Clarkson's Theorem

Wolfgang Mulzer

Let $P \subseteq \mathbb{R}^{2}$ be a planar point set of size n. The set $S_{\leq k}$ of $(\leq k)$-sets of P is defined as

$$
S_{\leq k}:=\{Q \subseteq P| | Q \mid \leq k \text { and } Q=P \cap h, h \text { open halfplane }\}
$$

Clarkson's theorem gives an upper bound on the number of possible ($\leq k$)-sets.
Theorem 1. We have $\left|S_{\leq k}\right|=O(n k)$.
Proof. We may assume that $2 \leq k \leq n-2$, since otherwise the theorem clearly holds.
We begin with a definition: Let $0 \leq \ell \leq k$. A pair $(p, q) \in P^{2}$ of distinct points in P is called ℓ-edge if and only if $\left|P \cap h_{\vec{p} q}^{+}\right|=\ell$. Here, $h_{\overrightarrow{p q}}^{+}$denotes the open halfplane to the left of the oriented line $\overrightarrow{p q}$. Let $L_{\leq k}$ be the set of all $(\leq k)$-edges.
We have $\left|S_{\leq k}\right| \leq 2\left|L_{\leq k}\right|$. We can assign to each ℓ-edge (p, q) one ℓ - and one $(\ell+1)$-set, namely the ℓ-set $P \cap h_{\vec{p} \vec{q}}$, and the $(\ell+1)$-set that is cut off from P after slightly rotating $\overrightarrow{p q}$ clockwise around p. Every $(\leq k)$-set Q can be obtained this way. To see this, take a line g that bounds the halfplane defining Q. Translate g away from Q until it hits a point from P, then rotate g counterclockwise until it hits another point from P.

Let $R \subseteq P$ a random subset of P containing each point $p \in P$ independently with probability $1 / k$. We consider the set $E(\mathrm{CH}(R))$ of the edges on the convex hull of R, and we bound the size of $E(\mathrm{CH}(R))$ in two different ways.

On the one hand, we have

$$
\mathbf{E}[|E(\mathrm{CH}(R))|] \leq \mathbf{E}[|R|]=n / k
$$

since the convex hull of R has at most $|R|$ edges, and each point from P was chosen with probability $1 / k$. Now let $(p, q) \in P^{2}$ be a pair of distinct points in P, and let $I_{(p, q)}$ be the indicator random variable for the event that (p, q) defines a (clockwise) edge on $\mathrm{CH}(R)$. Then,

$$
\mathbf{E}[|E(\mathrm{CH}(R))|]=\sum_{(p, q) \in P^{2}} \mathbf{E}\left[I_{(p, q)}\right] \geq \sum_{(p, q) \in L_{\leq k}} \mathbf{E}\left[I_{(p, q)}\right]
$$

by linearity of expectation. For a $(\leq k)$-edge (p, q) we have that $\mathbf{E}\left[I_{(p, q)}\right]$ is precisely the probability of the event $(p, q) \in E(\mathrm{CH}(R))$. For this event to happen, we must have (i) $p, q \in R$; and (ii) $R \cap h_{\overrightarrow{p q}}^{+}=\emptyset$. The probability for this is at least $k^{-2}(1-1 / k)^{k}$, since $\left|P \cap h_{\overrightarrow{p q}}^{+}\right| \leq k$ and since the points in R were chosen independently.
It follows that

$$
\mathbf{E}[|E(\mathrm{CH}(R))|] \geq \sum_{(p, q) \in L_{\leq k}} \mathbf{E}\left[I_{(p, q)}\right] \geq \sum_{(p, q) \in L_{\leq k}} k^{-2}(1-1 / k)^{k} \geq\left|L_{\leq k}\right| / 4 k^{2}
$$

as $k \geq 2$. Hence, $\left|L_{\leq k}\right| \leq 4 n k$ and $\left|S_{\leq k}\right| \leq 8 n k$.

