. The improved approximation
guarantee is achieved by repeatedly replacing subsets of C with Lemmas 2.6
and 2.7 in each step of the recursion. To still ensure polynomial running
time, we reduce the dimensionality by a constant fraction in each step of the
recursion. Additionally, we slightly worsen the desired approximation guarantee
in each level of the recursion, i.e., if the current recursion level is j and the
dimensionality is d′, then we do not compute an dεd′e-colorful choice, but a⌈
(1− ε/2)−j/2εd′

⌉
-colorful choice. As we will see, this additional “slack” in the

approximation guarantee limits the recursion depth to a constant depending
only on ε.

In more detail, let C1, . . . , Cd+1 ⊂ Rd be d+ 1 sets that each embrace the
origin, and let ε > 0 be a parameter. We want to compute an dεde-colorful
choice that embraces the origin. Set

dj =

⌈(
1− ε

2

)j
d

⌉
and kj =

⌈
ε
(

1− ε

2

)j/2
d

⌉
,

for j ∈ N. The sequence dj controls the dimension reduction argument with
Lemmas 2.6 and 2.7, i.e., in the jth recursion level, the dimensionality of
the input will be dj . The sequence kj defines the approximation guarantee
in the jth recursion level. Note that d0 = d and k0 = dεde. Assume now we
are in recursion level j. That is, the input consists of dj + 1 color classes
C1, . . . , Cdj+1 ⊂ Rdj that each embrace the origin together with the coefficients
of their convex combinations of the origin. We want to compute a 0-embracing
kj-colorful choice. As in the previous algorithm, we begin by computing a
minimal 0-embracing subset C of C1 with Lemma 2.5. If kj ≥ dj + 1, then
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C is already a valid approximation. Otherwise, we iteratively transform C
into a kj-colorful choice. For this, we repeatedly replace subsets of C with
points from C2 ∪ · · · ∪ Cdj+1 until it contains at most kj points from each
color. This is done as follows. Set m = dj − dj+1 + 1. In the general situation,
C contains points from several color classes, and we partition C into sets
D1, . . . , Dm by distributing the points from each color in C equally among
these m sets. Then, we compute representative points r1, . . . , rm for this
partition. Let C?

1 , . . . , C
?
dj+1+1 ∈

{
C2, . . . , Cdj+1

}
be dj+1 + 1 color classes,

where we discuss shortly how they are chosen. We recursively compute a kj+1-
colorful choice Q for C?

1 , . . . , C
?
dj+1+1 that embraces the origin when projected

on U = span(r1, . . . , rm)⊥. Note that dimU = dj − (m− 1) = dj+1 and hence
the dimensionality of the input in recursion level j+ 1 is dj+1, as desired. Then,
by Lemmas 2.6 and 2.7, at least one representative point ri× and hence at least
one of the sets Di× is 0-embracing equivalent to Q. We set C to (C \Di×)∪Q
and prune it with Lemma 2.5. We repeat these steps until C is a kj-colorful
choice.

To ensure progress, m should be smaller than kj so that Di× is guaranteed
to contain a point from each color that appears more than kj times in C.
Furthermore, Q should not contain points with colors that appear “often” in C.
We call a color class Ci light with respect to C if |C∩Ci| ≤ kj−kj+1, and heavy,
otherwise. For the recursion, we use only light color classes. A kj+1-colorful
choice with light colors can be added safely to C without increasing any color
over the threshold kj . In particular, since we start with C = C1 and use only
light color classes, no other color class can ever occur more than kj times in C
and hence we are finished once the number of points from C1 is at most kj .
Please refer to Algorithm 3.2 for details.

The next lemma states that for ε fixed, the number of necessary recursions
before a trivial approximation with Lemma 2.5 suffices is constant.

Lemma 3.2 For any ε = Ω
(
d−1/4

)
there exists a j = Θ

(
ε−1 ln ε−1

)
such that

kj ≥ dj + 1.

Proof Replacing dj with its definition, we obtain

dj + 1 =

⌈(
1− ε

2

)j
d

⌉
+ 1 ≤

(
1− ε

2

)j
d+ 2. (3)

Using ln
(
1− ε

2

)
≥ −ε if ε ≤ 1, we have for j ≤ 1

ε ln d,

(
1− ε

2

)j
d ≥ e−εjd ≥ 1. (4)

Furthermore, using that ln
(
1− ε

2

)
≤ − ε

2 , we have for j ≥ 4
ε ln 3

ε

3
(

1− ε

2

)j/2
≤ 3e−εj/4 ≤ ε. (5)
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Algorithm 3.2: dεde-Approximation
Input: recursion depth j ∈ N0 (initially 0), original dimension d ∈ N, approximation

parameter ε > 0, dj + 1 sets C1, . . . , Cdj+1 ⊂ Rdj that each embrace the
origin, and for each Ci the coefficients of the convex combination of 0 with
the points in Ci

Output: minimally 0-embracing kj-colorful choice

1 kj ←
⌈
ε
(
1− ε

2

)j/2
d
⌉
;

2 dj+1 ←
⌈(

1− ε
2

)j+1
d
⌉
;

3 m← dj − dj+1 + 1;
4 C ← prune C1 with Lemma 2.5;
5 while |C ∩ C1| > kj do
6 D1, . . . , Dm ← partition of C s.t. the points from each color class are evenly

distributed;
7 Compute representative points r1, . . . , rm for D1, . . . , Dm with Lemma 2.7;

8 Find dj+1 + 1 light color classes C?
1 , . . . , C

?
dj+1+1 ∈

{
C2, . . . , Cdj+1

}
;

9 qC1, . . . , qCdj+1+1 ← orthogonal projection of C?
1 , . . . , C

?
dj+1+1 onto

span(r1, . . . , rm)⊥;
10 qQ←recurse(j + 1, d, ε, qC1, . . . , qCdj+1+1);

11 Q← replace projected points in qQ by original points from
⋃dj+1+1

i=1 C?
i ;

12 Determine which point ri× ∈ {r1, . . . , rm} is 0-embracing equivalent to Q with
Lemma 2.6;

13 C ← (C \Di× ) ∪Q pruned with Lemma 2.5;
14 return C;

Combining (4) and (5) with (3), we get

dj + 1 ≤ 3
(

1− ε

2

)j
d ≤ ε

(
1− ε

2

)j/2
d ≤

⌈
ε
(

1− ε

2

)j/2
d

⌉
= kj .

For d = Ω
(
ε−1/4

)
, there is a j with 4

ε ln 3
ε ≤ j ≤ 1

ε ln d. The claim follows. ut

Next, we show that if the recursion depth is not too large, then we can
always find enough light color classes.

Lemma 3.3 Let j ∈ N and let C1, . . . , Cdj+1 ⊂ Rdj be dj + 1 color classes.
Furthermore, let C ⊆ ⋃dj+1

i=1 Ci be a set of size at most dj + 1. For all j =
O
(
ε−1 ln(ε3d)

)
, there exist dj+1 + 1 light color classes with respect to C.

Proof We recall that a color class Ci, i ∈ [dj + 1], is light with respect to C if
|C ∩Ci| ≤ kj − kj+1. Then, the number of heavy color classes h is bounded by

h ≤
⌈

dj + 1

kj − kj+1

⌉
≤ 2dj
kj − kj+1

+ 1, (6)
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since dj ≥ 1 for all j ∈ N. We can bound the denominator as follows

kj − kj+1 =

⌈
ε
(

1− ε

2

)j/2
d

⌉
−
⌈
ε
(

1− ε

2

)(j+1)/2

d

⌉
≥ ε

(
1− ε

2

)j/2
d− ε

(
1− ε

2

)(j+1)/2

d− 1

= ε
(

1− ε

2

)j/2
d

(
1−

√
1− ε

2

)
− 1 ≥ ε2

4

(
1− ε

2

)j/2
d− 1, (7)

where we apply 1−
√

1− ε
2 ≥ ε

4 in the last inequality. Using that ln
(
1− ε

2

)
≥

−ε if ε ≤ 1, we have for j ≤ 2
ε ln ε2d

8

1 ≤ ε2

8
e−εj/2d ≤ ε2

8

(
1− ε

2

)j/2
d (8)

and hence (7) can be simplified to

kj − kj+1 ≥
ε2

8

(
1− ε

2

)j/2
d. (9)

Plugging (9) into (6) and using (8), we obtain

h ≤
2
⌈(

1− ε
2

)j
d
⌉

ε2

8

(
1− ε

2

)j/2
d

+ 1 ≤ 2
(
1− ε

2

)j
d

ε2

8

(
1− ε

2

)j/2
d

+ 3 =
16

ε2

(
1− ε

2

)j/2
+ 3.

