The Non-Uniform Hierarchy Theorem

Wolfgang Mulzer

1 The Theorem

Theorem 1.1 (Shannon's theorem). There exist constants $c_1 \ge 1$ and $c_2 > 0$ such that for all $n \in \mathbb{N}$, (a) every Boolean function $f : \{0,1\}^n \to \{0,1\}$ can be realized by a Boolean circuit of size at most $c_1 2^n/n$; and (b) there exists a Boolean function $g : \{0,1\}^n \to \{0,1\}$ that cannot be realized by a Boolean circuit of size at most $c_2 2^n/n$.

Theorem 1.2 (Non-uniform Hierarchy Theorem). There is a constant $c_3 > 0$ such that for any $T, T' : \mathbb{N} \to \mathbb{N}$ with $T(n) \leq c_3 T'(n)$ and $T'(n) \leq c_1 2^n/n$, for $n \in \mathbb{N}$, there exists a language $L \subseteq \{0,1\}^*$ such that L that cannot be decided by a circuit family of size at most T(n), but there is a circuit family of size at most T'(n) that decides L.

Proof. Set $c_3 = c_2/2c_1$ and define $f(n) = \max\{m \in \mathbb{N} \mid c_1 2^m / m \le n\}$, for $n \ge 2c_1$. For any $n \ge 2c_1$ and m = f(n), we have $c_1 2^m / m > n/2$, because

$$n < c_1 \frac{2^{m+1}}{m+1} = \frac{2m}{m+1} c_1 \frac{2^m}{m} < 2c_1 \frac{2^m}{m}.$$

Now, fix $n \ge 2c_1$ and let m = f(T'(n)). By Theorem 1.1, there exists a Boolean function $g : \{0,1\}^m \to \{0,1\}$ such that g can be realized by a Boolean circuit of size $c_1 2^m/m \le T'(n)$, but not by a Boolean circuit of size $c_2 2^m/m = (c_2/c_1)c_1 2^m/m \ge (c_2/2c_1)T'(n) \ge T(n)$. Furthermore, since f is monotone,

$$m = f(T'(n)) \le f(c_1 2^n / n) \le n.$$

Thus, we can define a language $L_n \subseteq \{0, 1\}^n$ by

$$L_n = \{ w \circ 0^{n-m} \mid w \in \{0,1\}^m, g(w) = 1 \}.$$

Now the language $L = \bigcup_{n \ge 2c_1} L_n$ has the desired properties. L has the desired properties.