Advanced Algorithms (Winter 2023/2024) Instructors: László Kozma (lectures), Michaela Krüger (exercise sessions)

Topics:

0. Administrative stuff

1. Introduction

Algorithms, computational models. RAM model. Time and space complexity of algorithms. Worst-case, average-case. Deterministic and randomized. Asymptotic analysis, O-notation.

2. Divide and Conquer

Mergesort, Quicksort. Partitioning, loop invariants. Selection problem: good splitter. Randomized selecton: Quickselect and its analysis. Deterministic selection: Median-of-medians and its analysis. Solving typical recurrences. Direct method, induction, recursion tree. Master theorem.

3. Lower bounds

Information-theoretic lower bounds. Lower bounds for searching, sorting, merging. Adversary arguments. Lower bounds for selection.

4. Fast multiplication

Karatsuba's algorithm. Fast matrix multiplication (sketched). Verification of matrix multiplication: Freivalds' algorithm. Polynomial evaluation/interpolation. Fast Fourier Transform.

5. Dynamic programming

Example: Interval scheduling. General principles. Example: String Edit Distance. Saving space: Hirschberg's algorithm. DP on trees: Weighted Independent Set. DP on numeric values: Subset Sum. All-pairs shortest paths: Floyd-Warshall algorithm (sketched).

6. Amortized analysis

Binary counter. Different analyses: bank-account, potential function. Re-sizable arrays, stacks, and queues. Deamortization. Extracting small or large elements in O(1) amortized time.

7. Priority queues

Heaps recap. Binomial and Fibonacci heaps and their analysis.

8. Dictionaries

Binary search trees recap. Splay trees (self-adjusting trees) and some properties. Proof of amortized O(logn) cost of splay trees. Hashing. Universal families of hash functions. Hash table with chaining. Perfect hashing (FKS). Count-min sketch data structure (only idea sketched with no analysis).

9. Minimum spanning trees

Basics. Generic algorithm. Concrete algorithms: Boruvka, Jarnik-Prim, Kruskal. Hybrid algorithm (exercise)

This part is skipped this year. Optional material in lecture videos, notes: [Maintaining disjoint sets. Union-find, simple strategies. Path compression.]

10. Shortest paths

SSSP: Dijkstra, Bellman-Ford (recap/self-study). APSP: Floyd-Warshall (dynamic programming – recap). APSP: Johnson's algorithm: vertex potentials. APSP: Seidel's algorithm: matrix multiplication.

11. Network flows

Basics. Overview. Max flow – min cut. Augmenting paths. Ford-Fulkerson, Edmonds-Karp two variants: shortest/widest paths. Optional: Blocking flow, Dinitz-algorithm. Special cases. Applications: bipartite matching, scheduling, etc.

12. NP-completeness

Motivating examples. Turing machines, decision problems. Classes P and NP. Example problems in NP. Polynomial reductions. NP-hard, NP-complete. SAT, CircuitSAT. Cook-Levin theorem. 3SAT and various other NP-complete problems: Hamiltonian path/cycle, maximum clique, coloring, subset sum. --- additional material, not for the exam: Further complexity-classes (omitted)

13. Coping with hard problemsHeuristics, special cases.Approximation: TSP, Vertex Cover.Exact exponential: TSP, 3SAT, Independent Set.Parameterized algorithms: Vertex Cover.

15. Linear programming (optional material provided)Basics. Geometric view.Simplex algorithm.Integer linear programming.LP-relaxation.

15. Matching theory (not covered this year) Basics. Augmenting paths. Edmonds' algorithm