Then, the number ` of light color classes is at least

` = dj + 1− h ≥
⌈(

1− ε

2

)j
d

⌉
− 16

ε2

(
1− ε

2

)j/2
− 2

≥
(

1− ε

2

)j
d

(
1− 16

ε2
(
1− ε

2

)j/2
d
− 2(

1− ε
2

)j
d

)
. (10)

For j ≤ 2
ε ln ε3d

128 , using ln
(
1− ε

2

)
≥ −ε if ε ≤ 1, we have

16

ε2
(
1− ε

2

)j/2
d

+
2(

1− ε
2

)j
d
≤ 16

ε2e−εj/2d
+

2

e−εj/2d
≤ ε

8
+
ε

8
≤ ε

4

and thus (10) implies

` ≥
(

1− ε

4

)(
1− ε

2

)j
d. (11)

For j ≤ 2
ε ln εd

2 , using ln
(
1− ε

2

)
≥ −ε if ε ≤ 1, we can bound

ε

4

(
1− ε

2

)j
d ≥ ε

4
e−εj/2d ≥ 2. (12)
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Combining (12) with (11), we get

` ≥
(

1− ε

2

)j+1

d+
ε

4

(
1− ε

2

)j
d

≥
(

1− ε

2

)j+1

d+ 2 ≥
⌈(

1− ε

2

)j+1

d

⌉
+ 1 = dj+1 + 1.

Thus, for j = O
(
ε−1 ln(ε3d)

)
, there are at least dj+1 + 1 light color classes

with respect to C. ut

Before we finally prove correctness, we show if the recursion depth j is
not too large, then each set of the partition of C contains at least one point
from C1 until C is a kj-colorful choice. This implies that each iteration of the
while-loop decreases the amount of points from C1 in C.

Lemma 3.4 For all j = O
(
ε−1 ln(εd)

)
, we have m = dj − dj+1 + 1 ≤ kj + 1.

Proof First, we upper bound m as follows:

m = dj − dj+1 + 1 =

⌈(
1− ε

2

)j
d

⌉
−
⌈(

1− ε

2

)j+1

d

⌉
+ 1

≤
(

1− ε

2

)j
d−

(
1− ε

2

)j+1

d+ 2 =
ε

2

(
1− ε

2

)j
d+ 2.

(13)

For j ≤ 2
ε ln εd

2 , with ln
(
1− ε

2

)
≥ −ε if ε ≤ 1, we obtain ε

2

(
1− ε

2

)j
d ≥

ε
2e
−εj/2d ≥ 1. Using this in (13), we get

m ≤ ε
(

1− ε

2

)j
d+ 1 ≤

⌈
ε
(

1− ε

2

)j
d

⌉
+ 1 = kj + 1,

as desired. ut

Theorem 3.5 Let C1, . . . , Cd+1 ⊂ Rd be d + 1 sets such that Ci is a 0-
embracing set of size O(d), for i ∈ [d+ 1], and let ε = Ω

(
d−1/4

)
be a parameter.

On input 0, d, ε, C1, . . . , Cd+1, and given the coefficients of the convex com-
bination of the origin with the points in Ci, for i ∈ [d + 1], Algorithm 3.2
computes a 0-embracing dεde-colorful choice in dO(ε−1 ln ε−1) time.

Proof We begin by showing that if the algorithm enters the while loop in
recursion level j, it is always possible to find dj+1+1 light color classes and that
the projections qC1, . . . , qCdj+1+1 of these color classes are 0-embracing subsets
of Rdj+1 (Line 9). In other words, we show that recursion is possible if C is not a
kj-colorful choice. Assume now the algorithm enters the while loop in recursion
level j. Then, C is a minimally 0-embracing subset of C1 ⊂ Rdj and has size at
least kj + 1. In Line 6, we partition C into m sets D1, . . . , Dm by distributing
the points from each color class equally. By Lemma 3.4, we have m ≤ kj + 1,
for j = O

(
ε−1 ln(εd)

)
, and hence each set Di is nonempty. Thus, the algorithm
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from Lemma 2.7 can be applied in Line 7 to compute the representative
points r1, . . . , rm. Moreover dim span (r1, . . . , rm) = m− 1 by Lemma 2.7 and
Lemma 2.3. Thus, dim span (r1, . . . , rm)

⊥
= d−m+1 = dj+1. Now, Lemma 3.3

guarantees that we can always find dj+1 + 1 light color classes C?
1 , . . . , C

?
dj+1+1,

if j = O
(
ε−1 ln ε3d

)
. Because each color class C?

i , i ∈ [dj+1 +1], is 0-embracing,
so are their orthogonal projections onto span(r1, . . . , rk)T . Thus, recursion is
possible if j = O

(
ε−1 ln ε3d

)
. By Lemma 3.2, the recursion depth is limited to

Θ
(
ε−1 ln ε−1

)
, since then pruning C1 with Lemma 2.5 in Line 4 is already a

0-embracing kj-colorful choice. In this case, the while loop is never executed.
We conclude that for ε = Ω

(
d−1/4

)
, recursion is always possible as long as C

is not a kj-colorful choice.
Next, we prove that the algorithm computes in recursion level j a 0-

embracing kj-colorful choice. As discussed above, the recursion terminates
after O

(
ε−1 ln ε−1

)
steps when the set C from Line 4 is already a 0-embracing

kj-colorful choice. If C is not already a valid approximation, the while loop
is executed. In each iteration of the while loop, C is partitioned into m sets
D1, . . . , Dm by distributing the points from each color equally among the Di.
By Lemma 3.4, m ≤ kj + 1 for j = O

(
ε−1 ln εd

)
and hence each set Di, i ∈ [m],

contains at least one point from C1. Applying Lemmas 2.6 and 2.7, one of
these sets, say Di× , is replaced in C by a recursively computed kj+1-colorful
choice Q that is 0-embracing when projected onto span(r1, . . . , rm)⊥. Since
we use in the recursion only light color classes with respect to C, and since
C1 is not a light color class, each iteration of the while loop strictly decreases
the number of points from C1 in C. Moreover, because Q contains only points
from light color classes and since it is a kj+1-colorful choice, (C \Di×) ∪ Q
contains at most kj points from the color classes C2, . . . , Cdj+1. Thus, after
O(d) iterations, C is a 0-embracing kj-colorful choice.

It remains to analyze the running time. The initial computation of C in
Line 4 and each iteration of the while loop except for the recursive call takes
O
(
d4
)
time. Since the while loop is executed O(d) times and since the recursion

depth is bounded by O
(
ε−1 ln ε−1

)
, the total running time of Algorithm 3.2 is

dO(ε−1 ln ε−1). ut

3.1 Applications

As discussed in the introduction, the main motivation for k-colorful choices is
their application in polynomial-time reductions to ColorfulCarathéodory.
We begin by presenting the proofs whose interpretation as algorithms results
in the polynomial reductions. Then, we give precise bounds on the quality of
the obtained approximation algorithms for Centerpoint, Tverberg, and
ColorfulKirchberger when having access to an algorithm that on input
d+ 1 color classes C1, . . . , Cd+1, each 0-embracing and of size at most d+ 1,
computes a 0-embracing k(d)-colorful choice in time W (d).
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Theorem 3.6 (Centerpoint theorem [24, Theorem 1]) Let P ⊂ Rd be
a point set. Then, there exists a point q ∈ Rd such that for any halfspace h−

with q ∈ h−, we have |P ∩ h−| ≥
⌈
|P |
d+1

⌉
. ut

Teng [28, Theorem 8.4] showed that given a point set P ∈ Rd and a
candidate centerpoint q ∈ Rd, it is coNP-complete to decide whether q is a
centerpoint of P , if d is part of the input. For d = 1, a centerpoint is equivalent
to a median of a set of numbers and hence can be computed in O(|P |) time [6].
Jadhav and Mukhopadhyay [9] showed that linear time is sufficient even in
two dimensions. For d ≥ 3 fixed, the best known algorithm is by Chan [7] who
showed how to compute a point with maximum Tukey depth, a stronger notion
than being a centerpoint, in expected time O

(
nd−1

)
.

