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Let P ⊆ R2 be a planar point set of size n. The set S≤k of (≤ k)-sets of P is defined as

S≤k := {Q ⊆ P | |Q| ≤ k and Q = P ∩ h, h open halfplane}.

Clarkson’s theorem gives an upper bound on the number of possible (≤ k)-sets.

Theorem 1. We have |S≤k| = O(nk).

Proof. We may assume that 2 ≤ k ≤ n− 2, since otherwise the theorem clearly holds.

We begin with a definition: Let 0 ≤ ` ≤ k. A pair (p, q) ∈ P 2 of distinct points in P is called `-edge if and
only if |P ∩ h+

−→pq| = `. Here, h+
−→pq denotes the open halfplane to the left of the oriented line −→pq. Let L≤k be

the set of all (≤ k)-edges.

We have |S≤k| ≤ 2|L≤k|. We can assign to each `-edge (p, q) one `- and one (` + 1)-set, namely the `-set
P ∩ h−→pq, and the (` + 1)-set that is cut off from P after slightly rotating −→pq clockwise around p. Every
(≤ k)-set Q can be obtained this way. To see this, take a line g that bounds the halfplane defining Q.
Translate g away from Q until it hits a point from P , then rotate g counterclockwise until it hits another
point from P .

Let R ⊆ P a random subset of P containing each point p ∈ P independently with probability 1/k. We
consider the set E(CH(R)) of the edges on the convex hull of R, and we bound the size of E(CH(R)) in two
different ways.

On the one hand, we have
E[|E(CH(R))|] ≤ E[|R|] = n/k,

since the convex hull of R has at most |R| edges, and each point from P was chosen with probability 1/k.

Now let (p, q) ∈ P 2 be a pair of distinct points in P , and let I(p,q) be the indicator random variable for the
event that (p, q) defines a (clockwise) edge on CH(R). Then,

E[|E(CH(R))|] =
∑

(p,q)∈P 2

E[I(p,q)] ≥
∑

(p,q)∈L≤k

E[I(p,q)],

by linearity of expectation. For a (≤ k)-edge (p, q) we have that E[I(p,q)] is precisely the probability of the

event (p, q) ∈ E(CH(R)). For this event to happen, we must have (i) p, q ∈ R; and (ii) R ∩ h+
−→pq = ∅. The

probability for this is at least k−2(1 − 1/k)k, since |P ∩ h+
−→pq| ≤ k and since the points in R were chosen

independently.

It follows that

E[|E(CH(R))|] ≥
∑

(p,q)∈L≤k

E[I(p,q)] ≥
∑

(p,q)∈L≤k

k−2(1− 1/k)k ≥ |L≤k|/4k2,

as k ≥ 2. Hence, |L≤k| ≤ 4nk and |S≤k| ≤ 8nk.

1


