Clarkson's Theorem

Wolfgang Mulzer

Let $P \subseteq \mathbb{R}^2$ be a planar point set of size n. The set $S_{\leq k}$ of $(\leq k)$ -sets of P is defined as

$$S_{\leq k} := \{ Q \subseteq P \mid |Q| \leq k \text{ and } Q = P \cap h, h \text{ open halfplane} \}.$$

Clarkson's theorem gives an upper bound on the number of possible ($\leq k$)-sets.

Theorem 1. We have $|S_{\leq k}| = O(nk)$.

Proof. We may assume that $2 \le k \le n-2$, since otherwise the theorem clearly holds.

We begin with a definition: Let $0 \le \ell \le k$. A pair $(p,q) \in P^2$ of distinct points in P is called ℓ -edge if and only if $|P \cap h_{\overrightarrow{pq}}^+| = \ell$. Here, $h_{\overrightarrow{pq}}^+$ denotes the open halfplane to the left of the oriented line \overrightarrow{pq} . Let $L_{\le k}$ be the set of all $(\le k)$ -edges.

We have $|S_{\leq k}| \leq 2|L_{\leq k}|$. We can assign to each ℓ -edge (p,q) one ℓ - and one $(\ell + 1)$ -set, namely the ℓ -set $P \cap h_{\overrightarrow{pq}}$, and the $(\ell + 1)$ -set that is cut off from P after slightly rotating \overrightarrow{pq} clockwise around p. Every $(\leq k)$ -set Q can be obtained this way. To see this, take a line g that bounds the halfplane defining Q. Translate g away from Q until it hits a point from P, then rotate g counterclockwise until it hits another point from P.

Let $R \subseteq P$ a random subset of P containing each point $p \in P$ independently with probability 1/k. We consider the set E(CH(R)) of the edges on the convex hull of R, and we bound the size of E(CH(R)) in two different ways.

On the one hand, we have

$$\mathbf{E}[|E(\mathrm{CH}(R))|] \le \mathbf{E}[|R|] = n/k,$$

since the convex hull of R has at most |R| edges, and each point from P was chosen with probability 1/k.

Now let $(p,q) \in P^2$ be a pair of distinct points in P, and let $I_{(p,q)}$ be the indicator random variable for the event that (p,q) defines a (clockwise) edge on CH(R). Then,

$$\mathbf{E}[|E(\operatorname{CH}(R))|] = \sum_{(p,q)\in P^2} \mathbf{E}[I_{(p,q)}] \ge \sum_{(p,q)\in L_{\le k}} \mathbf{E}[I_{(p,q)}],$$

by linearity of expectation. For a $(\leq k)$ -edge (p,q) we have that $\mathbf{E}[I_{(p,q)}]$ is precisely the probability of the event $(p,q) \in E(\operatorname{CH}(R))$. For this event to happen, we must have (i) $p,q \in R$; and (ii) $R \cap h_{\overrightarrow{pq}}^+ = \emptyset$. The probability for this is at least $k^{-2}(1-1/k)^k$, since $|P \cap h_{\overrightarrow{pq}}^+| \leq k$ and since the points in R were chosen independently.

It follows that

$$\mathbf{E}[|E(CH(R))|] \ge \sum_{(p,q)\in L_{\le k}} \mathbf{E}[I_{(p,q)}] \ge \sum_{(p,q)\in L_{\le k}} k^{-2}(1-1/k)^k \ge |L_{\le k}|/4k^2,$$

as $k \ge 2$. Hence, $|L_{\le k}| \le 4nk$ and $|S_{\le k}| \le 8nk$.