Although it is in general coNP-complete to verify centerpoints, Tverberg
partitions serve as polynomial-time checkable certificates for a subset of cen-
terpoints. In recent years, this property has been exploited algorithmically to
derive efficient approximation algorithms for centerpoints [20,21]. The existence
of Tverberg points is guaranteed by Tverberg’s theorem [29].

Theorem 3.7 (Tverberg’s theorem [29]) Let P ⊂ Rd be a point set of size
n. Then, there always exists a Tverberg

⌈
|P |
d+1

⌉
-partition for P . Equivalently,

let P be of size (m− 1)(d+ 1) + 1, with m ∈ N. Then, there exists a Tverberg
m-partition for P .

While Tverberg’s first proof is quite involved, several simplified subsequent
proofs [25,26,30,31] have been published. Here, we present Sarkaria’s proof [26]
with further simplifications by Bárány and Onn [4] and Arocha et al. [2]. The
main tool is the next lemma that establishes a correspondence between the
intersection of convex hulls of low-dimensional point sets and the embrace
of the origin of certain high-dimensional point sets. It was extracted from
Sarkaria’s proof by Arocha et al. [2]. In the following, we denote with ⊗ the
tensor product that maps two points p ∈ Rd, q ∈ Rm to the point

p⊗ q =


(q)1p
(q)2p

...
(q)mp

 ∈ Rdm,

where (q)ip denotes the vector p scaled by the ith component of q, for i ∈ [m].
Then, ⊗ is bilinear, i.e., for all p1,p2 ∈ Rd, q ∈ Rm, and α1, α2 ∈ R, we have

(α1p1 + α2p2)⊗ q = α1 (p1 ⊗ q) + α2 (p2 ⊗ q)

and similarly, for all p ∈ Rd, q1, q2 ∈ Rm, and α1, α2 ∈ R, we have

p⊗ (α1q1 + α2q2) = α1 (p⊗ q1) + α2 (p⊗ q2) .
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Lemma 3.8 (Sarkaria’s lemma [26], [2, Lemma 2]) Let P1, . . . , Pm ⊂ Rd

be m point sets and let q1, . . . , qm ⊂ Rm−1 be m vectors with qi = ei for
i ∈ [m− 1] and qm = −1. For i ∈ [m], we define

P̂i =

{(
p
1

)
⊗ qi

∣∣∣∣p ∈ Pi

}
⊂ R(d+1)(m−1).

Then, the intersection of the convex hulls
⋂m

i=1 conv (Pi) is nonempty if and
only if

⋃m
i=1 P̂i embraces the origin.

Proof Assume there is a point p? ∈ ⋂m
i=1 conv (Pi). There exist coefficients

λi,p ∈ R+ that sum to 1 such that p? =
∑

p∈Pi
λi,pp. Consider the points

p̂i ∈ conv
(
P̂i

)
, i ∈ [m], that we obtain by using the same convex coefficients

for the points in P̂i, i.e., set

p̂i =
∑
p∈Pi

λi,p

((
p
1

)
⊗ qi

)
∈ conv

(
P̂i

)
.

We claim that
∑m

i=1 p̂i = 0 and thus 0 ∈ conv
(⋃m

i=1 P̂i

)
. Indeed, we have

m∑
i=1

p̂i =

m∑
i=1

∑
p∈Pi

λi,p

((
p
1

)
⊗ qi

)

=

m∑
i=1

∑
p∈Pi

λi,p

(
p
1

)⊗ qi =

m∑
i=1

(
p?

1

)
⊗ qi

=

(
p?

1

)
⊗
(

m∑
i=1

qi

)
=

(
p?

1

)
⊗ 0 = 0,

using the bilinearity of ⊗.
Assume now that

⋃m
i=1 P̂i embraces the origin. We want to show that⋂m

i=1 conv (Pi) is nonempty. Then, we can express the origin as a convex
combination

∑m
i=1

∑
p̂∈P̂i

λi,p̂p̂ with λi,p̂ ∈ R+ for i ∈ [m] and p̂ ∈ P̂i, and∑m
i=1

∑
p̂∈P̂i

λi,p̂ = 1. Hence, we have

0 =

m∑
i=1

∑
p̂∈P̂i

λi,p̂

((
p
1

)
⊗ qi

)
=

m∑
i=1

∑
p̂∈P̂i

λi,p̂

(
p
1

)⊗ qi,

again using the bilinearity of ⊗. By the choice of q1, . . . , qm, there is (up
to multiplication with a scalar) exactly one linear dependency: 0 =

∑m
i=1 qi.

Thus, ∑
p̂∈P̂1

λ1,p̂

(
p
1

)
= · · · =

∑
p̂∈P̂m

λm,p̂

(
p
1

)
=

(
p?

c

)
,
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where p? ∈ Rd and c ∈ R. In particular, the last equality implies that∑
p̂∈P̂1

λ1,p̂ = · · · =
∑

p̂∈P̂m

λm,p̂ = c.

Now, since for all i ∈ [m] and p̂ ∈ P̂i, the coefficient λi,p̂ is nonnegative and
since the sum

∑
i∈[m]

∑
p̂∈P̂i

λi,p̂ is 1, we must have c = 1/m ∈ (0, 1]. Hence,
the point mp? is common to all convex hulls conv (P1) , . . . , conv (Pm). ut

Please refer to Figure 6 for an example of Sarkaria’s lifting argument. Little
work is now left to obtain Tverberg’s theorem from Lemma 3.8 and the colorful
Carathéodory theorem.

0
p1 p2

p ′
2p ′

1

p̂2 =
(

p2
1

)
⊗1p̂1 =

(
p1
1

)
⊗1

p̂ ′
2 =

(
p ′

2
1

)
⊗ (−1) p̂ ′

1 =
(

p ′
1

1

)
⊗ (−1)

1

−1

Fig. 6 An example of Sarkaria’s lemma for d = 1 and m = 2. The set P1 consists of the
red points and the set P2 consists of the blue points. Since the convex hulls of P1 and P2

intersect, the lifted points embrace the origin.

Proof (of Theorem 3.7) Let P = {p1, . . . ,pn} ⊂ Rd be a point set of size
n = (d+ 1)(m− 1) + 1 and let P1, . . . , Pm denote m copies of P . For each set
Pj ⊂ Rd, j ∈ [m], we construct a ((d + 1)(m − 1))-dimensional set P̂j as in
Lemma 3.8, i.e.,

P̂j =

{
p̂i,j =

(
pi

1

)
⊗ qj

∣∣∣∣pi ∈ P
}
⊂ R(d+1)(m−1) = Rn−1.

For i ∈ [n], we denote with Ĉi ⊆
⋃m

j=1 P̂j the set of points
{
p̂i,j

∣∣ j ∈ [m]
}
that

correspond to pi ∈ P , and we color these points with color i. For i ∈ [n], note
that Lemma 3.8 applied to m copies of the singleton set {pi} ⊆ P guarantees
that the color class Ĉi ∈ Rn−1 embraces the origin. Hence, we have n color
classes Ĉ1, . . . , Ĉn that embrace the origin in Rn−1. Now, by Theorem 1.2, there
is a colorful choice Ĉ = {ĉ1, . . . , ĉn} ⊆

⋃n
i=1 Ĉi with ĉi ∈ Ĉi that embraces
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the origin, too. Because Ĉ embraces the origin, Lemma 3.8 guarantees that
the convex hulls of the sets Tj =

{
pi ∈ P

∣∣∣ p̂i,j ∈ Ĉ
}
, j ∈ [m], have a point in

common. Moreover, since all points in
⋃m

j=1 P̂j that correspond to the same
point in P have the same color, each point pi ∈ P appears in exactly one set
Tj , j ∈ [m]. Thus, T = {T1, . . . , Tm} is a Tverberg m-partition of P . ut

Even less effort is required to obtain the colorful Kirchberger theorem from
Lemma 3.8. Let A,B ⊂ Rd be two point sets. Kirchberger’s theorem [12] states
that if for all subsets C ⊂ A ∪B of size at most d+ 2, the sets conv (A ∩ C)
and conv (B ∩ C) have an empty intersection, then conv (A) and conv (B) have
an empty intersection. Arocha et al. [2] presented a generalization based on
the colorful Carathéodory theorem.3

Theorem 3.9 (Colorful Kirchberger theorem [2, special case of The-
orem 3]) Let C1, . . . , Cn ⊂ Rd be n = (m − 1)(d + 1) + 1 pairwise disjoint
color classes and let Ti = {Ti,1, . . . , Ti,m} denote a Tverberg m-partition for
Ci, where i ∈ [n]. Then, there exists a colorful choice C, |C| = n, such that
the family of sets

TC =

{
C ∩

(
n⋃

i=1

Ti,j

)∣∣∣∣∣ j ∈ [m]

}
is a Tverberg m-partition for C.

Proof We lift each Tverberg partition to Rn−1 as in Lemma 3.8: for i ∈ [n] and
j ∈ [m], we denote with T̂i,j the set

T̂i,j =

{(
p
1

)
⊗ qj

∣∣∣∣p ∈ Ti,j} ⊂ Rn−1.

By Lemma 3.8 and since each set Ti, i ∈ [n], is a Tverberg partition, the
sets Ĉi =

⋃m
j=1 T̂i,j , i ∈ [n], embrace the origin. We color the points in

Ĉi with color i. Since there are n color classes that embrace the origin in
n − 1 dimensions, Theorem 1.2 guarantees the existence of a colorful choice
Ĉ that embraces the origin. For j ∈ [m], let T̂j = Ĉ ∩

(⋃n
i=1 T̂i,j

)
denote all

points from a jth element in a Tverberg partition in ĈC. Since Ĉ =
⋃m

j=1 T̂j
embraces the origin, Lemma 3.8 implies that the convex hulls of the sets

Tj =

{
p ∈ ⋃n

i=1 Pi

∣∣∣∣ (p1
)
⊗ qj ∈ T̂j

}
have a nonempty intersection. Further,

since for j ∈ [m], the set T̂j is a subset of
⋃n

i=1 T̂i,j , we have Tj ⊂ (
⋃n

i=1 Ti,j).
Moreover, since all points that correspond to the Tverberg partition Ti, i ∈ [n],
have color i, exactly one of the sets T1, . . . , Tm contains a point from Ci. The
colorful choice C can be obtained by projecting Ĉ down to Rd. ut

3 Actually, Arocha et al. present an even stronger result (the “very colorful Kirchberger
theorem” [2, Theorem 3]) using a generalization of the colorful Carathéodory theorem. Here,
we consider the weaker version that can be obtained from Theorem 1.2.
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We now give precise bounds on the quality and the running time of approxi-
mation algorithms obtained by combining algorithms for k-colorful choices with
the presented reductions to ColorfulCarathéodory. Unfortunately, the
approximation guarantee of Algorithm 3.2 is too weak to obtain a nontrivial
approximation algorithm for Tverberg and therefore also for Centerpoint.
On the positive side, it leads to a nontrivial approximation algorithm for
ColorfulKirchberger.

In the following, let A be an algorithm that, when given d+ 1 color classes
C1, . . . , Cd+1 ⊂ Rd, each embracing the origin and of size O(d), and for each Ci

the coefficients of the convex combination of the origin, outputs a 0-embracing
k(d)-colorful choice in W (d) time, where k,W : N→ N are arbitrary but fixed
functions.

Corollary 3.10 Let P ⊂ Rd be a point set of size n and let A be as above. Set

m̃ =

⌈
n

(d+ 1)2
(
k(n− 1)− 1

)
+ d+ 1

⌉
= Ω

(
n

d2k(n− 1)

)
.

Then, a Tverberg m̃-partition T of P and a point p ∈ ⋂T∈T conv(T ) can be
computed in O

(
(d2 +m)n2 +W (n− 1)

)
time.

Proof Set m = dn/(d+ 1)e. In the proof of Theorem 3.7, we lift m copies
of P with Lemma 3.8 to Rn−1. Lifting one point needs O(dm) = O(n) time
and hence lifting all m copies takes O

(
mn2

)
time. Then, each point pi ∈ Rd

from P corresponds to a color class Ci =
{
p̂i,j

∣∣ j ∈ [m]
}
⊂ Rn−1 of size m

and a 0-embracing colorful choice of C1, . . . , Cn corresponds to the Tverberg
partition T = {T1, . . . , Tm} that we obtain by assigning pi ∈ P to Tj if
p̂i,j ∈ C. By construction of the color classes in the proof of Theorem 3.7, the
barycenter of Ci is the origin, for i ∈ [n]. Since we know then for each color
class the coefficients of the convex combination of the origin, we can apply A to
obtain a 0-embracing k(n− 1)-colorful choice C̃ ⊆ ⋃n

i=1 Ci together with the
coefficients of the convex combination of the origin with the points in C̃. Let
T̃ =

{
T̃1, . . . , T̃m

}
be a family of subsets of P that we construct as before by

assigning pi to T̃j if p̂i,j ∈ C̃. Here, T̃ is a multiset, i.e., we allow T̃i = T̃j for
i 6= j. Since C̃ embraces the origin, Lemma 3.8 guarantees that the intersection⋂m

i=1 conv
(
T̃i

)
is nonempty. Moreover, because we know the coefficients of

the convex combination of the origin with the points in C̃, we can compute in
O(dn) time a point p? ∈ ⋂m

i=1 conv
(
T̃i

)
together with the coefficients of the

convex combination of p? with the points in T̃i for i ∈ [m], as described in the
proof of Lemma 3.8.

Now, we construct a Tverberg partition for P out of T̃ by a greedy strategy
that iteratively removes sets from T̃ . Let T̃ ∈ T̃ be some set and remove it
from T̃ . Since we know the coefficients of the convex combination of p? with
the points in T̃ , Lemma 2.1 can be applied to prune T̃ to a p?-embracing set of
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size at most d+ 1 in O
(
d3n+ n2

)
time. Then, for each point p ∈ T̃ , we remove

the at most k(n− 1)− 1 other sets from T̃ that contain p. We continue with
the next set in T̃ that has not yet been removed until T̃ = ∅. Let T ? ⊆ T̃ be
the family of sets that we obtain by this process. Clearly, T ? is a Tverberg
partition and because T ? ⊆ T̃ , we have p? ∈ ⋂T̃∈T ? conv

(
T̃
)
. Moreover, for

each set T̃i ∈ T ?, we remove at most (d+ 1)(k(n− 1)− 1) other sets from T̃ .
Thus, the size of the Tverberg partition T ? is at least

|T ?| ≥
⌈

m

(d+ 1)(k(n− 1)− 1) + 1

⌉
≥
⌈

n

(d+ 1)2(k(n− 1)− 1) + d+ 1

⌉
.

Constructing the ColorfulCarathéodory instance takes O
(
mn2

)
time.

Using A, we need W (n − 1) time to compute a k(n − 1)-colorful choice C̃.
Pruning every set of T̃ with Lemma 2.1 to at most d + 1 points needs
O
(
m(d3n+ n2)

)
= O

(
(d2 +m)n2

)
time. Finally, constructing T ? out of T̃

takes O
(
n2
)
time with the naive algorithm. This results in the claimed running

time of O
(
(d2 +m)n2 +W (n− 1)

)
. ut

Furthermore, we can use A to approximate ColorfulKirchberger.

Corollary 3.11 Let A be as above and let C1, . . . , Cn ⊂ Rd be n = (m−1)(d+
1) + 1 pairwise disjoint color classes that are each of size n. Furthermore, for
i ∈ [n], let Ti = {Ti,1, . . . , Ti,m} denote a Tverberg m-partition for Ci. Then,
given for each Tverberg partition Ti, i ∈ [n], a point pi ∈

⋂m
j=1 conv (Ti,j),

and for all i ∈ [n] and j ∈ [m], the coefficients of the convex combination
of pi with the points in Ti,j, we can compute in O

(
n3 +W (n− 1)

)
time a

k(n− 1)-colorful choice C ⊆ ⋃n
i=1 Ci such that

TC =

{
C ∩

(
n⋃

i=1

Ti,j

)∣∣∣∣∣ j ∈ [m]

}
is a Tverberg m-partition for C.

Proof In the proof of Theorem 3.9, we lift the points
⋃n

i=1 Ci to Rn−1 such
that the set of points Ĉi that corresponds to the color class Ci still embraces
the origin, where i ∈ [n]. Moreover, if Ĉ ′ ⊆ ⋃n

i=1 Ĉi is a 0-embracing colorful
choice of the lifted points, then there is a corresponding colorful choice C ′ with
respect to C1, . . . , Cn such that

TC′ =

{
C ′ ∩

(
n⋃

i=1

Ti,j

)∣∣∣∣∣ j ∈ [m]

}
is a Tverberg m-partition for C ′. Similarly, a 0-embracing k(n − 1)-colorful
choice Ĉ of the lifted color classes corresponds to a k(n− 1)-colorful choice C
with respect to C1, . . . , Cn such that

TC =

{
C ∩

(
n⋃

i=1

Ti,j

)∣∣∣∣∣ j ∈ [m]

}
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is a Tverberg m-partition for C.

Computing the tensor product
(
p
1

)
⊗q, where p ∈ Rd and q ∈ Rm−1, needs

O(dm) = O(n) time and hence lifting the point sets C1, . . . , Cn ⊂ Rd to Rn−1

with Lemma 3.8 needs O
(
n3
)
time in total. Since we know for each Tverberg

partition Ti, i ∈ [n], a point pi ∈
⋂m

j=1 conv (Ti,j) together with the coefficients
of the convex combination of pi with the points in Ti,j for j ∈ [m], we can
compute in O(n) time the coefficients of the convex combination of the origin
with the points in Ĉi as described in the proof of Lemma 3.8. Then, A can be
applied to compute a 0-embracing k(n− 1)-colorful choice Ĉ with respect to
the lifted point sets in W (n− 1) time. Finally, constructing C and TC out of
Ĉ needs O(n) time. Hence, the total time needed is O

(
n3 +W (n− 1)

)
. ut

Now, given d+ 1 color classes C1, . . . , Cd+1 ⊂ Rd that embrace the origin,
we can compute with Algorithm 3.2 an dεde-colorful choice that embraces the
origin in polynomial time. Combining this with Corollary 3.10, we obtain an
algorithm that computes Tverberg partitions of size O(1) in polynomial time,
a trivial result. However, combining Algorithm 3.2 with Corollary 3.11, we
do obtain a nontrivial approximation algorithm for ColorfulKirchberger:
given n = (m− 1)(d+ 1) + 1 color classes C1, . . . , Cn, each of size n, and for
each color class a Tverberg m-partition Ti = {Ti,1, . . . , Ti,m} together with a
point pi ∈

⋂m
j=1 conv (Ti,j) and the coefficients of the convex combination of

pi with the points in Ti,j , for all j ∈ [m], we can compute in nO(ε−1 ln ε−1) time
an dεne-colorful choice C such that

TC =

{
C ∩

(
n⋃

i=1

Ti,j

)∣∣∣∣∣ j ∈ [m]

}

is a Tverberg m-partition for C, where ε > 0 is arbitrary but fixed.

4 Exact Algorithms for ColorfulCarathéodory

In contrast to the previous sections, we now focus on computing an exact solu-
tion for the convex version of ColorfulCarathéodory. Let C1, . . . , Cd+1 ⊂
Qd be d + 1 sets that each embrace the origin, and assume all are of size at
most d+ 1. The naive algorithm checks for all O

(
dd+1

)
possible colorful choices

whether they embrace the origin. This can be further improved by using the
following result by Bárány.

Theorem 4.1 ([3, Theorem 2.3]) Let C1, . . . , Cd ⊂ Rd be d sets that all
embrace the origin and let c ∈ Rd be a point. Then, there exist d points
c1 ∈ C1, . . . , cd ∈ Cd such that the set {c, c1, . . . , cd} embraces the origin. ut

In particular, Theorem 4.1 implies that every point c ∈ ⋃d+1
i=1 Ci participates

in some 0-embracing colorful choice and hence we can fix a point from one
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color class and check only all O
(
dd
)
possibilities of extending it to a colorful

choice.
We now consider two related settings that allow for further improvement. We

begin with the simple case in which each color class consists of only two points
(Section 4.1). Then, basic linear algebra suffices to compute a 0-embracing
colorful choice in polynomial-time. In Section 4.2, we show that many color
classes help. Using an approach similar to the algorithm by Miller and Sheehy
for approximating Tverberg partitions [20], we present a quasi-polynomial time
algorithm that computes a 0-embracing colorful choice when given Θ

(
d2 log d

)
color classes instead of only d+ 1.

4.1 A Simple Special Case

In the following, we assume that |C1| = · · · = |Cd+1| = 2 and let ci,1, ci,2 denote
the two points in Ci, for i ∈ [d+1]. Clearly, for all i ∈ [d+1], the point−ci,1 must
be contained in the positive span of ci,2. Furthermore, we assume without loss of
generality that all points are different from the origin, as otherwise computing a
0-embracing colorful choice is trivial. Then, the set {ci,1 | i ∈ [d+ 1]} is linearly
dependent and hence there exist coefficients φ1, . . . , φd+1 ∈ R, not all 0, such
that 0 =

∑d+1
i=1 φici,1. Now, since −ci,1 ∈ pos (ci,2) for all i ∈ [d+ 1], the set

C = {ci,1 | i ∈ [d+ 1], φi ≥ 0} ∪ {ci,2 | i ∈ [d+ 1], φi < 0} embraces the origin,
and it is a colorful choice. Since the computation of the coefficients of the
linear dependency can be carried out in O

(
d3
)
time with Gaussian elimination,

finding C takes O
(
d3
)
time in total. The following theorem is now immediate.

Theorem 4.2 Let C1, . . . , Cd+1 ⊂ Rd be d+ 1 pairs of points that all embrace
the origin. Then, a 0-embracing colorful choice can be computed in O

(
d3
)
time.

4.2 Many Colors

In the following, we assume that we are given Θ
(
d2 log d

)
instead of only

d + 1 color classes that all embrace the origin. The algorithm repeatedly
combines k-colorful choices to one 0-embracing dk/2e-colorful choice until
a 0-embracing 1-colorful choice is obtained. This approach is similar to the
Miller-Sheehy approximation algorithm for Tverberg partitions [20], and it
leads to an algorithm with total running time dO(log d).

Lemma 4.3 Let C ′1, . . . , C ′d+1 ⊂ Rd be 0-embracing k-colorful choices of size
O(d) such that each color appears in a unique k-colorful choice. Then, given the
coefficients of the convex combination of the origin for each set C ′i, i ∈ [d+ 1],
a 0-embracing dk/2e-colorful choice C ′ can be computed in O

(
d5
)
time.

Proof First, we prune each k-colorful choice C ′i, i ∈ [d+1], with Lemma 2.5 and
then partition it into two sets C ′i,1, C ′i,2 by distributing the points from each
color equally among both sets. Then, we apply the algorithm from Lemma 2.7
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to obtain two representative points ri,1, ri,2 and set Ri = {ri,1, ri,2}. Since
the sets R1, . . . , Rd+1 each embrace the origin and consist of only two points,
we can compute a 1-colorful choice R with respect to R1, . . . , Rd+1 with the
algorithm from Theorem 4.2. Now, consider the set C ′ =

{
C ′i,j

∣∣ ri,j ∈ R}.
Since R is 0-embracing, so is C ′. Moreover, because a color j appears only in
one of the k-colorful choices, say C ′i, and since each set of the partition C ′i,1, C ′i,2
contains at most dk/2e points with color j, the set C ′ is a dk/2e-colorful choice.

Pruning each k-colorful choice with Lemma 2.5 and then computing the two
representative points per partition takes O

(
d5
)
time in total. This dominates

the time needed for the computation of R and thus, we can compute C ′ in
O
(
d5
)
time. ut

Note that Lemma 4.3 actually implies a second algorithm to compute
d(d+ 1)/2e-colorful choices that embrace the origin: let C1, . . . , Cd+1 ⊂ Rd be
0-embracing color classes and assume the sets have size d+ 1. Set C ′i = Ci in
Lemma 4.3, for i ∈ [d+ 1]. Then, C ′i is trivially a (d+ 1)-colorful choice and
hence the set C ′ is a d(d+ 1)/2e-colorful choice.

Now, we apply Lemma 4.3 repeatedly until we obtain a 1-colorful choice
as follows. Let C1, . . . , Cn ⊂ Qd be n = Θ

(
d2 log d

)
color classes such that Ci

is 0-embracing and has size d + 1, for i ∈ [n]. We create an array A of size
m = Θ(log d) that initially contains all n color classes in A[0]. Set c0 = d+ 1
and for i ∈ [k], set ci = dci−1/2e. Throughout the algorithm, we maintain the
invariant that the ith cell contains only 0-embracing ci-colorful choices and
that each color appears in at most one set in all of A. Since c0 = d + 1, the
invariant holds in the beginning. We repeatedly improve k-colorful choices with
Lemma 4.3 as follows: let i be the maximum index of a cell in A that contains
at least d+ 1 sets C ′1, . . . , C ′d+1 and remove them from A[i]. By our invariant,
these sets are 0-embracing ci-colorful choices. Applying Lemma 4.3, we can
combine C ′1, . . . , C ′d+1 to one ci+1-colorful choice C ′ that embraces the origin.
We prune it with Lemma 2.5 and check whether it is a 1-colorful choice. If so, we
have found a solution. Otherwise, we add it to A[i+ 1]. Furthermore, we check
for colors that appeared in the removed sets C ′1, . . . , C ′d+1 but not in C ′ and
add the corresponding color classes back to A[0]. The invariant is maintained
since these colors only appeared in the removed sets. See Algorithm 4.1 for a
detailed description of the algorithm.

We conclude this section by proving the correctness of Algorithm 4.1 and
analyzing its running time.

Theorem 4.4 Let C1, . . . , Cn ⊂ Rd be n = Θ
(
d2 log d

)
sets such that Ci

embraces the origin and |Ci| = O(d), for i ∈ [n]. Then, given the coefficients
of the convex combination of the origin for each set Ci, i ∈ [n], Algorithm 4.1
computes a 0-embracing colorful choice in dO(log d) time.

Proof Set m = dlog(d+ 1)e+ 1. We have already argued that the ith cell of
the array A contains only 0-embracing ci-colorful choices. First, we observe
that progress is always possible, i.e., that it is always possible to find a cell
of A that contains at least d+ 1 sets: the array has m = Θ(log d) levels and
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Algorithm 4.1: Exact algorithm for many color classes.
Input: color classes C1, . . . , Cn ⊂ Rd and for each set Ci, the coefficients of the

convex combination of 0, where n = Θ
(
d2 log d

)
1 A← Array of size m = Θ(log d);
2 Prune C1, . . . , Cn with Lemma 2.5;
3 A[0]← {C1, . . . , Cn};
4 while no 0-embracing colorful choice was found do
5 i← maximum index with |A[i]| ≥ d + 1;
6 Remove d + 1 sets C′1, . . . , C

′
d+1 from A[i];

7 C′ ← combine C′1, . . . , C
′
d+1 with Lemma 4.3;

8 Prune C′ with Lemma 2.5;
9 if C′ is a colorful choice then

10 return C′;
11 Add C′ to A[i + 1];

12 Add all color classes Ci with Ci ∩
(⋃d+1

i=1 C′i

)
6= ∅ and Ci ∩ C′ = ∅ to A[0];

within each set in A, at most d colors appear. Thus, for d2m+ 1 = Θ
(
d2 log d

)
colors, the pigeonhole principle guarantees a cell with at least d+ 1 sets.

We claim that a combination of d+ 1 sets in A[m] results in a 0-embracing
colorful choice. Since ci ≤ d+1

2i + 2, the sets in A[m − 1] are 0-embracing
3-colorful choices, the sets in A[m] are 2-colorful choices and the combination
of d+ 1 sets in A[m] gives a 1-colorful choice, as claimed.

Let T (i) denote the time to compute a set at level i. For this, we have to
compute d+1 sets in level i−1. Since one application of Lemma 4.3 takes O

(
d5
)

time, we have T (i) = (d+ 1)T (i− 1) + O
(
d5
)
, for i ≥ 1, and T (0) = O(1). This

solves to T (i) = dO(i). At the end, each level i ≥ 1 of A contains at most d+ 1

sets, so the total running time is
∑m+1

i=1 (d+ 1)T (i) =
∑m+1

i=1 dO(i) = dO(log d),
as claimed. ut

5 The Complexity of a Related Problem

We can show that a related problem to ColorfulCarathéodory that is
motivated by Bárány’s original proof [3], the local search nearest colorful
polytope problem (L-Ncp), is PLS-complete. Additionally, by adapting the
PLS-completeness proof, we prove that finding a global optimum for Ncp
(G-Ncp) is NP-hard. This answers a question by Bárány and Onn [4, p. 561].
We note that this question has been answered independently by Meunier
and Sarrabezolles [18, Theorem 2]. In contrast to the previous sections, all
algorithms in this section are analyzed in the Word-Ram with logarithmic
costs. This models the number of steps on a Turing machine, as required by
the definition of PLS.
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5.1 The Complexity Class PLS

The complexity class polynomial local search (PLS) [1, 10,19] captures search
problems that can be solved by a local-improvement algorithm. Each improve-
ment step can be carried out in polynomial time, but the total number of steps
to a local optimum may be exponential. The existence of a local optimum is
guaranteed, as the progress of the algorithm can be measured by a potential
function that strictly decreases with each improvement step.

More formally, a problem in PLS is a relation R between a set of problem
instances I ⊆ {0, 1}? and a set of candidate solutions S ⊆ {0, 1}? with the
following properties:

– The set I is polynomial-time verifiable. Furthermore, there exists an algo-
rithm that, given an instance I ∈ I and a candidate solution s ∈ S, decides
in time poly(|I|) whether s is valid for I. In the following, we denote with
SI ⊆ S the set of valid candidate solutions for a given instance I.

– There exists a polynomial-time algorithm that on input I ∈ I returns a
valid candidate solution sI ∈ SI . We call sI the standard solution.

– There exists a polynomial-time algorithm that on input I ∈ I and s ∈ SI
returns a set NI,s ⊆ SI of valid candidate solutions for I. We call NI,s the
neighborhood of s.

– There exists a polynomial-time algorithm that on input I ∈ I and s ∈ SI
returns a number cI,s ∈ Q. We call cI,s the cost of s.

We say a candidate solution s ∈ S is a local optimum for an instance I ∈ I
if (i) s ∈ SI ; and (ii) for all s′ ∈ NI,s, we have cI,s ≤ cI,s′ (minimization
problem) or cI,s ≥ cI,s′ (maximization problem). The relation R then consists
of all pairs (I, s) such that s is a local optimum for I. This formulation implies
a simple algorithm, the standard algorithm: begin with the standard solution,
and repeatedly call the neighborhood-algorithm to improve the current solution
until a local optimum is reached. Although each iteration takes polynomial
time, the total number of iterations may be exponential, the time needed
to cycle through all the exponentially many candidate solutions. There are
straightforward examples where this happens. Moreover, there are PLS-problems
for which it is PSPACE-complete to compute the local optimum found by the
standard algorithm [1, Lemma 15].

Each problem instance I of a PLS-problem can be seen as a simple search
problem on a directed graph GI = (V,E). The nodes of GI are the valid
candidate solutions for I, and there is a directed edge from u ∈ SI to v ∈ SI if
v ∈ NI,u and cI,v < cI,u (minimization problem) or cI,v > cI,u (maximization
problem). Then, the set of local optima for I is precisely the set of sinks in GI ,
i.e., the set of nodes with outdegree 0. Because the costs induce a topological
order on the graph, at least one sink exists.

Since PLS contains relations and not languages, a different concept of
reduction is necessary to define complete problems. We say a PLS problem
A is PLS-reducible (or just reducible) to a PLS problem B if there exist two
polynomial-time computable functions fA 7→B and fB 7→A with the following
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properties. Let IA denote the set of instances of A and let SA denote the
set of candidate solutions of A. Define IB and SB similarly. The function
fA7→B : IA → IB maps problem instances of A to problem instances of
B. The function fB 7→A : IA × SB → SA maps candidate solutions of B to
candidate solutions of A such that if sB ∈ SB is a candidate solution of B
with (fA 7→B(IA), sB) ∈ B, then (IA, fB 7→A(IA, sB)) ∈ A.4 The existence of
these two functions implies that any polynomial-time algorithm for B yields a
polynomial-time algorithm for A. We say a problem A ∈ PLS is PLS-complete
if all problems in PLS can be PLS-reduced to A. The canonical PLS-complete
problem is FLIP [10, Theorem 1]: given a Boolean circuit of polynomial size
with n inputs and m outputs, find an input-assignment such that the resulting
output interpreted as a number in binary cannot be decreased by flipping
one bit in the input. The set of PLS-complete problems includes, among
various local search variants and heuristics for NP-complete problems, the
Lin-Kernighan heuristic for the traveling salesman problem [22], computing
stable configurations in Hopfield neural networks [27, Corollary 5.12], and
computing pure Nash equilibria in congestion games [8, Theorem 3].

5.2 The Local Search Nearest Colorful Polytope Problem

Let C1, . . . , Cm ⊂ Qd be m color classes that do not necessarily embrace the
origin. For a given set C ′ ⊂ Qd, let δ(C ′) = min {‖c‖1 | c ∈ conv(C ′)} denote
the minimum `1-norm of a point in conv(C ′). In L-Ncp, we want to find a
colorful choice C such that δ(C) cannot be decreased by swapping a single
point with another point of the same color. In the language of PLS, L-Ncp is
defined as follows.

Definition 5.1 (L-Ncp)

Instances. The set of problem instances I consists of all tuples (C1, . . . , Cm),
where d ∈ N and for i ∈ [m], we have Ci ⊂ Qd.

Candidate solutions. The set of candidate solutions consists of all sets C ⊂ Qd,
where d ∈ N. For a fixed instance I = (C1, . . . , Cm) ∈ I, we define the set
of valid candidate solutions SI of I to be the set of all colorful choices with
respect to C1, . . . , Cm.

Cost function. Let s ∈ SI be a colorful choice. Then, the cost cI,s of s with
respect to I is defined as δ(s). We want to minimize the costs.

Neighborhood. Let I ∈ I be an instance and let s ∈ SI be a valid candidate
solution. Then, the set of neighbors NI,s of s consists of all colorful choices
that can be obtained by swapping one point with another point of the same
color in s.

We reduce the PLS-complete problem Max-2SAT/Flip [27] to L-Ncp. In
Max-2SAT/Flip, we are given a 2-CNF formula, i.e., a Boolean formula in
conjunctive normal form in which each clause consists of at most 2 literals,

4 Recall that A and B are relations between problem instances and candidate solutions.
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and for each clause a weight. The task is to find an assignment such that the
weighted sum of unsatisfied clauses cannot be decreased by flipping a single
variable. More formally, Max-2SAT/Flip is defined as follows.

Definition 5.2 (Max-2SAT/Flip)

Instances. The set of instances I ′ consists of all tuples I = (n,K1, . . . ,Km)
such that n ∈ N and for i ∈ [n], the tuple Ki has the form (wi, Ti, Fi),
where wi ∈ Z and Ti, Fi ⊆ [n] with |Ti ∪ Fi| ≤ 2 for all i ∈ [n]. Then, we
identify with Ki the clause K̂i =

(∨
j∈Tj

xj

)
∨
(∨

j∈Fj
xj

)
with weight wi,

and we identify with I the 2-CNF formula K̂1 ∧ · · · ∧ K̂m with variables
x1, . . . , xn.

Candidate solutions. The set of candidate solutions S ′ contains all tuples
A = (v1, . . . , vn), where n ∈ N and vi ∈ {0, 1} for i ∈ [n]. Given an instance
I ∈ I ′ in which n variables x1, . . . , xn appear, we define the set of valid
candidate solutions S ′I for I as the set of all n-tuples from S ′. We interpret
the ith entry of a tuple A ∈ S ′I as an assignment to xi and we denote it
with A(xi).

Cost function. Let I ∈ I ′ be an instance. Then, we define the cost c′I,s of a
valid candidate solution s ∈ S ′I as the sum of the weights of all unsatisfied
clauses. We want to minimize the cost.

Neighborhood. Let I ∈ I ′ be an instance and s ∈ S ′I a tuple of size n. Then,
the set of neighbors N ′I,s of s consists of all tuples that can be obtained by
replacing the ith entry A(xi) with 1−A(xi), where i ∈ [n].

The following theorem is due to Schäffer and Yannakakis.

Theorem 5.3 ([27, Corollary 5.12]) Max-2SAT/Flip is PLS-complete.
ut

We continue with the reduction from Max-2SAT/Flip to L-Ncp.

Theorem 5.4 L-Ncp is PLS-complete.

Proof Let I ′ = (n,K1, . . . ,Kd) ∈ I ′ be an instance of Max-2SAT/Flip. We
construct an instance I ∈ I of L-Ncp in which each colorful choice C encodes
an assignment AC such that the cost cI,C of C equals the cost c′I′,AC

.
For each variable xi, we introduce a color class Xi = {xi,xi} consisting of

two points in Qd that encode whether xi is set to 1 or 0. We assign the jth
dimension to the jth clause and set

(xi)j =

{
−nwj , if xi = 1 satisfies K̂j , and
wj , otherwise,

where j ∈ [d]. Similarly, we set

(xi)j =

{
−nwj , if xi = 0 satisfies K̂j , and
wj , otherwise,
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where j ∈ [d]. Then, a colorful choice C of X1, . . . , Xm corresponds to the
assignment AC ∈ S ′I′ that sets xi to 1 if xi ∈ C and otherwise to 0. Conversely,
an assignment A ∈ S ′I′ can be interpreted directly as a colorful choice C of
X1, . . . , Xm

In the following, we construct an instance of L-Ncp such that the convex
hull of a colorful choice C contains the origin if projected onto the dimensions
corresponding to clauses that are satisfied by AC (and hence do not contribute
to the cost of C). Moreover, if projected onto the subspace corresponding to
the unsatisfied clauses, δ(C) equals the total weight of unsatisfied clauses which
then defines completely the cost of C.

We introduce additional helper color classes to decrease the distance to the
origin in dimensions that correspond to satisfied clauses. In particular, we have
for each clause K̂i, i ∈ [d], a color class Hi = {hi} consisting of a single point,
where

(hi)j =

{
(d+ 1)

(
(n+ 2)− d

d+1

)
wi, if j = i, and

wj , otherwise,

where j ∈ [d]. The last helper color class Hd+1 = {hd+1} again contains a
single point, but now all coordinates are set to the clause weights, i.e.,

(hd+1)j = wj , for j ∈ [d].

See Figure 7 for an example.
Let now I = (X1, . . . , Xn, H1, . . . ,Hd+1) ∈ I denote the constructed L-

Ncp instance. We continue with showing that the cost of a colorful choice
equals the cost of the corresponding assignment by proving the following two
inequalities.

(i) for every colorful choice C ∈ SI , the cost are lower bounded by the cost of
the corresponding assignment:

cI,C ≥ c′I′,AC
.

(ii) for every colorful choice C ∈ SI , the cost are upper bounded by the cost of
the corresponding assignment:

cI,C ≤ c′I′,AC
.

Note that (i) and (ii) directly imply that L-Ncp is PLS-complete. To see
this, consider a local optimum s? ∈ SI of the L-Ncp instance I. By definition,
the costs of all other colorful choices that can be obtained from s? by swapping
one point with another of the same color are greater or equal to cI,s? . Then, the
total weight of unsatisfied clauses by the corresponding assignment As? ∈ S ′I′
cannot be decreased by flipping a variable. Thus, As? is a local minimum of
the Max-2SAT/Flip instance I ′.

(i) Let C ∈ SI be a colorful choice and assume some clause K̂j is not
satisfied by the corresponding assignment AC ∈ S ′I′ . By construction, the jth
coordinate of each point p in C is at least wj . Thus, the jth coordinate of every
convex combination of the points in C is at least wj and hence cI,C ≥ cI′,AC

.
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x1,x2 = (−9, 6)

x2,x3 = (3,−18)

x1,x3,h3 = (3, 6) h1 = (39, 6)

h2 = (3, 78)

Fig. 7 Construction of the point sets corresponding to the Max-2SAT/Flip instance
(x1 ∨ x2) ∧ (x2 ∨ x3) with weights 3 and 6, respectively.
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(ii) Let C ∈ SI be a colorful choice. In the following, we construct a convex
combination of the points in C that results in a point p whose `1-norm is
exactly the total weight of unsatisfied clauses in the corresponding assignment
AC ∈ S ′I′ and thus cI,C ≤ cI′,AC

. For k = 0, 1, 2, let Sk denote the set of clauses
that are satisfied by exactly k literals with respect to the assignment AC . As
a first step towards constructing p, we show the existence of an intermediate
point in the convex hull of the helper classes.

Lemma 5.5 There is a point h ∈ conv(H1, . . . ,Hd+1) whose jth coordinate
is (n+ 2)wj, if j ∈ S2, and wj, otherwise.

Proof Take h =
∑
i∈S2

1
d+1hi +

(
1− |S2|

d+1

)
hd+1. Then, for j ∈ S0 ∪ S1, we have

(h)j =
∑
i∈S2

1

d+ 1
(hi)j +

(
1− |S2|

d+ 1

)
(hd+1)j

j /∈S2
=

∑
i∈S2

1

d+ 1
wj +

(
1− |S2|

d+ 1

)
wj = wj .

And for j ∈ S2, we have

(h)j =
∑
i∈S2

1

d+ 1
(hi)j +

(
1− |S2|

d+ 1

)
(hd+1)j

=
1

d+ 1
(hj)j +

∑
i∈S2\{j}

1

d+ 1
(hi)j +

(
1− |S2|

d+ 1

)
(hd+1)j

=

(
(n+ 2)− d

d+ 1

)
wj +

d

d+ 1
wj = (n+ 2)wj ,

as desired. ut
Let now li be the point from Xi in the colorful choice C and consider the

point

p =
1

n+ 1

(
n∑

i=1

li + h

)
,

where h is the point from Lemma 5.5. We show that (p)j = wj if j ∈ S0,
and otherwise (p)j = 0. Let j be a clause index from S0. Since AC does not
satisfy K̂j , the jth coordinate of the points l1, . . . , ln is wj . Also, (h)j = wj by
Lemma 5.5. Thus, (p)j = wj . Consider now some clause index j ∈ S1 and let
b ∈ [2] be the index of the point lb that corresponds to the single literal that
satisfies K̂j . Then, we have

(p)j =

n∑
i=1

1

n+ 1
(li)j +

1

n+ 1
(h)j

=
1

n+ 1
(lb)j +

n∑
i=1,i6=b

1

n+ 1
(li)j +

1

n+ 1
(h)j =

−n
n+ 1

wj +
n

n+ 1
wj = 0.
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Finally, consider some clause index j ∈ S2 and let b1, b2 be the indices of the
two literals that satisfy K̂j . Then, we obtain

(p)j =

n∑
i=1

1

n+ 1
(li)j +

1

n+ 1
(h)j

=
1

n+ 1
(lb1)j +

1

n+ 1
(lb2)j +

n∑
i=1,i/∈{b1,b2}

1

n+ 1
(li)j +

1

n+ 1
(h)j

=
−2n

n+ 1
wj +

n− 2

n+ 1
wj +

n+ 2

n+ 1
wj = 0,

and thus ‖p‖1 = cI′,AC
, as claimed. ut

5.3 The Global Search Nearest Colorful Polytope Problem

In the global search variant G-Ncp of the nearest colorful polytope problem,
we are looking for a colorful choice C such that δ(C) is minimum over all
possible colorful choices. The proof of Theorem 5.4 can be adapted easily to
reduce 3Sat to G-Ncp.

Theorem 5.6 G-Ncp is NP-hard.

Proof Given a set of clauses K1, . . . ,Kd, we set the weight of each clause to 1
and construct the same point sets as in the PLS-reduction. Additionally, we
introduce for each clause Kj a new helper color class H ′j = {h′j}, where

(h′i)j =

{
(d+ 1)

(
(2n+ 3)− d

d+1

)
, if i = j, and

1, otherwise.

Let now C be a colorful choice and let AC be the corresponding assignment.
As in the PLS-reduction, for k = 0, . . . , 3, let Sk contain all clauses that are
satisfied by exactly k literals in the assignment AC . Then, the following point
h is contained in the convex hull of the helper points:

h =
∑
i∈S2

hi

d+ 1
+
∑
j∈S3

h′j
d+ 1

+

(
1− |S2|+ |S3|

d+ 1

)
hd+1.

As above, we see that (h)j = 1, if j ∈ S0 ∪ S1, (h)j = n + 2, if j ∈ S2, and
(h)j = 2n+ 3, if j ∈ S3. Indeed, for j ∈ S0 ∪ S1, we have:

(h)j =
∑
i∈S2

1

d+ 1
(hi)j +

∑
i∈S3

1

d+ 1
(h′i)j +

(
1− |S2|+ |S3|

d+ 1

)
(hd+1)j

j /∈S2∪S3
=

∑
i∈S2∪S3

1

d+ 1
+

(
1− |S2|+ |S3|

d+ 1

)
= 1.
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For j ∈ S2, we have

(h)j =
∑
i∈S2

1

d+ 1
(hi)j +

∑
i∈S3

1

d+ 1
(h′i)j +

(
1− |S2|+ |S3|

d+ 1

)
(hd+1)j

= (hj)j +
∑

i∈S2\j

1

d+ 1
+
∑
i∈S3

1

d+ 1
+

(
1− |S2|+ |S3|

d+ 1

)

=

(
(n+ 2)− d

d+ 1

)
+

d

d+ 1
= n+ 2,

and for j ∈ S3,

(h)j =
∑
i∈S2

1

d+ 1
(hi)j +

∑
i∈S3

1

d+ 1
(h′i)j +

(
1− |S2|+ |S3|

d+ 1

)
(hd+1)j

= (h′j)j +
∑
i∈S2

1

d+ 1
+
∑

i∈S3\j

1

d+ 1
+

(
1− |S2|+ |S3|

d+ 1

)

=

(
(2n+ 3)− d

d+ 1

)
+

d

d+ 1
= 2n+ 3.

As before, the convex combination p =
∑n

i=1
1

n+1 li + 1
n+1h results in a

point in the convex hull of C whose distance to the origin is the number of
unsatisfied clauses, where li denotes the point from Xi in C. Indeed, if K̂j is
not satisfied, then all j-components in the sum are 1, and (p)j = 1. If j ∈ S1,
then, as discussed above

(p)j =
−n
n+ 1

+
n− 1

n+ 1
+

1

n+ 1
= 0.

If j ∈ S2, then

(p)j =
−2n

n+ 1
+
n− 2

n+ 1
+
n+ 2

n+ 1
= 0,

and if j ∈ S3, then

(p)j =
−3n

n+ 1
+
n− 3

n+ 1
+

2n+ 3

n+ 1
= 0.

Together with (i) from the proof of Theorem 5.4, 3Sat can be decided by
knowing a global optimum C? to the Ncp problem: if δ(C?) = 0, AC? is a
satisfying assignment. If not, there exists no satisfying assignment at all. ut

As mentioned above, we can adapt the proof of Theorem 5.6 to answer a
question by Bárány and Onn [4].

Corollary 5.7 Let C1, . . . , Cm ⊂ Qd be an input for G-Ncp. Then, G-Ncp
remains NP-hard even if m = d+ 1.

Proof Let F be a 3Sat formula with d clauses and n variables. As in the proof
of Theorem 5.6, we construct n+ 2d+ 1 =: d′ + 1 point sets in Qd such that
there is a colorful choice that embraces the origin if and only if F is satisfiable.
Since d′ > d, we can lift the point sets to Qd′ by appending 0-coordinates. Then,
we have d′ + 1 point sets such that there is a colorful choice that embraces the
origin if and only if F is satisfiable. ut
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6 Conclusion

We conclude with several interesting open problems.

– The algorithm in Theorem 3.5 computes in polynomial time a 0-embracing
dεde-colorful choice for any fixed ε > 0. A more careful analysis shows
that the algorithm needs only cε color classes, where cε > 0 is a constant
depending only on ε. Hence, the algorithm does not use its complete input.
Can this be used to further improve the approximation guarantee?

– Is it possible to compute a 0-embracing o(d)-colorful choice in polynomial
time and in particular, is it possible to compute a 0-embracing O(1)-colorful
choice in polynomial time?

– On the other hand, can it be shown that computing a 0-embracing O(1)-
colorful choice is as hard as computing a 0-embracing 1-colorful choice?

– In Section 4, we show that many color classes help to find a 0-embracing
1-colorful choice. Can a 0-embracing 1-colorful choice be computed in
polynomial time if we have poly(d) color classes?
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